机器学习与网络数据挖掘(研)
课程类别计算机学院研究生课程(19-20下)
本课程主旨在于讲述网络挖掘的任务和他们相关的核心算法,让学生掌握关联规则、监督学习、无监督学习、半监督学习、信息整合、观点挖掘等技术知识,启发和培养学生的创新意识和创新思维,为今后在互联网或大数据挖掘领域中的相关学习和研究奠定基础。
授课主要以英文课件为主,中文讲解。
考试方式是提交论文考核。
教师: 谭琦
人工神经网络
课程类别计算机学院研究生课程(19-20下)
《人工神经网络》是硕士研究生的专业选修课。
人工神经网络是一门发展迅速的前沿交叉学科,它是模拟生物神经结构及其智能的新型信息处理系统。深度学习概念的提出和深度神经网络模型的有效应用,使得人工神经网络再次成为各个领域应用和研究的热点。
本课程主要讲授人工神经网络的基本概念、理论以及浅层和深度神经网络模型的结构、训练算法、设计要点、典型应用、软件实现方法等内容。通过教师讲解、学生研讨、项目实作等方式,使学生在了解和掌握人工神经网络领域的理论和方法的同时,学会用神经网络去解决实际问题,了解人工神经网络的发展动向和应用前景。培养学生自主学习、主动探索、规范操作的应用开发和科学研究的良好习惯。
教师: 葛红