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This very comprehensive Introduction to Logic covers: 

• syllogisms; 
• informal aspects of reasoning (like meaning and fallacies); 
• inductive reasoning; 
• propositional and quantificational logic; 
• modal, deontic, and belief logic; 
• the formalization of an ethical view about the golden rule; and 
• metalogic, history of logic, deviant logic, and philosophy of logic. 

Different parts can be used in a range of logic courses, from basic introduc-
tions to graduate courses. The teachers manual and the end of Chapter 1 both 
talk about which chapters fit which type of course. 

Earlier Routledge editions appeared in 2002 and 2011. Features included 
(a) clear, concise writing; (b) engaging arguments from philosophy and 
everyday life; (c) simpler ways to test arguments, including an innovative 
proof method and the syllogism star-test; (d) the widest range of materials of 
any logic text; (e) high suitability for self-study and preparation for tests like 
the LSAT; (f) a reasonable price (a third that of some competitors); and (g) 
the free companion LogiCola instructional program (which randomly gener-
ates problems, gives feedback on answers, provides help and explanations, 
and records progress). I’m happy with how earlier editions were received, 
often with lavish praise. 

I improved this third edition in many ways. I went through the book, mak-
ing explanations clearer and more concise. I especially worked on areas that 
students find difficult, such as (to give a few examples) why “all A is B” and 
“some A is not B” are contradictories (§2.4), deriving syllogistic conclusions 
(§2.5), the transition from inference rules to formal proofs (§§6.10–13 & 7.1), 
how to evaluate formulas in quantificational logic (§§8.3 & 8.5), how to 
translate “exactly one” and “exactly two” in identity logic (§9.1), multiple-
quantifier translations and endless-loop refutations in relational logic 
(§§9.4–9.5), when to drop a necessary formula into the actual world in modal 
logic (§10.2), and how inference rules work in belief logic (§13.2). I expanded 
sections on traditional Copi proofs (§§7.5, 8.6, and 9.7, urged on by review-
ers) and truth trees (§7.6, urged on by my friend Séamus Murphy), for 
teachers who might also want to teach these methods or have students learn 
them on their own for additional credit (as I do). “For Further Reading” now 
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mentions further sections of the book that an advanced student might want 
to pursue while doing specific chapters; for example, the Basic Propositional 
Logic chapter goes well with sections on metalogic, deviant logic, and 000x 
philosophy of logic. I didn’t substantially change exercise sections. Despite 
additions, the book is now six pages shorter. 

The book now has a very nice Kindle e-book version, with real page num-
bers, based on a second version of the manuscript that I made with simplified 
formatting. And yes, you can add your own highlighting and notes. 

I improved the companion LogiCola software, which runs on Windows, 
Macintosh, and Linux. Cloud Sync allows syncing scores between various 
computers. Proofs have a Training Wheels option; this gives hints about what 
to derive (it might bold lines 4 and 7 and ask “4 is an IF-THEN; do you have 
the first part true or the second part false?”) – hints disappear as your score 
builds up. Touch features let LogiCola be done using only touch, only mouse 
and keyboard, or any combination of these; touch works nicely on Windows 
tablets or touch-screen monitors. Quantificational translations have a Hints 
option; this gives Loglish hints about how to translate English sentences (for 
“All Italians are lovers” it might say “For all x, if x is Italian then x is a lover”) – 
hints disappear as your score builds up. There are exercises for Copi proofs 
and truth trees; to process scores from these, your LogiSkor program needs a 
version date of at least January 2016. And the Macintosh setup is easier. 
LogiCola (with a score-processing program, teachers manual, class slides, 
flash cards, and sample quizzes) can be downloaded for free from any of 
these Web addresses: 

http://www.harryhiker.com/lc 
http://www.harrycola.com/lc 

http://www.routledge.com/cw/gensler 

All supplementary materials are conveniently accessible from LogiCola’s 
HELP menu; so I suggest that you just install LogiCola (teachers should check 
the option to install the score processor too). 

I wish to thank all who have somehow contributed to this third edition. I 
thank Andy Beck at Routledge and his staff and reviewers, who made good 
suggestions. I thank my logic students, especially those whose puzzled looks 
pushed me to make things clearer. And I thank the many teachers, students, 
and self-learners who e-mailed me, often saying things like “I love the book 
and software, but there’s one thing I have trouble with ….” If this third edition 
is a genuine improvement, then there are many people to thank besides me. 

Long live logic! 
 
 

http://www.routledge.com/cw/gensler
http://www.harrycola.com/lc
http://www.harryhiker.com/lc
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Philosophy Department 
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1 Introduction 

1.1 Logic 

Logic1 is the analysis and appraisal of arguments. Here we’ll examine reason-
ing on philosophical areas (like God, free will, and morality) and on other 
areas (like backpacking, water pollution, and football). Logic is a useful tool 
to clarify and evaluate reasoning, whether on deeper questions or on every-
day topics. 

Why study logic? First, logic builds our minds. Logic develops analytical 
skills essential in law, politics, journalism, education, medicine, business, 
science, math, computer science, and most other areas. The exercises in this 
book are designed to help us think more clearly (so people can better under-
stand what we’re saying) and logically (so we can better support our conclu-
sions). 

Second, logic deepens our understanding of philosophy – which can be 
defined as reasoning about the ultimate questions of life. Philosophers ask 
questions like “Why accept or reject free will?” or “Can one prove or disprove 
God’s existence?” or “How can one justify a moral belief?” Logic gives tools to 
deal with such questions. If you’ve studied philosophy, you’ll likely recognize 
some of the philosophical reasoning in this book. If you haven’t studied 
philosophy, you’ll find this book a good introduction to the subject. In either 
case, you’ll get better at recognizing, understanding, and appraising philo-
sophical reasoning. 

Finally, logic can be fun. Logic will challenge your thinking in new ways 
and will likely fascinate you. Most people find logic enjoyable. 

1.2 Valid arguments 

I begin my basic logic course with a multiple-choice test. The test has ten 
problems; each gives information and asks what conclusion necessarily 
follows. The problems are fairly easy, but most students get about half 
wrong.2 0002 

Here’s a problem that almost everyone gets right: 
 
1 Key terms (like “logic”) are introduced in bold. Learn each key term and its definition. 
2 Http://www.harryhiker.com/logic.htm has my pretest in an interactive format. I suggest 
that you try it. I developed this test to help a psychologist friend test the idea that males are 
more logical than females; both groups, of course, did equally well on the problems. 

Http://www.harryhiker.com/logic.htm


 

 

If you overslept, you’ll be late. 
You aren’t late. 

Therefore 
(a) You did oversleep. 
(b) You didn’t oversleep.  ⇐ correct 
(c) You’re late. 
(d) None of these follows. 

With this next one, many wrongly pick answer “(b)”: 

If you overslept, you’ll be late. 
You didn’t oversleep. 

Therefore 
(a) You’re late. 
(b) You aren’t late. 
(c) You did oversleep. 
(d) None of these follows.  ⇐ correct 

Here “You aren’t late” doesn’t necessary follow, since you might be late for 
another reason; maybe your car didn’t start.1 The pretest shows that un-
trained logical intuitions are often unreliable. But logical intuitions can be 
developed; yours will likely improve as you work through this book. You’ll 
also learn techniques for testing arguments. 

In logic, an argument is a set of statements consisting of premises (sup-
porting evidence) and a conclusion (based on this evidence). Arguments put 
reasoning into words. Here’s an example (“∴” is for “therefore”): 

Valid argument 

If you overslept, you’ll be late. 
You aren’t late. 
∴ You didn’t oversleep. 

An argument is valid if it would be contradictory (impossible) to have the 
premises all true and conclusion false. “Valid” doesn’t say that the premises 
are true, but only that the conclusion follows from them: if the premises were 
all true, then the conclusion would have to be true. Here we implicitly assume 
that there’s no shift in the meaning or reference of the terms; hence we must 
use “overslept,” “late,” and “you” the same way throughout the argument.2 

Our argument is valid because of its logical form: how it arranges logical 
 
1 These two arguments were taken from Matthew Lipman’s fifth-grade logic textbook: Harry 
Stottlemeier’s Discovery (Caldwell, NJ: Universal Diversified Services, 1974). 
2 It’s convenient to allow arguments with zero premises; such arguments (like “∴ x = x”) are 
valid if and only if the conclusion is a necessary truth (couldn’t have been false). 



 

notions like “if-then” and content like “You overslept.” We can display the 
form using words or symbols for logical notions and letters for content 
phrases: 

If you overslept, you’ll be late. 
You aren’t late. 
∴ You didn’t oversleep. 

If A then B Valid 
Not-B 
∴ Not-A 

Our argument is valid because its form is correct. Replacing “A” and “B” with 
other content yields another valid argument of the same form: 0003 

If you’re in France, you’re in Europe. 
You aren’t in Europe. 
∴ You aren’t in France. 

If A then B Valid 
Not-B 
∴ Not-A 

Logic studies forms of reasoning. The content can deal with anything – 
backpacking, math, cooking, physics, ethics, or whatever. When you learn 
logic, you’re learning tools of reasoning that can be applied to any subject. 

Consider our invalid example: 

If you overslept, you’ll be late. 
You didn’t oversleep. 
∴ You aren’t late. 

If A then B Invalid 
Not-A 
∴ Not-B 

Here the second premise denies the first part of the if-then; this makes it 
invalid. Intuitively, you might be late for some other reason – just as, in this 
similar argument, you might be in Europe because you’re in Italy: 

If you’re in France, you’re in Europe. 
You aren’t in France. 
∴ You aren’t in Europe. 



 

 

If A then B Invalid 
Not-A 
∴ Not-B 

1.3 Sound arguments 

Logicians distinguish valid arguments from sound arguments: 

An argument is valid if it would be contradictory to have the premises all true 
and conclusion false. 

An argument is sound if it’s valid and every premise is true. 

Calling an argument “valid” says nothing about whether its premises are true. 
But calling it “sound” says that it’s valid (the conclusion follows from the 
premises) and has all premises true. Here’s a sound argument: 

Valid and true premises 

If you’re reading this, you aren’t illiterate. 
You’re reading this. 
∴ You aren’t illiterate. 

When we try to prove a conclusion, we try to give a sound argument: valid 
and true premises. With these two things, we have a sound argument and our 
conclusion has to be true. 

An argument could be unsound in either of two ways: (1) it might have a 
false premise or (2) its conclusion might not follow from the premises: 0004  

First premise false 

All logicians are millionaires. 
Gensler is a logician. 
∴ Gensler is a millionaire. 

Conclusion doesn’t follow 

All millionaires eat well. 
Gensler eats well. 
∴ Gensler is a millionaire. 

When we criticize an opponent’s argument, we try to show that it’s unsound. 



 

We try to show that one of the premises is false or that the conclusion doesn’t 
follow. If the argument has a false premise or is invalid, then our opponent 
hasn’t proved the conclusion. But the conclusion still might be true – and our 
opponent might later discover a better argument for it. To show a view to be 
false, we must do more than just refute an argument for it; we must give an 
argument that shows the view to be false. 

Besides asking whether premises are true, we can ask how certain they 
are, to ourselves or to others. We’d like our premises to be certain and 
obvious to everyone. We usually have to settle for less; our premises are 
often educated guesses or personal convictions. Our arguments are only as 
strong as their premises. This suggests a third strategy for criticizing an 
argument; we could try to show that one or more of the premises are very 
uncertain. 

Here’s another example of an argument. In fall 2008, before Barack Obama 
was elected US president, he was ahead in the polls. But some thought he’d be 
defeated by the “Bradley effect,” whereby many whites say they’ll vote for a 
black candidate but in fact don’t. Barack’s wife Michelle, in an interview with 
Larry King, argued that there wouldn’t be a Bradley effect: 

Barack Obama is the Democratic nominee. 
If there’s going to be a Bradley effect, then Barack wouldn’t be the nominee 
[because the effect would have shown up in the primaries]. 
∴ There isn’t going to be a Bradley effect. 

Once she gives this argument, we can’t just say “Well, my opinion is that 
there will be a Bradley effect.” Instead, we have to respond to her reasoning. 
It’s clearly valid – the conclusion follows from the premises. Are the premises 
true? The first premise was undeniable. To dispute the second premise, we’d 
have to argue that the Bradley effect would appear in the final election but 
not in the primaries. So this argument changes the discussion. (By the way, 
there was no Bradley effect when Obama was elected president a month 
later.) 

Logic, while not itself resolving substantive issues, gives us intellectual 
tools to reason better about such issues. It can help us to be more aware of 
reasoning, to express reasoning clearly, to determine whether a conclusion 
follows from the premises, and to focus on key premises to defend or criti-
cize. 

