Propagation of Uncertainties 误差传递

吴先球 华南师范大学 物理学科基础课实验教学示范中心

Propagation of Uncertainties 误差传递

- Two distinct steps for the measure of most physical quantities:
	- Directly measure one or more quantities x, y
	- Calculate the quantity $q=f(x,y)$
- The estimation of uncertainties also involves two steps:
	- $-$ Measure σ x, σ y
	- $-$ Calculate σq

3.1 Uncertainties in Direct Measurements直接测量中的误差

Uncertainties in reading scale

- Analog display
- Digital display
- Other sources of uncertainty
	- Problem of definition
		- Locating the center of a lens
		- The image center

Repeatable Measurement

If a measurement can repeated, it should be repeated, both to obtain a more reliable answer(by average) and , even more important, to get some estimate of the uncertainties

Counting events that occur at random

- In a sample of radioactive material, each individual nucleus decays at a random time, but there is a definite average rate at which we could expect to see decays occur in the whole sample.
- If we count the number of events in some time T and get the answer v, (average number of events in time T)= $v \pm \sqrt{v}$

3.2 Sums and Differences; Products and Quotients 和差积商

Uncertainty in Sums and **Differences**

- If several quantities x, ..., w are measured with uncertainties $\delta x, ..., \delta w$,
- And the measured values used to compute $Q=x+\ldots+z-(u+\ldots+w);$
- **Then the uncertainty in the computed value of** q is the sum

 $\delta Q = \delta x + ... + \delta z + (\delta u + ... + \delta w);$

Uncertainties in Sums and Difference

$$
q = x + \ldots + z - (u + \ldots + w);
$$

$$
\delta q = \delta x + \ldots + \delta z + \delta u + \ldots + \delta w
$$

Notice Some much smaller uncertainties make negligible contribution to the final uncertainty. Those uncertainties are negligible and can be ignored from the outset.

Products and Quotients

Measured Quantity Times Exact Number 测量值和常量的乘积

 $\delta q = |B|\delta x$ $q = Bx;$

Power乘方

 $q=x^n$ $\frac{\delta q}{\delta q}$ δx $\cdot = n$ $\boldsymbol{\chi}$ \boldsymbol{Q}

Unnecessarily Large Uncertainties

- Summarized rules
	- $+$, $-$: the uncertainties add
	- $-$ *, / :the fractional add

3.3 Independent Uncertainties in a Sum 求和中的独立误差

If x and y are measured independently and our errors are random in nature, then there is 50% percent chance that an underestimate of x will be accompanied by and overestimate of y: or vice versa.

$$
\delta q = \delta x + \delta y
$$

Add in quadrature:

 $(\delta x)^2 + (\delta y)$ 2 $(\mathbf{c})^2$ $\delta q = \sqrt{(\delta x)^2 + (\delta y)^2}$

Independent measurement, Normal distribution 独立测量,正态分布 If the measurements of x and y are made independently, and are both governed by the normal distribution, the the uncertainty in q=x+y is given by:

 $\sqrt{(\delta x)^2 + (\delta y)^2} \leq \delta x + \delta y$

3.4 More about Independent Uncertainties

Uncertainties in Sums and Difference

If the uncertainties in x, …,w are known to be independent and random, then the uncertainties in q is the quadratic sum of the original uncertainties:

$$
q = x + ... + z - (u + ... + w);
$$

$$
\delta q = \sqrt{(\delta x)^2 + ... + (\delta z)^2 + (\delta u)^2 + ... + (\delta w)^2}
$$

Products and Quotients

$$
q=\frac{x^*...*z}{u^*...*w;}
$$

If the uncertainties in x, ...,w are known to be independent and random, then the uncertainties in q is the quadratic sum of the original fractional uncertainties:

$$
\frac{\delta q}{|q|} = \sqrt{\left(\frac{\delta x}{x}\right)^2 + \dots + \left(\frac{\delta z}{z}\right)^2 + \left(\frac{\delta u}{u}\right)^2 + \dots + \left(\frac{\delta w}{w}\right)^2}
$$

3.5 Arbitrary Functions of One Variable 单变量时的任意函数

Uncertainties in Any Function of One Variable

If x is measured with uncertainty δx and is used to calculate the function $q(x)$, then the uncertainty δq is

$$
\delta q = \left| \frac{dq}{dx} \right| \delta x
$$

3.6 Propagation Step by Step

Riview

Propagation of uncertainties

3.7 example (i)

Measurement of g with a Simple Pendulum $g = 4\pi^2 l / T^2$

$$
g_{\rm best} = f(l_{\rm best}, T_{\rm best}) = 4\pi^2 \times 92.95 / 1.936^2 = 979 \, \text{cm/sec}^2
$$

$$
\frac{\delta l}{l} = 0.1\%
$$
 and
$$
\frac{\delta T}{T} = 0.2\%
$$

$$
\frac{\delta g}{g} = \sqrt{\left(\frac{\delta l}{l}\right)^2 + \left(2\frac{\delta T}{T}\right)^2}
$$

3.7 example (i) $g = 4\pi^2 l / T^2$

Measurement of g with a Simple Pendulum

g is the product or quotient of three factors, $\frac{1}{2}\pi A, l$, and T^2

3.7 example (i) $g=4\pi^2 l / T^2$

Measurement of g with a Simple Pendulum

g is the product or quotient of three factors, $\frac{\mathsf{S}_{\mathbf{T}}\mathsf{A}}{\mathsf{A}}$ $\frac{\mathsf{S}_{\mathbf{T}}\mathsf{A}}{\mathsf{A}}$ $\frac{\mathsf{S}_{\mathbf{T}}\mathsf{A}}{\mathsf{A}}$, l , and T^2

2

where $\rightarrow \pi$ has no uncerainty

Measurement of g with a Simple Pendulum 3.7 example (i) $g=4\pi^2 l / T^2$

g is the product or quotient of three factors, $\frac{\mathsf{S}_{\mathbf{T}}\mathsf{A}}{\mathsf{A}}$ $\frac{\mathsf{S}_{\mathbf{T}}\mathsf{A}}{\mathsf{A}}$ $\frac{\mathsf{S}_{\mathbf{T}}\mathsf{A}}{\mathsf{A}}$, l , and T^2

where $\rightarrow \pi$ has no uncerainty \mathcal{Z}_-

$$
\frac{\delta g}{g} = \sqrt{\left(\frac{\delta \left(4\pi^2}{4\pi^2}\right)^2 + \left(\frac{\delta l}{l}\right)^2 + \left(2\frac{\delta T}{T}\right)^2}\right)} = \sqrt{\left(\frac{\delta l}{l}\right)^2 + \left(2\frac{\delta T}{T}\right)^2}
$$

3.7 example (ii)

refractive Index using Snell's Law $n = \sin i / \cos r$

n is the quotient of two factors, sin *i* and cos *r*

$$
\delta \sin \theta = \frac{\delta \sin \theta}{d\theta} \delta \theta = \cos \theta \delta \theta
$$

$$
\frac{\delta n}{n} = \sqrt{\left(\frac{\delta \sin i}{\sin i}\right)^2 + \left(\frac{\delta \cos r}{\cos r}\right)^2}
$$

3.7 example (ii)