Logicians call statements true or false (not valid or invalid). And they call 
arguments valid or invalid (not true or false). While this is conventional 
usage, it pains a logician’s ears to hear “invalid statement” or “false argu-
ment.”0005  

Our arguments so far have been deductive. With inductive arguments, the 
conclusion is only claimed to follow with probability (not with necessity): 



 

 

Deductively valid 

All who live in France live in Europe. 
Pierre lives in France. 
∴ Pierre lives in Europe. 

Inductively strong 

Most who live in France speak French. 
Pierre lives in France. 
This is all we know about the matter. 
∴ Pierre speaks French (probably). 

The first argument has a tight connection between premises and conclusion; 
it would be impossible for the premises to all be true but the conclusion false. 
The second has a looser premise–conclusion connection. Relative to the 
premises, the conclusion is only a good guess; it’s likely true but could be 
false (perhaps Pierre is the son of the Polish ambassador and speaks no 
French). 

1.4 The plan of this book 

This book starts simply and doesn’t presume any previous study of logic. Its 
four parts cover a range of topics, from basic to rather advanced: 

• Chapters 2 to 5 cover syllogistic logic (an ancient branch of logic that focuses 
on “all,” “no,” and “some”), meaning and definitions, informal fallacies, and in-
ductive reasoning. 

• Chapters 6 to 9 cover classical symbolic logic, including propositional logic 
(about “if-then,” “and,” “or,” and “not”) and quantificational logic (which adds 
“all,” “no,” and “some”). Each chapter here builds on previous ones. 

• Chapters 10 to 14 cover advanced symbolic systems of philosophical interest: 
modal logic (about “necessary” and “possible”), deontic logic (about “ought” 
and “permissible”), belief logic (about consistent believing and willing), and a 
formalized ethical theory (featuring the golden rule). Each chapter here pre-
sumes the previous symbolic ones (except that Chapter 10 depends only on 6 
and 7, and Chapter 11 isn’t required for 12 to 14). 

• Chapters 15 to 18 cover metalogic (analyzing logical systems), history of logic, 
deviant logics, and philosophy of logic (further philosophical issues). These all 
assume Chapter 6. 

Chapters 2–8 and 10 are for basic logic courses, while other chapters are 
more advanced. Since this book is so comprehensive, it has much more 
material than can be covered in one semester. 



 

Logic requires careful reading, and sometimes rereading. Since most ideas 
build on previous ideas, you need to keep up with readings and problems. 
The companion LogiCola software (see Preface) is a great help. 

  



 

2 Syllogistic Logic 

Aristotle, the first logician (§16.1), invented syllogistic logic, which features 
arguments using “all,” “no,” and “some.” This logic, which we’ll take in a non-
traditional way, provides a fine preliminary to modern logic (Chapters 6–14). 

2.1 Easier translations 

We’ll now create a “syllogistic language,” with rules for constructing argu-
ments and testing validity. Here’s how an English argument goes into our 
language: 

All logicians are charming. 
Gensler is a logician. 
∴ Gensler is charming. 

all L is C 
g is L 
∴ g is C 

Our language uses capital letters for general categories (like “logician”) 
and small letters for specific individuals (like “Gensler”). It uses five words: 
“all,” “no,” “some,” “is,” and “not.” Its grammatical sentences are called wffs, or 
well-formed formulas. Wffs are sequences having any of these eight forms, 
where other capital letters and other small letters may be used instead:1 

all A is B 
no A is B 

some A is B 
some A is not B 

x is A 
x is not A 

x is y 
x is not y 

You must use one of these exact forms (but perhaps using other capitals for 
“A” and “B,” and other small letters for “x” and “y”). Here are examples of wffs 
(correct formulas) and non-wffs (misformed formulas): 

 
1 Pronounce “wff” as “woof” (as in “wood”). We’ll take upper and lower case forms (like A and 
a) to be different letters, and letters with primes (like A´ and A´´) to be additional letters. 



 

Wffs: “all L is C,” “no R is S,” “some C is D,” “g is C” 

Non-wffs: “only L is C,” “all R is not S,” “some c is d,” “G is C” 0007 

Our wff rule has implications about whether to use small or capital letters: 

Wffs beginning with a word (not a letter) use two capital letters: 

Correct: “some C is D” 
Incorrect: “some c is d” 

Wffs beginning with a letter (not a word) begin with a small letter: 

Correct: “g is C” 
Incorrect: “G is C” 

A wff beginning with a small letter could use a capital-or-small second letter 
(as in “a is B” or “a is b”). Which to use depends on the second term’s mean-
ing: 

Use capital letters for general terms, which describe or put in a category: 

B = a cute baby 
C = charming 

F = drives a Ford 

Use capitals for “a so and so,” adjectives, and verbs. 

Use small letters for singular terms, which pick out a specific person or thing: 

b = the world’s cutest baby 
t = this child 

d = David 

Use small letters for “the so and so,” “this so and so,” and proper names. 

Will Gensler is a cute baby = w is B 
Will Gensler is the world’s cutest baby = w is b 

An argument’s validity can depend on whether upper or lower case is used. 
Be consistent when you translate English terms into logic; use the same 

letter for the same idea and different letters for different ideas. It matters 
little which letters you use; “a cute baby” could be “B” or “C” or any other 



 

 

capital. I suggest that you use letters that remind you of the English terms. 
Syllogistic wffs all use “is.” English sentences with a different verb should 

be rephrased to make “is” the main verb, and then translated. So “All dogs 
bark” is “all D is B” (“All dogs is [are] barkers”); and “Al drove the car” is “a is 
D” (“Al is a person who drove the car”). 

2.1a Exercise: LogiCola A (EM & ET)1 
Translate these English sentences into wffs. 

John left the room. 

j is L 

1. This is a sentence. 

2. This isn’t the first sentence. 

3. No logical positivist believes in God. 

4. The book on your desk is green. 0008 

5. All dogs hate cats. 

6. Kant is the greatest philosopher. 

7. Ralph was born in Detroit. 

8. Detroit is the birthplace of Ralph. 

9. Alaska is a state. 

10. Alaska is the biggest state. 

11. Carol is my only sister. 

12. Carol lives in Big Pine Key. 

13. The idea of goodness is itself good. 

14. All Michigan players are intelligent. 

15. Michigan’s team is awesome. 

16. Donna is Ralph’s wife. 

 
1 Exercise sections have a boxed sample problem that’s worked out. They also refer to 
LogiCola computer exercises (see Preface), which give a fun and effective way to master the 
material. Problems 1, 3, 5, 10, 15, and so on are worked out in the answer section at the back of 
the book. 



 

2.2 The star test 

Syllogisms, roughly, are arguments using syllogistic wffs. Here’s an English 
argument and its translation into a syllogism (the Cuyahoga is a Cleveland 
river that used to be so polluted that it caught on fire): 

No pure water is burnable. 
Some Cuyahoga River water is burnable. 
∴ Some Cuyahoga River water isn’t pure water. 

no P is B 
some C is B 
∴ some C is not P 

More precisely, syllogisms are vertical sequences of one or more wffs in 
which each letter occurs twice and the letters “form a chain” (each wff has at 
least one letter in common with the wff just below it, if there is one, and the 
first wff has at least one letter in common with the last wff): 

(If you imagine the two instances of each letter being joined, it’s like a chain.) 

no P is B 
some C is B 
∴ some C is not P 

The last wff is the conclusion; other wffs are premises. Here are three more 
syllogisms: 

a is C 
b is not C 
∴ a is not b 

some G is F 
∴ some F is G 

∴ all A is A 

The last example is a premise-less syllogism; it’s valid if and only if it’s 
impossible for the conclusion to be false. 

Before doing the star test, we need to learn the technical term “distribut-



 

 

ed”:1 

An instance of a letter is distributed in a wff if it occurs just after “all” or 
anywhere after “no” or “not.” 

0009 The distributed letters below are underlined and bolded: 

all A is B 
no A is B 

some A is B 
some A is not B 

x is A 
x is not A 

x is y 
x is not y 

By our definition: 

• The first letter after “all” is distributed, but not the second. 
• Both letters after “no” are distributed. 
• Any letter after “not” is distributed. 

Once you know which letters are distributed, you’re ready to learn the star 
test for validity. The star test is a gimmick, but a quick and effective one; for 
now, it’s best just to learn the test and not worry about why it works. 

The star test for syllogisms goes as follows: 

Star premise letters that are distributed and conclusion letters that aren’t 
distributed. Then the syllogism is valid if and only if every capital letter is 
starred exactly once and there is exactly one star on the right-hand side. 

As you learn the star test, use three steps: (1) underline distributed letters, 
(2) star, and (3) count the stars. Here are two examples: 

(1) Underline distributed letters (here only the first “A” is distributed): 

all A is B 
some C is A 
∴ some C is B 

(2) Star premise letters that are underlined and conclusion letters that aren’t 
 
1 §16.2 mentions the meaning of “distributed” in medieval logic. Here I suggest that you take a 
distributed term to be one that occurs just after “all” or anywhere after “no” or “not.” 



 

underlined: 

all A* is B Valid 
some C is A 
∴ some C* is B* 

(3) Count the stars. Here every capital letter is starred exactly once and there is 
exactly one star on the right-hand side. So the first argument is VALID. 

(1) For our next argument, again underline distributed letters (here all the letters 
are distributed – since all occur after “no”): 

no A is B 
no C is A 
∴ no C is B 

(2) Star premise letters that are underlined and conclusion letters that aren’t 
underlined: 

no A* is B* Invalid 
no C* is A* 
∴ no C is B 

(3) Count the stars. Here capital “A” is starred twice and there are two stars on 
the right-hand side. So the second argument is INVALID. 

A valid syllogism must satisfy two conditions: (a) each capital letter is 
starred in one and only one of its instances (small letters can be starred any 
number of times); and (b) one and only one right-hand letter (letter after “is” 
or “is not”) 0010 is starred. Here’s an example using only small letters: 

(1) Underline distributed letters (here just ones after “not” are distributed): 

a is not b 
∴ b is not a 

(2) Star premise letters that are underlined and conclusion letters that aren’t 
underlined: 

a is not b* Valid 
∴ b* is not a 

(3) Count the stars. Since there are no capitals, that part is automatically satisfied; 
small letters can be starred any number of times. There’s exactly one right-hand 
star. So the argument is VALID. 

Here’s an example without premises: 



 

 

(1) Underline distributed letters: 

∴ all A is A 

(2) Star conclusion letters that aren’t underlined: 

∴ all A is A* Valid 

(3) Count the stars. Each capital is starred exactly once and there’s exactly one 
right-hand star. So the argument is VALID. 

When you master this, you can skip the underlining and just star premise 
letters that are distributed and conclusion letters that aren’t. After practice, 
the star test takes about five seconds to do.1 

Logic takes “some” to mean “one or more” – and so takes this to be valid:2 

Gensler is a logician. 
Gensler is mean. 
∴ Some logicians are mean. 

g is L Valid 
g is M 
∴ some L* is M* 

Similarly, logic takes this next argument to be invalid: 

Some logicians are mean. 
∴ Some logicians are not mean. 

some L is M Invalid 
∴ some L* is not M 

If one or more logicians are mean, it needn’t be that one or more aren’t mean; 
maybe all logicians are mean. 

2.2a Exercise – No LogiCola exercise 
Which of these are syllogisms? 

 
1 The star test is my invention. For why it works, see http://www.harryhiker.com/star.htm or 
my “A simplified decision procedure for categorical syllogisms,” Notre Dame Journal of Formal 
Logic 14 (1973): pp. 457–66. 
 2 In English, “some” can also mean “two or more,” “several,” “one or more but not all,” “two or 
more but not all,” or “several but not all.” Only the one-or-more sense makes our argument 
valid. 

http://www.harryhiker.com/star.htm


 

no P is B 
some C is B 
∴ some C is not P 

This is a syllogism. (Each formula is a wff, each letter occurs twice, and the 
letters form a chain.) 
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1. all C is D 
∴ some C is not E 

2. g is not l 
∴ l is not g 

3. no Y is E 
all G is Y 
∴ no Y is E 

4. ∴ all S is S 

5. k is not L 
all M is L 
some N is M 
Z is N 
∴ k is not Z 

2.2b Exercise: LogiCola BH 
Underline the distributed letters in the following wffs. 

some R is not S 

some R is not S 

1. w is not s 

2. some C is B 

3. no R is S 

4. a is C 

5. all P is B 

6. r is not D 



 

 

7. s is w 

8. some C is not P 

2.2c Exercise: LogiCola B (H and S) 
Valid or invalid? Use the star test. 

no P is B 
some C is B 
∴ some C is not P 

no P* is B* Valid 
some C is B 
∴ some C* is not P 

1. no P is B 
some C is not B 
∴ some C is P 

2. x is W 
x is not Y 
 ∴ some W is not Y 

3. no H is B 
no H is D 
∴ some B is not D 

4. some J is not P 
all J is F 
∴ some F is not P 

5. ∴ g is g 

6. g is not s 
∴ s is not g 

7. all L is M 
g is not L 
∴ g is not M 

8. some N is T 
some C is not T 
∴ some N is not C 



 

9. all C is K 
s is K 
∴ s is C 

10. all D is A 
∴ all A is D 

11. s is C 
s is H 
∴ some C is H 

12. some C is H 
∴ some C is not H 

13. a is b 
b is c 
c is d 
∴ a is d 

14. no A is B 
some B is C 
some D is not C 
all D is E 
∴ some E is A 

2.3 English arguments 

Most arguments in this book are in English. Work them out in a dual manner. 
First use intuition. Read the argument and ask whether it seems valid; 
sometimes this will be clear, sometimes not. Then symbolize the argument 
and do a validity 0012 test. If your intuition and the validity test agree, then 
you have a stronger basis for your answer. If they disagree, then something 
went wrong; reconsider your intuition, your translation, or how you did the 
validity test. This dual attack trains your logical intuitions and double-checks 
your results. 

When you translate into logic, use the same letter for the same idea and 
different letters for different ideas. The same idea may be phrased in differ-
ent ways;1 often it’s redundant or stilted to phrase an idea in the exact same 
way throughout an argument. If you have trouble remembering which letter 
 
1 ”Express the same idea” can be tricky to apply. Consider “All Fuji apples are nutritious” and 
“All nutritious apples have vitamins.” Use the same letter for both underlined phrases, since 
the first statement is equivalent to “All Fuji apples are nutritious apples.” 



 

 

translates which phrase, underline the phrase in the argument and write the 
letter above it; or write out separately which letter goes with which phrase. 

Translate singular terms into small letters, and general terms into capital 
letters (§2.1). Capitalization can make a difference to validity. This first 
example uses a capital “M” (for “a man” – which could describe several 
people) and is invalid: 

Al is a man. 
My father is a man. 
∴ Al is my father. 

a is M Invalid 
f is M 
∴ a* is f* 

This second example uses a small “m” (for “the NY mayor” – which refers to a 
specific person) and is valid: 

Al is the NY mayor. 
My father is the NY mayor. 
∴ Al is my father. 

a is m Valid 
f is m 
∴ a* is f* 

We’ll more likely catch capitalization errors if we do the problems intuitively 
as well as mechanically. 

2.3a Exercise: LogiCola BE 1. 
Valid or invalid? First appraise intuitively. Then translate into logic and use the star 
test to determine validity. 

No pure water is burnable. 
Some Cuyahoga River water is burnable. 
∴ Some Cuyahoga River water isn’t pure water. 

no P* is B* Valid 
some C is B 
∴ some C* is not P 



 

1. All segregation laws degrade human personality. 
All laws that degrade human personality are unjust. 
∴ All segregation laws are unjust. [From Dr Martin Luther King.] 

2. All Communists favor the poor. 
All Democrats favor the poor. 
∴ All Democrats are Communists. [This reasoning could persuade if expressed 
emotionally in a political speech. It’s less likely to persuade if put into a clear 
premise–conclusion form.] 0013 

3. All too-much-time penalties are called before play starts. 
No penalty called before play starts can be refused. 
∴ No too-much-time penalty can be refused. 

4. No one under 18 is permitted to vote. 
No faculty member is under 18. 
The philosophy chairperson is a faculty member. 
∴ The philosophy chairperson is permitted to vote. [Applying laws, like ones 
about voting, requires logical reasoning. Lawyers and judges need to be logical.] 

5. All acts that maximize good consequences are right. 
Some punishing of the innocent maximizes good consequences. 
∴ Some punishing of the innocent is right. [This argument and the next give a 
mini-debate on utilitarianism. Moral philosophy would try to evaluate the prem-
ises; logic just focuses on whether the conclusion follows.] 

6. No punishing of the innocent is right. 
Some punishing of the innocent maximizes good consequences. 
∴ Some acts that maximize good consequences aren’t right. 

7. All huevos revueltos are buenos para el desayuno. 
All café con leche is bueno para el desayuno. 
∴ All café con leche is huevos revueltos. [To test whether this argument is valid, 
you don’t have to understand its meaning; you only have to grasp the form. In 
doing formal logic, you don’t have to know what you’re talking about; you only 
have to know the logical form of what you’re talking about.] 

8. The belief that there’s a God is unnecessary to explain our experience. 
All beliefs unnecessary to explain our experience ought to be rejected. 
∴ The belief that there’s a God ought to be rejected. [St Thomas Aquinas men-
tioned this argument in order to dispute the first premise.] 



 

 

9. The belief in God gives practical life benefits (courage, peace, zeal, love, …). 
All beliefs that give practical life benefits are pragmatically justifiable. 
∴ The belief in God is pragmatically justifiable. [From William James.] 

10. All sodium salt gives a yellow flame when put into the flame of a Bunsen 
burner. 
This material gives a yellow flame when put into the flame of a Bunsen burner. 
∴ This material is sodium salt. 

11. All abortions kill innocent human life. 
No killing of innocent human life is right. 
∴ No abortions are right. 

12. All acts that maximize good consequences are right. 
All socially useful abortions maximize good consequences. 
∴ All socially useful abortions are right. 

13. That drink is transparent. 
That drink is tasteless. 
All vodka is tasteless. 
∴ Some vodka is transparent. 0014 

14. Judy isn’t the world’s best cook. 
The world’s best cook lives in Detroit. 
∴ Judy doesn’t live in Detroit. 

15. All men are mortal. 
My mother is a man. 
∴ My mother is mortal. 

16. All gender-neutral terms can be applied naturally to individual women. 
The term “man” can’t be applied naturally to individual women. [We can’t natural-
ly say “My mother is a man”; see the previous argument.] 
∴ The term “man” isn’t a gender-neutral term. [From Janice Molton.] 

17. Some moral questions are controversial. 
No controversial question has a correct answer. 
∴ Some moral questions don’t have a correct answer. 

18. The idea of a perfect circle is a human concept. 
The idea of a perfect circle doesn’t derive from sense experience. 
All ideas gained in our earthly existence derive from sense experience. 
∴ Some human concepts aren’t ideas gained in our earthly existence. [This 
reasoning led Plato to think that the soul gained ideas in a previous existence.] 



 

19. All beings with a right to life are capable of desiring continued existence. 
All beings capable of desiring continued existence have a concept of themselves as 
a continuing subject of experiences. 
No human fetus has a concept of itself as a continuing subject of experiences. 
∴ No human fetus has a right to life. [From Michael Tooley.] 

20. The bankrobber wears size-twelve hiking boots. 
You wear size-twelve hiking boots. 
∴ You’re the bankrobber. [This is circumstantial evidence.] 

21. All moral beliefs are products of culture. 
No products of culture express objective truths. 
∴ No moral beliefs express objective truths. 

22. Some books are products of culture. 
Some books express objective truths. 
∴ Some products of culture express objective truths. [How can we make this 
valid?] 

23. Dr Martin Luther King believed in objective moral truths (like “Racism is 
wrong”). 
Dr Martin Luther King disagreed with the moral beliefs of his culture. 
No people who disagree with the moral beliefs of their culture are absolutizing 
the moral beliefs of their own culture. 
∴ Some who believed in objective moral truths aren’t absolutizing the moral 
beliefs of their own culture. 

24. All claims that would still be true if no one believed them are objective truths. 
“Racism is wrong” would still be true if no one believed it. 
“Racism is wrong” is a moral claim. 
∴ Some moral claims are objective truths. 0015 

25. Some shivering people with uncovered heads have warm heads. 
All shivering people with uncovered heads lose much heat through their heads. 
All who lose much heat through their heads ought to put on a hat to stay warm. 
∴ Some people who have warm heads ought to put on a hat to stay warm. 

2.3b Mystery story exercise – No LogiCola exercise 
Herman had a party at his house. Alice, Bob, Carol, David, George, and others were 
there; one or more of these stole money from Herman’s bedroom. You have the data 
in the box, which may or may not give conclusive evidence about a given suspect: 



 

 

1. Alice doesn’t love money. 
2. Bob loves money. 
3. Carol knew where the money was. 
4. David works for Herman. 
5. David isn’t the nastiest person at the party. 
6. All who stole money love money. 
7. All who stole money knew where the money was. 
8. All who work for Herman hate Herman. 
9. All who hate Herman stole money. 
10. The nastiest person at the party stole money. 

 

Did Alice steal money? If you can, prove your answer using a valid syllogism 
with premises from the box. 

Alice didn’t steal money: 

a is not L* – #1 
all S* is L – #6 
∴ a* is not S 

1. Did Bob steal money? If you can, prove your answer using a valid syllogism 
with premises from the box. 

2. Did Carol steal money? If you can, prove your answer using a valid syllogism 
with premises from the box. 

3. Did David steal money? If you can, prove your answer using a valid syllogism 
with premises from the box. 

4. Based on our data, did more than one person steal money? Can you prove this 
using syllogistic logic? 

5. Suppose that, from our data, we could deduce both that a person stole money 
and that this same person didn’t steal money. What would that show? 

2.4 Harder translations 

Suppose we want to test this argument: 0016 

Every human is mortal. 
Only humans are philosophers. 
∴ Every philosopher is mortal. 

all H is M 
all P is H 



 

∴ all P is M 

Here we need to translate “every” and “only” into our standard “all,” “no,” and 
“some.” “Every” just means “all.” “Only” is trickier; “Only humans are philoso-
phers” really means “All philosophers are humans,” and so it symbolizes as 
“all P is H” (switching the letters). 

This box lists some common ways to say “all”: 

“all A is B” = 

Every (each, any) A is B. 
Whoever is A is B. 

A’s are B’s.1 
Those who are A are B. 

If a person is A, then he or she is B. 
If you’re A, then you’re B. 

Only B’s are A’s. 
None but B’s are A’s. 

No one is A unless he or she is B. 
No one is A without being B. 
A thing isn’t A unless it’s B. 

It’s false that some A is not B. 

“Only” and “none but” require switching the order of the letters: 

Only dogs are collies = All collies are dogs 
only D is C = all C is D 

So “only” translates as “all,” but with the terms reversed; “none but” works 
the same way. “No … unless” is tricky too, because it really means “all”: 

Nothing is a collie unless it’s a dog = All collies are dogs 
nothing is C unless it’s D = all C is D 

Don’t reverse the letters here; only reverse with “only” and “none but.” 
This box lists some common ways to say “no A is B”: 

 
1 Logicians standardly take “A’s are B’s” to mean “all A is B” – even though in ordinary English 
it also could mean “most A is B” or “some A is B.” 



 

 

“no A is B” = 

A’s aren’t B’s. 
Every (each, any) A is non-B. 

Whoever is A isn’t B. 
If a person is A, then he or she isn’t B. 

If you’re A, then you aren’t B. 

No one that’s A is B. 
There isn’t a single A that’s B. 

Not any A is B. 
It’s false that there’s an A that’s B. 

It’s false that some A is B. 

Never use “all A is not B.” Besides not being a wff, this form is ambiguous. “All 
0017 cookies are not fattening” could mean “No cookies are fattening” or 
“Some cookies are not fattening.” 

These last two boxes give ways to say “some”: 

some A is B = 

A’s are sometimes B’s. 
One or more A’s are B’s. 

There are A’s that are B’s. 
It’s false that no A is B. 

 

some A is not B = 

One or more A’s aren’t B’s. 
There are A’s that aren’t B’s. 

Not all A’s are B’s. 
It’s false that all A is B. 

Formulas “all A is B” and “some A is not B” are contradictories: saying that 
one is false is equivalent to saying that the other is true. Here’s an example: 

 
Not all of the pills are white = Some of the pills aren’t white 

Similarly, “some A is B” and “no A is B” are contradictories: 



 

 
It’s false that some pills are black = No pills are black 

Such idiomatic sentences can be difficult to untangle. Our rules cover most 
cases. If you find an example that our rules don’t cover, puzzle out the 
meaning yourself; try substituting concrete terms, like “pills” and “white,” as 
above. 

2.4a Exercise: LogiCola A (HM & HT) 
Translate these English sentences into wffs. 