refractive Index using Snell's Law $n = \sin i / \cos r$

acceleration of a cart down a slope 1 $\overline{}$ $\overline{}$ J \setminus I I I \setminus $\bigg($ $\overline{}$ 1 $\overline{}$ $\bigg)$ \setminus $\overline{}$ I I \backslash ſ $\overline{}$ $\overline{}$ $\overline{}$ $\big)$ \setminus $\overline{}$ I I \setminus $=(v_2^2-v_1^2)/2s=\frac{1}{2}\left(\frac{l^2}{l^2}-\frac{l^2}{l^2}\right)=\left(\frac{l^2}{2}\right)\left(\frac{1}{l^2}-\frac{l^2}{l^2}\right)$ $s\sqrt{t_2^2}$ *t l t l t l s* $a=(v_2^2-v_1^2)/2s$ 1 2 2 2 2 1 2 2 2 2 2 $\overline{1}$ 2 2 $(2-\mu)^2/2s = \frac{1}{l^2} \left[\frac{l^2}{l^2}-\frac{l^2}{l^2}\right] = \left[\frac{l^2}{l^2}\right] \left[\frac{1}{l^2}-1\right]$ $\overline{2s}$ $\overline{t_2}^2$ $\overline{t_1}^2$ $\overline{2}$ $(\nu_2 - \nu_1^2)/2s = \frac{1}{2}$ $\frac{l^2}{2s}\left(\frac{1}{t_2^2}-\frac{1}{t_1^2}\right)=\sqrt{9^2+2^2}$ % = 9% $\frac{l^2}{2s}(2\%)$ $\frac{1}{2} - \frac{1}{2} (9\%)$ $1/\frac{1}{1}$ $1/\frac{1}{1}$ $2 + 2^2$ 1 2 2 2 2 2 1 2 2 2 1 2 2 2 \Rightarrow $\left| \frac{l^2}{2} \right| \frac{1}{4} - \frac{1}{4} = \sqrt{9^2 + 2^2}$ % = $\Rightarrow \frac{1}{12}$ I $\overline{}$ $\overline{}$ J \setminus I I L Y ſ $\overline{}$ $\overline{}$ $\overline{}$ J \setminus $\overline{}$ I L \backslash ſ \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} J $\overline{}$ \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} $\left\{ \right.$ \mathbf{I} T \mathbf{I} \mathbf{I} J \mathbf{I} \mathbf{I} \mathbf{I} $\left\{ \right.$ \mathbf{I} $s\sqrt{t_2^2}$ *t l s l* $\overline{{t_2}^2}$ \overline{t} *t t*

[Interesting features in the example](#page-32-0)

$$
\frac{1}{t_2^2} - \frac{1}{t_1^2} (9\%)
$$
\n
$$
\left(\frac{l^2}{2s} \left(\frac{1}{t_2^2} - \frac{1}{t_1^2} \right) = \sqrt{9^2 + 2^2} \% = 9\%
$$
\n
$$
\rightarrow
$$
\nThe uncertainties in *l* and *s* can be ignored
\nWhy?

$$
\begin{array}{cc}\nt_1(2\%) & t_2(3\%) \\
\hline\n\frac{1}{t_2} - \frac{1}{t_1^2}(9\%) & \rightarrow t_2(3\%)\n\end{array}
$$

The percent uncerainties in t_1 and t_2 **grow when evaluate How ?** $\frac{1}{t_2^2} - \frac{1}{t_1^2}$ 2 $\overline{2}$ $\begin{array}{|c|c|} \hline 1&1 \\ \hline \end{array}$ L.

Power 乘方

$$
q = x^{n};
$$

\n
$$
\frac{\delta q}{q} = \frac{\delta q}{dx} \delta x
$$

\n
$$
q = x^{n} = n \frac{\delta x}{x}
$$

\n
$$
q = T^{2}; \frac{\delta q}{q} = 2 \frac{\delta T}{T}
$$

Constant B in *[absolut uncertainty and](#page-1-0)* in *fraction's*

$$
q = Bx : \delta q = \delta x + \delta x + \ldots = B \delta x
$$
\n
$$
q = Bx/y : \frac{\delta q}{q} = B\sqrt{\left(\frac{\delta x}{x}\right)^2 + \left(\frac{\delta y}{y}\right)^2}
$$

$$
\therefore \delta q = B \delta(x/y)
$$

$$
\therefore \frac{\delta q}{q} = \frac{B \delta(x/y)}{Bx/y} = \frac{\delta(x/y)}{x/y}
$$

q

The END