Nothing is worthwhile unless it’s difficult. 

all W is D 

1. Only free actions can justly be punished. 

2. Not all actions are determined. 

3. Socially useful actions are right. 

4. None but Democrats favor the poor. 

5. At least some of the shirts are on sale. 

6. Not all of the shirts are on sale. 

7. No one is happy unless they are rich.1 

8. Only rich people are happy. 

9. Every rich person is happy. 

10. Not any selfish people are happy. 0018 

11. Whoever is happy is not selfish. 

12. Altruistic people are happy. 

13. All of the shirts (individually) cost $20. 

14. All of the shirts (together) cost $20. 

15. Blessed are the merciful. 

16. I mean whatever I say. 

17. I say whatever I mean. 
 
1 How would you argue against 7 to 9? Would you go to the rich part of town and find a rich 
person who is miserable? Or would you go to the poor area and find a poor person who is 
happy? 



 

 

18. Whoever hikes the Appalachian Trail (AT) loves nature. 

19. No person hikes the AT unless he or she likes to walk. 

20. Not everyone who hikes the AT is in great shape. 

2.5 Deriving conclusions 

This next exercise gives you premises and has you derive a conclusion that 
follows validly. Do the problems in a dual manner: first try intuition, then use 
rules. Using intuition, read the premises slowly, say “therefore” to yourself, 
hold your breath, and hope that the conclusion comes. If you get a conclusion, 
write it down; then symbolize the argument and test for validity using the 
star test. 

The rule approach uses four steps based on the star test: 

1. Translate the premises, star, see if rules are broken. 
2. Figure out the conclusion letters. 
3. Figure out the conclusion form. 
4. Add the conclusion, do the star test. 

(1) Translate the premises into logic, star the distributed letters, and see if 
rules are broken. If you have two right-hand stars, or a capital letter that 
occurs twice without being starred exactly once, then no conclusion validly 
follows – so you can write “no conclusion” and stop. 

(2) The conclusion letters are the two letters that occur just once in the 
premises. So if your premises are “x is A” and “x is B,” then “A” and “B” will 
occur in the conclusion. 

(3) Figure out the form of the conclusion: 

• If both conclusion letters are capitals: use an “all” or “no” conclusion if every 
premise starts with “all” or “no”; otherwise use a “some” conclusion. 

• If at least one conclusion letter is small: the conclusion will have a small letter, 
“is” or “is not,” and then the other letter. 

• Always derive a negative conclusion if any premise has “no” or “not.” 

Here are examples using “all” and “no”: 

• From premises “all” and “all,” derive an “all” conclusion. 
• From “all” and “no,” derive “no.” (The order of the premises doesn’t matter; 

0019 so from “no” and “all,” also derive “no.”) 



 

Any “some” premise gives you a “some” conclusion: 

• From “all” and “some” (positive), derive “some.” 
• From “all” and “some is not,” derive “some is not.” 
• From “no” and “some” (positive), derive “some is not.” 

If the premises have a small letter but the conclusion has to have two capi-
tals, derive “some”: 

• From “x is A” and “x is B,” derive “some A is B.” 
• From “x is A” and “x is not B,” derive “some A is not B.” 

And if at least one conclusion letter has to be small, then the conclusion will 
have a small letter, “is” or “is not,” and then the other letter: 

• From “a is b” and “b is c,” derive “a is c.” 
• From “a is b” and “b is C,” derive “a is C.” 
• From “a is C” and “b is not C,” derive “a is not b.” 

Always derive a negative conclusion if any premise has “no” or “not.” 
(4) Add the conclusion and do the star test; if it’s invalid, see if you can 

make it valid by reversing the letters in the conclusion (e.g., changing “all A is 
B” to “all B is A” – or “some A is not B” to “some B is not A” – the order mat-
ters with these two forms). Finally, put the conclusion back into English. 

Suppose we want to derive a valid conclusion using all the English premis-
es on the left. We first translate the premises into logic and star: 

Some cave dwellers use fire. 
All who use fire have intelligence. 

some C is F 
all F* is I 

No rules are broken. “C” and “I” will occur in the conclusion. The conclusion 
form will be “some … is ….” We find that “some C is I” follows validly, and so 
we can conclude “Some cave dwellers have intelligence.” Equivalently, we 
could conclude “Some who have intelligence are cave dwellers.” 

Or suppose we want to derive a valid conclusion using all of these next 
premises. Again, we first translate the premises into logic and star: 



 

 

No one held for murder is given bail. 
Smith isn’t held for murder. 

no M* is B* 
s is not M* 

Here “M” is starred twice and there are two right-hand stars, and so rules are 
broken. So no conclusion follows. Do you intuitively want to conclude “Smith 
is given bail”? Maybe Smith is held for kidnapping and so is denied bail. 0020 

Let’s take yet another example: 

Gensler is a logician. 
Gensler is mean. 

g is L 
g is M 

No rules are broken. “L” and “M” will occur in the conclusion. The conclusion 
form will be “some … is ….” Since “some L is M” follows validly, and we can 
conclude “Some logicians are mean.” Equivalently, we could conclude “Some 
who are mean are logicians.” 

2.5a Exercise: LogiCola BD 2. 
Derive a conclusion in English (not in wffs) that follows validly from and uses all the 
premises. Write “no conclusion” if no such conclusion validly follows. 

No pure water is burnable. 
Some Cuyahoga River water is not burnable. 
  

no P* is B* 
some C is not B* 
no conclusion 

Do you want to conclude “Some Cuyahoga River water is pure water”? Maybe all of 
the river is polluted by something that doesn’t burn. 

1. All human acts are determined (caused by prior events beyond our control). 
No determined acts are free. 



 

2. Some human acts are free. 
No determined acts are free. 

3. All acts where you do what you want are free. 
Some acts where you do what you want are determined. 

4. All men are rational animals. 
No woman is a man. 

5. All philosophers love wisdom. 
John loves wisdom. 

6. Luke was a gospel writer. 
Luke was not an apostle. 
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7. All cheap waterproof raincoats block the escape of sweat. 
No raincoat that blocks the escape of sweat keeps you dry when hiking uphill. 

8. All that is or could be experienced is thinkable. 
All that is thinkable is expressible in judgments. 
All that is expressible in judgments is expressible with subjects and predicates. 
All that is expressible with subjects and predicates is about objects and proper-
ties. 

9. All moral judgments influence our actions and feelings. 
Nothing from reason influences our actions and feelings. 

10. No feelings that diminish when we understand their origins are rational. 
All culturally taught racist feelings diminish when we understand their origin. 

11. I weigh 180 pounds. 
My mind does not weigh 180 pounds. 

12. No acts caused by hypnotic suggestion are free. 
Some acts where you do what you want are caused by hypnotic suggestion. 



 

 

13. All unproved beliefs ought to be rejected. 
“There is a God” is an unproved belief. 

14. All unproved beliefs ought to be rejected. 
“All unproved beliefs ought to be rejected” is an unproved belief. 

15. Jones likes raw steaks. 
Jones likes champagne. 

16. Some human beings seek self-destructive revenge. 
No one seeking self-destructive revenge is motivated only by self-interest. 
All purely selfish people are motivated only by self-interest. 

17. All virtues are praised. 
No emotions are praised. 
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18. God is a perfect being. 
All perfect beings are self-sufficient. 
No self-sufficient being is influenced by anything outside of itself. 

19. God is a perfect being. 
All perfect beings know everything. 
All beings that know everything are influenced by everything. 

20. All basic moral norms hold for all possible rational beings as such. 
No principles based on human nature hold for all possible rational beings as such. 

21. All programs that discriminate simply because of race are wrong. 
All racial affirmative action programs discriminate simply because of race. 

22. Some racial affirmative action programs are attempts to make amends for 
past injustices toward a given group. 
No attempts to make amends for past injustices toward a given group discrimi-
nate simply because of race. (They discriminate because of past injustices.) 

23. Some actions approved by reformers are right. 



 

Some actions approved by society aren’t approved by reformers. 

24. Some wrong actions are errors made in good faith. 
No error made in good faith is blameworthy. 

25. All moral judgments are beliefs whose correctness cannot be decided by 
reason. 
No objective truths are beliefs whose correctness cannot be decided by reason. 

Here 1–3 defend three classic views on free will: hard determinism, indetermin-
ism, and soft determinism; 8 and 20 are from Immanuel Kant; 9 is from David 
Hume; 10 is from Richard Brandt; 17 and 18 are from Aristotle; and 19 is from 
Charles Hartshorne. 

2.6 Venn diagrams 

Having learned the star test, we’ll now learn a second test that’s more diffi-
cult but also more intuitive. Venn diagrams have you diagram the premises 
using three overlapping circles. We’ll apply Venn diagrams only to traditional 
syllogisms (two-premise syllogisms with no small letters). 0023 

Here’s how to do the Venn-diagram test: 

Draw three overlapping circles, labeling each with one of the syllogism’s 
letters. Then draw the premises as directed below. The syllogism is valid if 
and only if drawing the premises necessitates drawing the conclusion. 

First, draw three overlapping circles: 



 

 

 

Circle A contains all A things, circle B contains all B things, and circle C 
contains all C things. 

The central area, where all three circles overlap, contains whatever has all 
three features (A, B, and C). Three middle areas contain whatever has only 
two features (for example, A and B but not C). Three outer areas contain 
whatever has only one feature (for example, A but not B or C). Each of the 
seven areas can be empty or non-empty. We shade areas known to be empty. 
We put an “×” in areas known to contain at least one entity. An area without 
either shading or an “×” is unspecified; it could be either empty or non-
empty. 

Draw the premises as follows: 

“no A is B” 

Shade wherever A and B overlap. 

 
“No animals are beautiful” = “nothing in the animal circle is in the beautiful 

circle.” 



 

“some A is B” 

“×” an unshaded area where A and B overlap. 

 
“Some animals are beautiful” = “something in the animal circle is in the 

beautiful circle.” 

  

“all A is B” 

Shade areas of A that aren’t in B. 

 
“All animals are beautiful” = “everything in the animal circle is in the 

beautiful circle.” 

“some A is not B” 

“×” an unshaded area in A that isn’t in B. 

 
“Some animals are not beautiful” = “something in the animal circle is outside 

the beautiful circle.” 

0024 Shading means the area is empty while “×” means it contains something. 
Follow these four steps (for now you can ignore the italicized complica-

tion): 

1. Draw three overlapping circles, each labeled by one of the letters. 
2. First draw “all” and “no” premises by shading. 
3. Then draw “some” premises by putting an “×” in some unshaded area. 
(When “×”could go in either of two unshaded areas, the argument is invalid; 
to show this, put “×” in an area that doesn’t draw the conclusion. I suggest 



 

 

you first put “×” in both areas and then erase the “×” that draws the 
conclusion.) 
4. If you must draw the conclusion, the argument is valid; otherwise, it’s 
invalid. 

Here’s a valid example: 

all H is D Valid 
no F is D 
∴ no H is F 

 
We draw “all H is D” by shading areas of H that aren’t in D. And we draw “no F is 
D” by shading where F and D overlap. Here we’ve automatically drawn the con-
clusion “no H is F” (we’ve shaded where H and F overlap). 

So the argument is valid. 
Here’s an invalid example: 

no H is D Invalid 
no F is D 
∴ no H is F 

 
We draw “no H is D” by shading where H and D overlap. We draw “no F is D” by 
shading where F and D overlap. Here we haven’t automatically drawn the conclu-
sion “no H is F” (we haven’t shaded all the areas where H and F overlap).  



 

So the argument is invalid. 
Here’s a valid argument using “some”: 

no D is F Valid 
some H is F 
∴ some H is not D 

  
We draw “no D is F” by shading where D and F overlap. We draw “some H is F” by 
putting “×” in some unshaded area where H and F overlap. But then we’ve auto-
matically drawn the conclusion “some H is not D” – since we’ve put an “×” in some 
area of H that’s outside D.  

So the argument is valid. (Recall that we draw “all” and “no” first, and then 
“some.”) 0025 

I earlier warned about a complication that sometimes occurs: “When ‘×’ 
could go in either of two unshaded areas, the argument is invalid; to show 
this, put ‘×’ in an area that doesn’t draw the conclusion. I suggest you first put 
‘×’ in both areas and then erase the ‘×’ that draws the conclusion.” Here’s an 
example: 

no D is F Invalid 
some H is not D 
∴ some H is F 

 
We draw “no D is F” by shading where D and F overlap. We draw “some H is not 
D” by putting “×” in both unshaded areas in H that are outside D (since either “×” 
would draw the premise). 



 

 

 
We then erase the “×” that draws the conclusion “some H is F.” So then we’ve 
drawn the premises without drawing the conclusion. So it’s invalid. 

Since it’s possible to draw the premises without drawing the conclusion, the 
argument is invalid. Since this case is tricky, you might reread the explana-
tion a couple of times until it’s clear in your mind. 

2.6a Exercise: LogiCola BC 
Test for validity using Venn diagrams. 

no P is B 
some C is B 
∴ some C is not P 

 

1. no B is C 
all D is C 
∴ no D is B 

2. no Q is R 
some Q is not S 
∴ some S is R 



 

3. all E is F 
some G is not F 
∴ some G is not E 

4. all A is B 
some C is B 
∴ some C is A 

5. all A is B 
all B is C 
 ∴ all A is C 

6. all P is R 
some Q is P 
∴ some Q is R 

7. all D is E 
some D is not F 
 ∴ some E is not F 

8. all K is L 
all M is L 
∴ all K is M 

9. no P is Q 
all R is P 
∴ no R is Q 0026 

10. some V is W 
some W is Z 
∴ some V is Z 

11. no G is H 
some H is I 
∴ some I is not G 

12. all E is F 
some G is not E 
∴ some G is not F 



 

 

2.7 Idiomatic arguments 

Our arguments so far have been phrased in a clear premise–conclusion 
format. Real-life arguments are seldom so neat and clean. Instead we may 
find convoluted wording or extraneous material. Key premises may be 
omitted or only hinted at. And it may be hard to pick out the premises and 
conclusion. It often takes hard work to reconstruct a clearly stated argument 
from a passage. 

Logicians like to put the conclusion (here italicized) last: 

“Socrates is human. All humans are mortal. So Socrates is mortal.” 

s is H 
all H is M 
∴ s is M 

But people sometimes put the conclusion first, or in the middle: 

“Socrates must be mortal. After all, he’s human and all humans are mortal.” 

“Socrates is human. So he must be mortal – since all humans are mortal.” 

Here “must” and “so” indicate the conclusion (which goes last when we 
translate into logic). Here are some words that help us pick out premises and 
conclusion: 

These often indicate premises: 

Because, for, since, after all … 
I assume that, as we know … 
For these reasons … 

These often indicate conclusions: 

Hence, thus, so, therefore … 
It must be, it can’t be … 
This proves (or shows) that … 

When you don’t have this help, ask yourself what is argued from (these are 
the premises) and what is argued to (this is the conclusion). 

In reconstructing an argument, first pick out the conclusion. Then symbol-
ize the premises and conclusion; this may involve untangling idioms like 
“Only A’s are B’s” (which translates as “all B is A”). If some letters occur only 



 

once, you may have to add unstated but implicit premises; using the “princi-
ple of charity,” interpret unclear reasoning to give the best argument. Then 
test for validity. 

Here’s a twisted argument – and how it goes into premises and a conclu-
sion: 0027 

“You aren’t allowed in here! After all, only members are allowed.” 

Only members are allowed in here. 
∴ You aren’t allowed in here. 

all A is M 
∴ u is not A 

Since “M” and “u” occur only once, we need to add an implicit premise linking 
these to produce a syllogism. We add a plausible premise and test for validity: 

You aren’t a member. (implicit) 
Only members are allowed in here. 
∴ You aren’t allowed in here. 

u is not M* Valid 
all A* is M 
∴ u* is not A 

2.7a Exercise: LogiCola B (F & I) 
First appraise intuitively. Then pick out the conclusion, translate into logic (using 
correct wffs and syllogisms), and determine validity using the star test. Supply 
implicit premises where needed; when two letters occur only once but stand for 
different ideas, we often need an implicit premise that connects the two. 

Whatever is good in itself ought to be desired. But whatever ought to be 
desired is capable of being desired. So only pleasure is good in itself, since 
only pleasure is capable of being desired. 

all G* is O Valid 
all O* is C 
all C* is P 
∴ all G is P* 

The conclusion is “Only pleasure is good in itself”: “all G is P.” 



 

 

1. Racial segregation in schools generates severe feelings of inferiority among 
black students. Whatever generates such feelings treats students unfairly on the 
basis of race. Anything that treats students unfairly on the basis of race violates 
the 14th Amendment. Whatever violates the 14th Amendment is unconstitutional. 
Thus racial segregation in schools is unconstitutional. [This was the reasoning 
behind the 1954 Brown vs. Topeka Board of Education Supreme Court decision.] 

2. You couldn’t have studied! The evidence for this is that you got an F– on the 
test. 

3. God can’t condemn agnostics for non-belief. For God is all-good, anyone who is 
all-good respects intellectual honesty, and no one who does this condemns agnos-
tics for non-belief. 

4. Only what is under a person’s control is subject to praise or blame. Thus the 
consequences of an action aren’t subject to praise or blame, since not all the 
consequences of an action are under a person’s control. 

5. No synthetic garment absorbs moisture. So no synthetic garment should be 
worn next to the skin while skiing. 

6. Not all human concepts can be derived from sense experience. My reason for 
saying this is that the idea of “self-contradictory” is a human concept but isn’t 
derived from sense experience. 0028 

7. Analyses of humans in purely physical-chemical terms are neutral about 
whether we have inner consciousness. So, contrary to Hobbes, we must conclude 
that no analysis of humans in purely physical-chemical terms fully explains our 
mental activities. Clearly, explanations that are neutral about whether we have 
inner consciousness don’t fully explain our mental activities. 

8. Only what is based on sense experience is knowledge about the world. It fol-
lows that no mathematical knowledge is knowledge about the world. 

9. Not all the transistors in your radio can be silicon. After all, every transistor 
that works well at high temperatures is silicon and yet not all the transistors in 
your radio work well at high temperatures. 

10. Moral principles aren’t part of philosophy. This follows from these considera-
tions: Only objective truths are part of philosophy. Nothing is an objective truth 
unless it’s experimentally testable. Finally, of course, moral principles aren’t 
experimentally testable. [From the logical positivist A. J. Ayer.] 

11. At least some women are fathers. This follows from these facts: (1) Jones is a 
father, (2) Jones had a sex change to female, and (3) whoever had a sex change to 
female is (now) a woman. 

12. Only language users employ generalizations. Not a single animal uses lan-
guage. At least some animals reason. So not all reasoners employ generalizations. 
[From John Stuart Mill.] 

13. Only pure studies in form have true artistic worth. This proves that a thing 
doesn’t have true artistic worth unless it’s abstract, for it’s false that there’s 
something that’s abstract but that isn’t a pure study in form. 



 

14. Anything that relieves pressure on my blisters while I hike would allow me to 
finish my PCT (Pacific Crest Trail) hike from Mexico to Canada. Any insole with 
holes cut out for blisters would relieve pressure on my blisters while I hike. I 
conclude that any insole with holes cut out for blisters would allow me to finish 
my PCT hike from Mexico to Canada. [So I reasoned – and it worked.] 

15. We know (from observing the earth’s shadow on the moon during a lunar 
eclipse) that the earth casts a curved shadow. But spheres cast curved shadows. 
These two facts prove that the earth is a sphere. 

16. Whatever is known is true, and whatever is true corresponds to the facts. We 
may conclude that no belief about the future is known. 

17. No adequate ethical theory is based on sense experience, because any ade-
quate ethical theory provides necessary and universal principles, and nothing 
based on sense experience provides such principles. [From Immanuel Kant.] 

18. At least some active people are hypothermia victims. Active people don’t 
shiver. It follows that not all hypothermia victims shiver. [From a ski magazine.] 

19. Iron objects conduct electricity. We know this from what we learned last week 
– namely, that iron objects are metallic and that nothing conducts electricity 
unless it’s metallic. 

20. Only things true by linguistic convention are necessary truths. This shows that 
“God exists” can’t be a necessary truth. After all, existence claims aren’t true by 
linguistic convention. 

21. No bundle of perceptions eats food. Hume eats food, and Hume is a human 
person. From this it follows (contrary to David Hume’s theory) that no human 
person is a bundle of perceptions. 0029 

22. Any events we could experience as empirically real (as opposed to dreams or 
hallucinations) could fit coherently into our experience. So an uncaused event 
couldn’t be experienced as empirically real. I assume that it’s false that some 
uncaused event could fit coherently into our experience. [From Immanuel Kant.] 

23. I think I’m seeing a chair. But some people who think they’re seeing a chair are 
deceived by their senses. And surely people deceived by their senses don’t really 
know that they’re seeing an actual chair. So I don’t really know that I’m seeing an 
actual chair. 

24. No material objects can exist unperceived. I say this for three reasons: (1) 
Material objects can be perceived. (2) Only sensations can be perceived. Finally, 
(3) no sensation can exist unperceived. [Bertrand Russell criticized this argu-
ment for an idealist metaphysics.] 

25. Only those who can feel pleasure or pain deserve moral consideration. Not all 
plants can feel pleasure or pain. So not all plants deserve moral consideration. 

26. True principles don’t have false consequences. There are plausible principles 
with false consequences. Hence not all true principles are plausible. 

27. Only what divides into parts can die. Everything that’s material divides into 
parts. No human soul is material. This shows that no human soul can die. 



 

 

2.8 The Aristotelian view 

Historically, “Aristotelian” and “modern” logicians disagree about the validity 
of some syllogism forms. They disagree because of differing policies about 
allowing empty terms (general terms that don’t refer to any existing beings). 

Compare these two arguments (unicorns don’t really exist, even though 
some myths speak of such one-horned horse-like animals): 

All cats are animals. 
∴ Some animals are cats. 

All unicorns are animals. 
∴ Some animals are unicorns. 

The first seems valid while the second seems invalid. Yet both have the same 
form – one that tests out as “invalid” using our star test: 

all C* is A Invalid 
∴ some A* is C* 

When we read the first argument, we tend to presuppose that there’s at least 
one cat. Given this as an assumed additional premise, it follows validly that 
some animals are cats. When we read the second argument, we don’t assume 
that there’s at least one unicorn. Without this additional assumption, it 
doesn’t follow that some animals are unicorns. 

So “all C is A ∴ some A is C” is valid if we assume as a further premise that 
there are C’s; it’s invalid if we don’t assume this. The Aristotelian view, which 
assumes that each general term in a syllogism refers to at least one existing 
0030 being, calls the argument “valid.” The modern view, which allows empty 
terms like “unicorn” that don’t refer to existing beings, calls the argument 
“invalid.” 

I prefer the modern view, since we often don’t presuppose that our general 
terms refer to existing entities. If your essay argues that angels don’t exist, 
your use of “angel” doesn’t presuppose that there are angels. If you tell your 
class “All with straight-100s may skip the final exam,” you don’t assume that 
anyone will get straight-100s. On the other hand, we sometimes can presup-
pose that our general terms all refer; then the Aristotelian test makes sense. 

Suppose we have an argument with true premises that’s valid on the Aris-
totelian view but invalid on the modern view. We should draw the conclusion 
if we know that each general term in the premises refers to at least one 
existing being; otherwise, we shouldn’t. Consider this pair of arguments with 
the same form (a form that’s valid on the Aristotelian view but invalid on the 



 

modern view): 

All cats are mammals. 
All cats are furry. 
∴ Some mammals are furry. 

All square circles are squares. 
All square circles are circles. 
∴ Some squares are circles. 

The first inference is sensible, because there are cats. The second inference 
isn’t sensible, because there are no square circles. 

Some logic books use the Aristotelian view, but most use the modern view. 
It makes a difference to very few cases; all the syllogisms in this chapter prior 
to this section test out the same on either view. 

To adapt the star test to the Aristotelian view, word it so that each capital 
letter must be starred at least once (instead of “exactly once”). To adapt Venn 
diagrams to the Aristotelian view, add this rule: “If you have a circle with only 
one unshaded area, put an ‘×’ in this area”; this assumes that the circle isn’t 
empty.

  



 

3 Meaning and Definitions 

Since we need to know what premises mean before we can appraise their 
truth, language is important for appraising arguments. Imagine someone 
giving this argument, which is deductively valid but has obscure premises: 

If there’s a cosmic force, then there’s a God. 
There’s a cosmic force. 
∴ There’s a God. 

What does the person mean by “cosmic force”? We can’t intelligently agree or 
disagree with premises if we don’t understand what they mean. 

In this chapter, after looking at general uses of language, we’ll examine 
definitions and other ways to clarify meaning. Then we’ll talk about making 
distinctions and detecting unclarities. Finally, we’ll consider the distinction 
between analytic and synthetic statements, and the related distinction 
between knowledge based on reason and knowledge based on experience. 
The goal of this study of language is to enhance our ability to analyze and 
appraise arguments. 

3.1 Uses of language 

The four grammatical sentence types broadly reflect four uses of language: 

Declarative (make assertions): “Michigan beat Ohio State.” 
Interrogative (ask questions): “Did Michigan win?” 
Imperative (tell what to do): “Beat Ohio State.” 
Exclamatory (express feelings): “Hurrah for Michigan!” 

Sentences can do various jobs at the same time. While making assertions, we 
can also ask questions, tell what to do, or express feelings: 

“I wonder whether Michigan won.” (This can ask a question.) 
“I want you to throw the ball.” (This can tell what to do.) 
“Michigan won!” (This can express feelings of joy.) 

Arguments too can exemplify different uses of language. Suppose someone 



 

0032 argues this way about the Cleveland river that used to catch on fire: “You 
can see that the Cuyahoga River is polluted from the fact that it can burn!” We 
could make this into an explicit argument: 

No pure water is burnable. 
Some Cuyahoga River water is burnable. 
∴ Some Cuyahoga River water isn’t pure water. 

One who argues this way also can (perhaps implicitly) be raising a question, 
directing people to do something, or expressing feelings: 

“What can we do to clean up this polluted river?” 
“Let’s all resolve to take action on this problem.” 
“How disgusting is this polluted river!” 

Arguments have a wider human context and purpose. We should remember 
this when we study detached specimens of argumentation. 

When we do logic, our focus narrows and we concentrate on assertions 
and reasoning. For this purpose, detached specimens are better. Expressing 
an argument in a clear, direct, emotionless way can make it easier to appraise 
the truth of the premises and the validity of the inference. 

It’s good to avoid emotional language when we reason. Of course, there’s 
nothing wrong with feelings or emotional language. Reason and feeling are 
both important parts of life; but we often need to focus on one or the other 
for a given purpose. At times, expressing feelings is the important thing and 
argumentation only gets in the way. At other times, we need to reason things 
out in a cool-headed manner. 

Emotional language can discourage clear reasoning. When reasoning about 
abortion, for example, it’s wise to avoid slanted phrases like “the atrocious 
crime of abortion” or “Neanderthals who oppose the rights of women.” 
Bertrand Russell gave this example of how we slant language: “I am firm; you 
are obstinate; he is pig-headed.” Slanted phrases can mislead us into thinking 
we’ve defended our view by an argument (premises and conclusion) when in 
fact we’ve only expressed feelings. Careful thinkers try to avoid emotional 
terms when constructing arguments. 

In the rest of this chapter, we’ll explore aspects of the “making assertions” 
side of language that relate closely to analyzing and appraising arguments. 

3.1a Exercise 
For each word or phrase, say whether it has a positive, negative, or neutral emotional 
tone. Then find another word or phrase with more or less the same assertive 
meaning but a different emotional tone. 0033 



 

 

old maid 

This has a negative tone. A more neutral phrase is “elderly woman who has 
never married.” 

(The term “old maid” suggests that a woman’s goal in life is to get married and that 
an older woman who has never married is unfortunate. I can’t think of a correspond-
ing negative term for an older man who never married. A word or phrase sometimes 
suggests a whole attitude toward life, and often an unexamined attitude.) 

1. a cop 

2. filthy rich 

3. heroic 

4. an extremist 

5. an elderly gentleman 

6. a bastard 

7. baloney 

8. a backward country 

9. authoritarian 

10. a do-gooder 

11. a hair-splitter 

12. an egghead 

13. a bizarre idea 

14. a kid 

15. booze 

16. a gay 

17. abnormal 

18. bureaucracy 

19. abandoning me 

20. babbling 

21. brazen 

22. an old broad 

23. old moneybags 

24. a busybody 

25. a bribe 



 

26. old-fashioned 

27. brave 

28. garbage 

29. a cagey person 

30. a whore 

3.2 Lexical definitions 

We noted earlier that the phrase “cosmic force” in this example is obscure: 

If there’s a cosmic force, then there’s a God. 
There’s a cosmic force. 
∴ There’s a God. 

Unless the speaker tells us what is meant by “cosmic force,” we won’t be able 
to understand what’s said or tell whether it’s true. But how can the speaker 
explain what he or she means by “cosmic force”? Or, more generally, how can 
we explain the meaning of a word or phrase? 

Definitions are an important way to explain meaning. A definition is a rule 
of paraphrase intended to explain meaning. More precisely, a definition of a 
word or phrase is a rule saying how to eliminate this word or phrase in a 
sentence and produce a second sentence that means the same thing, the 
purpose of this being to explain or clarify the meaning of the word or phrase. 

Suppose the person with the cosmic-force argument defines “cosmic force” 
as “force, in the sense used in physics, whose influence covers the entire 
universe.” This makes the first premise doubtful, since then it only means “If 
there’s a force [e.g., gravity], in the sense used in physics, whose influence 
covers the entire universe, then there’s a God.” Why think that this premise is 
true? 

So a definition is a rule of paraphrase intended to explain meaning. Defini-
tions may be lexical (explaining current usage) or stipulative (specifying your 
own usage). Here’s a correct lexical definition: 0034 

“Bachelor” means “unmarried man.” 

This claims that we can interchange “bachelor” and “unmarried man” in a 
sentence; the resulting sentence will mean the same as the original, according 
to current usage. This leads to the interchange test for lexical definitions: 



 

 

Interchange test: To test a lexical definition claiming that A means B, try 
switching A and B in a variety of sentences. If some resulting pair of 
sentences doesn’t mean the same thing, then the definition is incorrect. 

According to our definition of “bachelor” as “unmarried man,” for example, 
these two sentences would mean the same thing: 

“Al is a bachelor” 
“Al is an unmarried man” 

These do seem to mean the same thing. To refute the definition, we’d have to 
find two sentences that are alike, except that “bachelor” and “unmarried 
man” are interchanged, and that don’t mean the same thing. 

Here’s an incorrect lexical definition: 

“Bachelor” means “happy man.” 

This leads to incorrect paraphrases. If the definition were correct, then these 
two sentences would mean the same thing: 

“Al is a bachelor” 
“Al is a happy man” 

But they don’t mean the same thing, since we could have one true but not the 
other. So the definition is wrong. 

The interchange test is subject to at least two restrictions. First, definitions 
are often intended to cover just one sense of a word that has various mean-
ings; we should then use the interchange test only on sentences using the 
intended sense. Thus it wouldn’t be a good objection to our definition of 
“bachelor” as “unmarried man” to claim that these two sentences don’t mean 
the same: 

“I have a bachelor of arts degree” 
“I have an unmarried man of arts degree” 

The first sentence uses “bachelor” in a sense the definition doesn’t try to 
cover. 

Second, we shouldn’t use the test on sentences where the word appears in 
quotes. Consider this pair of sentences: 0035 



 

“‘Bachelor’ has eight letters” 
“‘Unmarried man’ has eight letters” 

The two don’t mean the same thing, since the first is true and the second 
false. But this doesn’t show that our definition is wrong. 

Lexical definitions are important in philosophy. Many philosophers, from 
Socrates to the present, have sought correct lexical definitions for some of the 
central concepts of human existence. They’ve tried to define concepts such as 
knowledge, truth, virtue, goodness, and justice. Such definitions are im-
portant for understanding and applying the concepts. Defining “good” as 
“what society approves of” would lead us to base our ethical beliefs on what’s 
socially approved. We’d reject this method if we defined “good” as “what I 
like” or “what God desires,” or if we regarded “good” as indefinable. 

We can evaluate philosophical lexical definitions using the interchange 
test; Socrates was adept at this. Consider cultural relativism’s definition of 
“good”: 

“X is good” means “X is approved by my society.” 

To evaluate this, we’d try switching “good” and “approved by my society” in a 
sentence to get a second sentence. Here’s such a pair of sentences: 

“Slavery is good” 
“Slavery is approved by my society” 

Then we’d see if the two sentences mean the same thing. Here they clearly 
don’t, since it’s consistent to affirm one but deny the other. Those who 
disagree with the norms of their society often say things like “Slavery is 
approved by my society, but it’s not good.” Given this, we can argue against 
cultural relativism’s definition of “good” as follows: 

If cultural relativism’s definition is correct, then these two sentences mean the 
same thing. 
They don’t mean the same thing. 
∴ Cultural relativism’s definition isn’t correct. 

To counter this, the cultural relativist would have to claim that the sentences 
do mean the same thing. But this claim is implausible. 

Here are five rules for good lexical definitions: 

1. A good lexical definition is neither too broad nor too narrow. 



 

 

Defining “bachelor” as “man” is too broad, since some men aren’t bachelors. 
And defining “bachelor” as “unmarried male astronaut” is too narrow, since 
some bachelors aren’t astronauts. 0036 

2. A good lexical definition avoids circularity and poorly understood terms. 

Defining “true” as “known to be true” is circular, since it defines “true” using 
“true.” And defining “good” as “having positive aretaic value” uses poorly 
understood terms, since “aretaic” is less clear than “good.” 

3. A good lexical definition matches in vagueness the term defined. 

Defining “bachelor” as “unmarried male over 18 years old” is overly precise. 
“Bachelor” is vague, since the exact age that the term begins to apply is 
unclear on semantic grounds; so “over 18” is too precise to define “bachelor.” 
“Man” or “adult” are better, since these match “bachelor” fairly well in 
vagueness. 

4. A good lexical definition matches, as far as possible, the emotional tone (posi-
tive, negative, or neutral) of the term defined. 

It won’t do to define “bachelor” as “fortunate man who never married” or 
“unfortunate man who never married.” These have positive and negative 
emotional slants; the original term “bachelor” is fairly neutral. 

5. A good lexical definition includes only properties essential to the term. 

Suppose all bachelors live on the planet earth. Even so, living on planet earth 
isn’t a property essential to the term “bachelor,” since we could imagine a 
bachelor who lives on the moon. So it’s wrong to include “living on planet 
earth” in the definition of “bachelor.” 

3.2a Exercise: LogiCola Q 
Give objections to these proposed lexical definitions. 

“Game” means “anything that involves competition between two parties, and 
winning and losing.” 

By this definition, solitaire isn’t a game, but a military battle is. This goes 
against the normal usage of the word “game.” 



 

1. “Lie” means “false statement.” 

2. “Adolescent” means “person between 9 and 19 years old.” 

3. “God” means “object of ultimate concern.” 

4. “Metaphysics” means “any sleep-inducing subject.” 

5. “Good” means “of positive value.” 

6. “Human being” means “featherless biped.” 

7. “I know that P” means “I believe that P.” 

8. “I know that P” means “I believe that P, and P is true.” 

9. “Chair” means “what you sit on.” 0037 

10. “True” means “believed.” 

11. “True” means “proved to be true.” 

12. “Valid argument” means “argument that persuades.” 

13. “Murder” means “killing.” 

14. “Morally wrong” means “against the law.” 

15. “Philosopher” means “someone who has a degree in philosophy” and “philoso-
phy” means “study of the great philosophers.” 

3.2b Exercise 
Cultural relativism (CR) claims that “good” (in its ordinary usage) means “socially 
approved” or “approved by the majority (of the society in question).” What does this 
definition entail about the statements below? If this definition were correct, then 
would each of the following be true (1), false (0), or undecided by such considera-
tions (?)? 

If torturing people for religious beliefs is socially approved in country X, then 
it’s good in country X. 

1 (for “true”). On cultural relativism, the statement means this (and would be 
true): “If torturing people for religious beliefs is socially approved in country 
X, then it’s socially approved in country X.” 

1. Conclusions about what is good are deducible from sociological data (based, for 
example, on opinion surveys) describing one’s society and what it approves. 

2. If I say “Infanticide isn’t good” but an ancient Roman says “Infanticide is good,” 
then one or the other of us must be mistaken. 

3. The norms set up by my society about what is good couldn’t be mistaken. 

4. Judgments about what is good aren’t true or false. 



 

 

5. It’s good to respect the values of other societies. 

6. If our society were to favor intolerance, then intolerance would be good. 

7. Representational democracy will work anywhere. 

8. From an analysis of how people use the word “good,” it can be proved that 
whatever is socially approved must be good. 

9. Different cultures accept different moral beliefs. 

10. “The majority favors this” logically entails “This is good.” 

11. If the majority favors war (sexual stereotypes, conservative politics, abortion, 
and so on), then this has to be good. 

12. “Do good” means “Do what the majority favors.” 

13. Doing something because it’s good isn’t the same as doing it because the 
majority favors it. 

14. People who said “Racism is favored by the majority but it’s not good” were 
contradicting themselves. 

15. Something that’s bad might nevertheless be socially approved (because 
society may be misinformed or irrational in its evaluations). 

16. The majority knows what it favors. 

17. If Nazism became widespread and genocide came to be what most people 
favored, then genocide would have to be good. 

18. It’s not necessarily good for me to do what society favors. 0038 

19. Suppose a survey showed that 90 percent of the population disapprove of 
people always following social approval. Then it follows that it’s bad to always 
follow social approval – in other words, it’s bad to always follow what is good. 

20. Suppose your fellow Americans as a group and your fellow Anglicans as a 
group disapprove of racism, whereas your fellow workers and your social group 
(friends and relatives) approve of racism. Then racism is bad. 

3.3 Stipulative definitions 

A stipulative definition specifies how you’re going to use a term. Since your 
usage may be a new one, it’s unfair to criticize a stipulative definition for 
clashing with conventional usage. Stipulative definitions should be judged, 
not as correct or incorrect, but rather as useful or useless. 

This book has many stipulative definitions. I continually define terms like 
“logic,” “argument,” “valid,” “wff,” and so forth. These definitions specify the 
meaning I’m going to use for the terms, which sometimes is close to their 
standard meaning. The definitions create a technical vocabulary. 

A clarifying definition is one that stipulates a clearer meaning for a vague 



 

term. For example, a scientist might stipulate a technical sense of “pure 
water” in terms of bacteria level; this technical sense, while related to the 
normal one, is more scientifically precise. Likewise, courts might stipulate a 
more precise definition of “death” to resolve certain legal disputes; the 
definition might be chosen on moral and legal grounds to clarify the law. 

Philosophers often use stipulative definitions. They might say: “Here I’ll 
use ‘rational’ to mean ‘always adopting the means believed necessary to 
achieve one’s goals.’” This signals that the author will use “rational” to 
abbreviate a certain longer phrase; it doesn’t claim that this exactly matches 
the term’s ordinary meaning. Others may use “rational” in different senses, 
such as “logically consistent,” “emotionless,” or “forming beliefs solely by the 
methods of science.” These thinkers needn’t be disagreeing; they may just 
specify their technical vocabulary differently. We could use subscripts for 
different senses; “rational1” might mean “logically consistent,” and “rational2” 
might mean “emotionless.” Don’t be misled into thinking that, because being 
rational in one sense is desirable, therefore being rational in another sense 
must also be desirable. 

Stipulative definitions, while they needn’t accord with current usage, 
should: 

• use clear terms that the parties involved will understand, 
• avoid circularity, 
• let us paraphrase out the defined term, 
• accord with how the person giving it will use the term, and 
• aid our understanding and discussion of the subject matter. 

A stipulative definition is a device for abbreviating language. Our Chapter 1 
0039 starts with a stipulative definition: “Logic is the analysis and appraisal of 
arguments.” This definition lets us use the one word “logic” in place of the six 
words “the analysis and appraisal of arguments.” Without the definition, our 
explanations would be wordier and harder to grasp; so the definition is 
useful. 

Stipulative definitions should promote understanding. It’s seldom useful to 
stipulate that a well-established term will be used in a radical new sense (for 
example, that “biology” will be used to mean “the study of earthquakes”); this 
would create confusion. And it’s seldom useful to multiply stipulative defini-
tions for terms that we’ll seldom use. But when we keep repeating a cumber-
some phrase over and over, a stipulative definition can be helpful. Suppose 
your essay keeps repeating the phrase “action that satisfies criteria 1, 2, and 
3 of the previous section”; your essay may be easier to follow if some short 
term were stipulated to mean the same as this longer phrase. 

Some of our definitions seem to violate the “avoid circularity” norm. Sec-
tion 6.1 defines “wffs” as sequences constructable using these rules: 



 

 

1. Any capital letter is a wff. 
2. The result of prefixing any wff with “∼” is a wff. 
3. The result of joining any two wffs by “•” or “∨” or “⊃” or “≡” and enclosing the 
result in parentheses is a wff. 

Clauses 2 and 3 define “wff” in terms of “wff.” And the definition doesn’t seem 
to let us paraphrase out the term “wff”; we don’t seem able to take a sentence 
using “wff” and say the same thing without “wff.” 

Actually, our definition is perfectly fine. We can rephrase it in the following 
way to avoid circularity and show how to paraphrase out the term “wff”: 

“Wff” means “member of every set S of strings that satisfies these conditions: (1) 
Every capital letter is a member of set S; (2) the result of prefixing any member of 
set S with ‘∼’ is a member of set S; and (3) the result of joining any two members 
of set S by ‘•’ or ‘∨’ or ‘⊃’ or ‘≡’ and enclosing the result in parentheses is a mem-
ber of set S.” 

Our definition of “wff” is a recursive definition – one that first specifies some 
things that the term applies to and then specifies that if the term applies to 
certain things, then it also applies to certain other things. Here’s a recursive 
definition of “ancestor of mine” – followed by an equivalent non-recursive 
definition: 

1. My father and mother are ancestors of mine. 
2. Any father or mother of an ancestor of mine is an ancestor of mine. 

“Ancestor of mine” means “member of every set S that satisfies these conditions: 
(1) my father and mother are members of S; and (2) every father or mother of a 
member of S is a member of S.” 0040 

3.4 Explaining meaning 

If we avoid circular definitions, we can’t define all our terms; instead, we 
must leave some terms undefined. But how can we explain such undefined 
terms? One way is by examples. 

To teach “red” to someone who understands no language that we speak, 
we could point to red objects and say “Red!” We’d want to point to different 
kinds of red object; if we pointed only to red shirts, the person might think 
that “red” meant “shirt.” If the person understands “not,” we also could point 
to non-red objects and say “Not red!” The person, unless color-blind, soon 
will catch our meaning and be able to point to red objects and say “Red!” This 
is a basic, primitive way to teach language. It explains a word, not by using 



 

other words, but by relating a word to concrete experiences. 
We sometimes point to examples through words. We might explain “plaid” 

to a child by saying “It’s a color pattern like that of your brother’s shirt.” We 
might explain “love” through examples: “Love is getting up to cook a sick 
person’s breakfast instead of staying in bed, encouraging someone instead of 
complaining, and listening to other people instead of telling them how great 
you are.” It’s often helpful to combine a definition with examples, so the two 
reinforce each other; so Chapter 1 defined “argument” and then gave exam-
ples. 

In abstract discussions, people sometimes use words so differently that 
they communicate poorly and almost seem to speak different languages. 
Asking for definitions may then lead to the frustration of having one term you 
don’t understand being defined using other terms you don’t understand. It 
may be more helpful to ask for examples: “Give me examples of an analytic 
statement (or of a deconstruction).” Asking for examples can bring a bewil-
deringly abstract discussion back down to earth and mutual understanding. 

Logical positivists and pragmatists gave other ways to clarify statements. 
Positivists proposed that we explain a statement’s meaning by specifying 
which experiences would show the statement to be true or to be false. Such 
operational definitions connect meaning to an experimental test: 

• To say that rock A is “harder than” rock B means that A would scratch B but B 
wouldn’t scratch A. 

• To say that this string is “1 meter long” means that, if you stretch it over the 
standard meter stick, then the ends of both will coincide. 

• To say that this person “has an IQ of 100” means that the person would get an 
average score on a standard IQ test. 

Such definitions are important in science. 
Logical positivists like A. J. Ayer appealed to the verifiability criterion of 

meaning as the cornerstone of their philosophy. We can formulate their prin-
ciple (to be applied only to statements not true-by-definition, see §3.6) as 
follows: 0041 

Logical positivism (LP) 

To help us find a statement’s meaning, ask “How could the truth or falsity of 
the statement in principle be discovered by conceivable observable tests?” 

If there’s no way to test a statement, then it has no meaning (it makes no 
assertion that could be true or false). If tests are given, they specify the 
meaning. 



 

 

There are problems with taking LP to be literally true. LP says any untestable 
statement is without meaning. But LP itself is untestable. Hence LP is without 
meaning on its own terms; it’s self-refuting. For this reason and others, few 
hold this view anymore, even though it was popular decades ago. 

Still, the LP way to clarify statements can sometimes be useful. Consider 
this claim of Thales, the ancient Greek alleged to be the first philosopher: 
“Water is the primal stuff of reality.” The meaning here is unclear. We might 
ask Thales for a definition of “primal stuff”; this would clarify the claim. Or we 
might follow LP and ask, “How could we test whether your claim is correct?” 
Suppose Thales says the following, thus giving an operational definition: 

Try giving living things no water. If they die, then this proves my claim. If they 
live, then this refutes my claim. 

We’d then understand Thales to be claiming that water is needed for life. Or 
suppose Thales replies this way: 

Let scientists work on the task of transforming each kind of matter (gold, rock, 
air, and so on) into water, and water back into each kind of matter. If they eventu-
ally succeed, then that proves my claim. 

Again, this would help us understand the claim. But suppose Thales says “No 
conceivable experimental test could show my claim to be true or show it to 
be false.” The positivists would immediately conclude that Thales’s claim is 
meaningless – that it makes no factual assertion that could be true or false. 
We non-positivists needn’t draw this conclusion so quickly; but we may 
remain suspicious of Thales’s claim and wonder what he’s getting at. 

LP demands that a statement in principle be able to be tested. Consider 
“There are mountains on the other side of the moon.” When the positivists 
wrote, rockets were less advanced and the statement couldn’t be tested. But 
that didn’t matter to its meaningfulness, since we could describe what a test 
would be like. That this claim was testable in principle was enough to make it 
meaningful. 

LP hides an ambiguity when it speaks of “conceivable observable tests.” 
Observable by whom? Is it enough that one person can make the observa-
tion? Or does it have to be publicly observable? Is a statement about my 
present feelings meaningful if I alone can observe whether it’s true? Histori-
cally, most positivists demanded that a statement be publicly verifiable. But 
the weaker version 0042 of the theory that allows verification by one person 
seems better. After all, a statement about my present feelings makes sense, 
but only I can verify it. 

William James suggested a related way to clarify statements. His “Pragma-
tism” essay suggests that we determine the meaning, or “cash value,” of a 



 

statement by relating it to practical consequences. James’s view is broader 
and more tolerant than that of the positivists. We can formulate his pragma-
tism principle as follows (again, it’s to be applied only to statements not true-
by-definition): 

Pragmatism (PR) 

To help us find a statement’s meaning, ask “What conceivable practical 
differences to someone could the truth or falsity of the statement make?” 
Here “practical differences to someone” covers what experiences one would 
have or what choices one ought to make. 

If the truth or falsity of a statement could make no practical difference to 
anyone, then it has no meaning (it makes no assertion that could be true or 
false). If practical differences are given, they specify the meaning. 

I’m inclined to think that something close to PR is literally true. But here I’ll 
just stress that PR can be useful in clarifying meaning. 

PR often applies much like the weaker version of LP that allows verifica-
tion by one person. LP focuses on what we could experience if the statement 
were true or false, while PR includes such experiences under practical 
differences. 

PR also includes under “practical differences” what choices one ought to 
make. This makes PR broader than LP, since what makes a difference to 
choices needn’t be testable by observation. Hedonism claims “Only pleasure 
is worth striving for.” LP asks “How could the truth or falsity of hedonism in 
principle be discovered by conceivable observable tests?” Perhaps it can’t; 
then LP would see hedonism as cognitively meaningless. PR asks “What con-
ceivable practical differences to someone could the truth or falsity of hedon-
ism make?” Here, “practical differences” include what choices one ought to 
make. The truth of hedonism could make many differences about choices; if 
hedonism is true, for example, then we should pursue knowledge not for its 
own sake but only insofar as it promotes pleasure. Ethical claims like hedon-
ism are meaningless on LP but meaningful on the more tolerant PR. 

In addition, PR isn’t self-refuting. LP says “Any untestable statement is 
without meaning.” But LP itself is untestable, and so is meaningless on its 
own terms. But PR says “Any statement whose truth or falsity could make no 
conceivable practical difference is without meaning.” PR makes a practical 
difference to our choices about beliefs; presumably we shouldn’t believe 
statements that fail the PR test. And so PR can be meaningful on its own 
terms. 

So we can explain words by definitions, examples, verification conditions, 
and practical differences. Another way to convey meaning is by contextual 
use: we 0043 use a word in such a way that its meaning can be gathered from 



 

 

surrounding “clues.” Suppose a person getting in a car says “I’m getting in my 
C”; we can surmise that C means “car.” We all learned language mostly by 
picking up meaning from contextual use. 

Some thinkers want us to pick up their technical terms in this same way. 
We are given no definitions of key terms, no examples to clarify their use, and 
no explanations in terms of verification conditions or practical differences. 
We are just told to dive in and catch the lingo by getting used to it. We should 
be suspicious of this. We may catch the lingo, but it may turn out to be empty 
and without meaning. That’s why the positivists and pragmatists emphasized 
finding the “cash value” of ideas in terms of verification conditions or practi-
cal differences. We must be on guard against empty jargon. 

3.4a Exercise 
Would each claim be meaningful or meaningless on LP? (Take LP to require that a 
statement be publicly testable.) Would each be meaningful or meaningless on PR? 

Unless we have strong reasons to the contrary, we ought to believe what 
sense experience seems to reveal. 

This is meaningless on LP, since claims about what one ought to do aren’t 
publicly testable. It’s meaningful on PR, since its truth could make a differ-
ence about what choices we ought to make about beliefs. 

1. It’s cold outside. 

2. That clock is fast. 

3. There are five-foot-long blue ants in my bedroom. 

4. Nothing is real. 

5. Form is metaphysically prior to matter. 

6. At noon all lengths, distances, and velocities in the universe will double. 

7. I’m wearing an invisible hat that can’t be felt or perceived in any way. 

8. Regina has a pain in her little toe but shows no signs of this and will deny it if 
you ask her. 

9. Other humans have no thoughts or feelings but only act as if they do. 

10. Manuel will continue to have conscious experiences after his physical death. 

11. Angels exist (that is, there are thinking creatures who have never had spatial 
dimensions or weights). 

12. God exists (that is, there’s a very intelligent, powerful, and good personal 
creator of the universe). 

13. One ought to be logically consistent. 



 

14. Any statement whose truth or falsity could make no conceivable practical 
difference is meaningless. (PR) 

15. Any statement that isn’t observationally testable is meaningless. (LP) 0044 

3.5 Making distinctions 

Philosophers faced with difficult questions often make distinctions: 

“If your question means … [giving a clear phrasing], then my answer is …. But if 
you’re really asking …, then my answer is ….” 

The ability to formulate various possible meanings of a question is a valuable 
skill. Many of the questions that confront us are vague or confused; we often 
have to clarify a question before we can answer it intelligently. Getting clear 
on a question can be half the battle. 

Consider this question (in which I underlined the tricky word “indubita-
ble”): 

“Are some beliefs indubitable?” 

What does “indubitable” here mean? Does it mean not actually doubted? Or 
psychologically impossible to doubt? Or irrational to doubt? And what is it to 
doubt? Is it to refrain from believing? Or is it to have some suspicion about 
the belief (although we might still believe it)? And indubitable by whom? By 
everyone (even crazy people)? By all rational persons? By at least some 
individuals? By me? Our little question hides a sea of ambiguities. Here are 
three of the many things that our little question could be asking: 

• Are there some beliefs that no one has ever refused to believe? (To answer 
this, we’d need to know whether people in insane asylums sometimes refuse 
to believe that they exist or that “2 = 2.”) 

• Are there some beliefs that no rational person has suspicions about? (To 
answer this, we’d first have to decide what we mean by “rational.”) 

• Are there some beliefs that some specific individuals are psychologically 
unable to have any doubts about? (Perhaps many are unable to have any 
doubts about what their name is or where they live.) 

It’s risky to answer questions that we don’t understand. 
Unnoticed ambiguities can block communication. Often people are unclear 

about what they’re asking, or take another’s question in an unintended sense. 
This is more likely if the discussion goes abstractly, without examples. 



 

 

3.5a Exercise 
Each of the following questions is obscure or ambiguous as it stands. Distinguish at 
least three interesting senses of each question. Formulate each sense simply, clearly, 
and briefly – and without using the underlined words. 0045 

Can one prove that there are external objects? 

• Can we deduce, from premises expressing immediate experience (like “I 
seem to see a blue shape”), that there are external objects? 

• Can anyone give an argument that will convince (all or most) skeptics that 
there are external objects? 

• Can anyone give a good deductive or inductive argument, from premises 
expressing their immediate experience in addition to true principles of 
evidence, to conclude that it’s reasonable to believe that there are exter-
nal objects? (These “principles of evidence” may include things like “Un-
less we have strong reasons to the contrary, it’s reasonable to believe 
what sense experience seems to reveal.”) 

1. Is ethics a science? 

2. Is this monkey a rational animal? 

3. Is this belief part of common sense? 

4. Are material objects objective? 

5. Are values relative (or absolute)? 

6. Are scientific generalizations ever certain? 

7. Was the action of that monkey a free act? 

8. Is truth changeless? 

9. How are moral beliefs explainable? 

10. Is that judgment based on reason? 

11. Is a fetus a human being (or human person)? 

12. Are values objective? 

13. What is the nature of man? 

14. Can I ever know what someone else feels? 

15. Do you have a soul? 

16. Is the world illogical? 



 

3.6 Analytic and synthetic 

Immanuel Kant long ago introduced two related distinctions that have 
become influential. He divided statements, on the basis of their meaning, into 
analytic and synthetic statements. He divided knowledge, on the basis of how 
it’s known, into a priori and a posteriori knowledge. We’ll consider these 
distinctions in this section and the next.1 

Kant gave two definitions of “analytic statement”: 

1. An analytic statement is one whose subject contains its predicate. 
2. An analytic statement is one that’s self-contradictory to deny. 0046 

Consider these examples (and take “bachelor” to mean “unmarried man”): 

(a) “All bachelors are unmarried.” 
(b) “If it’s raining, then it’s raining.” 

Both examples are analytic by definition 2, since both are self-contradictory 
to deny. But only (a) is analytic by definition 1. In (a), the subject “bachelor” 
(“unmarried man”) contains the predicate “unmarried”; but in (b), the 
subject “it” doesn’t contain the predicate. 

We’ll adopt definition 2; so we define an analytic statement as one that’s 
self-contradictory to deny. Logically necessary truth is another term for the 
same idea; such truths are based on logic, the meaning of concepts, or neces-
sary connections between properties. Here are some further analytic state-
ments: 

“2 = 2” 
“1 > 0” 
“All frogs are frogs.” 
“If everything is green, then this is green.” 
“If there’s rain, then there’s precipitation.” 
“If this is green, then this is colored.” 

By contrast, a synthetic statement is one that’s neither analytic nor self-
contradictory; contingent is another term for the same idea. Statements 
divide into analytic, synthetic, and self-contradictory; here’s an example of 

 
1 I’ll sketch a standard approach to these Kantian distinctions. Willard Quine, in his Philosophy 
of Logic, 2nd ed. (Cambridge, Mass.: Harvard University Press, 1986), criticizes this approach. 



 

 

each:1 

Analytic: “All bachelors are unmarried.” 
Synthetic: “Daniel is a bachelor.” 
Self-contradictory: “Daniel is a married bachelor.” 

While there are three kinds of statement, there are only two kinds of truth: 
analytic and synthetic. Self-contradictory statements are necessarily false. 

3.6a Exercise 
Say whether each of these is analytic or synthetic. Take terms in their most natural 
senses. Some examples are controversial. 

All triangles are triangles. 

This is analytic. It would be self-contradictory to deny it and say “Some 
triangles aren’t triangles.” 

1. All triangles have three angles. 

2. 2 + 2 = 4. 

3. Combining two drops of mercury with two other drops results in one big drop. 

4. There are ants that have established a system of slavery. 

5. Either some ants are parasitic or else none are. 

6. No three-year-old is an adult. 0047 

7. No three-year-old understands symbolic logic. 

8. Water boils at 90ºC on that 10,000-foot mountain. 

9. Water boils at 100ºC at sea level. 

10. No uncle who has never married is an only child. 

11. All swans are white. 

12. Every material body is spatially located and has spatial dimensions. 

13. Every material body has weight. 

14. The sum of the angles of a Euclidian triangle equals 180º. 

15. If all Parisians are French and all French are European, then all Parisians are 
European. 

 
1 Modal logic (Chapters 10 and 11) symbolizes “A is analytic (necessary)” as “☐A,” “A is 
synthetic (contingent)” as “(◇A • ◇∼A),” and “A is self-contradictory” as “∼◇A.” 



 

16. Every event has a cause. 

17. Every effect has a cause. 

18. We ought to treat a person not simply as a means but always as an end in 
itself. 

19. One ought to be logically consistent. 

20. God exists. 

21. Given that we’ve observed that the sun rose every day in the past, it’s reason-
able for us to believe that the sun will rise tomorrow. 

22. Unless we have strong reasons to the contrary, we ought to believe what 
sense experience seems to reveal. 

23. Everything red is colored. 

24. Nothing red is blue (at the same time and in the same part and respect). 

25. Every synthetic statement that’s known to be true is known on the basis of 
sense experience. (There’s no synthetic a priori knowledge.) 

3.7 A priori and a posteriori 

Philosophers traditionally distinguish two kinds of knowledge. A posteriori 
(empirical) knowledge is based on sense experience. A priori (rational) 
knowledge is based on reason, not sense experience. Here’s an example of 
each: 

A posteriori: “Some bachelors are happy.” 
A priori: “All bachelors are unmarried.” 

While we know both to be true, how we know them differs. We know the first 
statement from our experience of bachelors; we’ve met many bachelors and 
recall that some have been happy. If we had to justify the truth of this state-
ment to others, we’d appeal to experiential data about bachelors. In contrast, 
we know the second statement by grasping what it means and seeing that it 
must be true. If we had to justify the truth of this statement, we wouldn’t 
have to gather experiential data about bachelors. 

Most knowledge is a posteriori – based on sense experience. “Sense expe-
rience” here covers the five “outer senses” (sight, hearing, smell, taste, and 
touch). It also covers “inner sense” (the awareness of our own thoughts and 
feelings) and any other experiential access to the truth that we might have 
(perhaps even 0048 mystical experience or extrasensory perception). 

Logical and mathematical knowledge is generally a priori. To test the valid-
ity of an argument, we don’t go out and do experiments. Instead, we just 



 

 

think and reason; sometimes we write things out to help our thinking. The 
validity tests in this book are rational (a priori) methods. “Reason” in a 
narrow sense (in which it contrasts with “experience”) deals with what we 
can know a priori. 

A priori knowledge requires some experience. We can’t know that all 
bachelors are unmarried unless we’ve learned the concepts involved; this 
requires experience of language and of (married and unmarried) humans. 
And knowing that all bachelors are unmarried requires the experience of 
thinking. So a priori knowledge depends somewhat on experience (and thus 
isn’t just something that we’re born with). But it still makes sense to call such 
knowledge a priori. Suppose we’ve gained the concepts using experience. 
Then to justify the claim that all bachelors are unmarried, we don’t have to 
appeal to any further experience, other than thinking. In particular, we don’t 
have to investigate bachelors to see whether they’re all unmarried.1 

Here are some further examples of statements known a priori: 

“2 = 2” 
“1 > 0” 
“All frogs are frogs.” 
“If everything is green, then this is green.” 
“If there’s rain, then there’s precipitation.” 
“If this is green, then this is colored.” 

We also gave these as examples of analytic statements. 
So far, we’ve used only analytic statements as examples of a priori 

knowledge and only synthetic statements as examples of a posteriori 
knowledge. Some philosophers think there’s only one distinction, but drawn 
in two ways: 

a priori knowledge = analytic knowledge 
a posteriori knowledge = synthetic knowledge 0049 

Is this view true? If it’s true at all, it’s not true just because of how we defined 
the terms. By our definitions, the basis for the analytic / synthetic distinction 
differs from the basis for the a priori / a posteriori distinction. A statement is 
analytic or synthetic depending on whether its denial is self-contradictory; 
but knowledge is a posteriori or a priori depending on whether it rests on 
sense experience. Our definitions leave it open whether the two distinctions 
coincide. 
 
1 David Hume, who thought that all concepts come from experience, defended a priori 
knowledge. By comparing two empirical concepts, we can sometimes recognize that the 
empirical conditions that would verify one (“bachelor”) would also verify the other (“unmar-
ried”); so by reflecting on our concepts, we can see that all bachelors must be unmarried. 



 

These two combinations are very common: 

analytic a priori knowledge 
synthetic a posteriori knowledge 

Most of our knowledge in math and logic is analytic a priori. Most of our 
everyday and scientific knowledge about the world is synthetic a posteriori. 
These next two combinations are more controversial: 

analytic a posteriori knowledge 
synthetic a priori knowledge 

Can we know any analytic statements a posteriori? It seems that we can. “π is 
a little over 3” is presumably an analytic truth that can be known either by a 
priori calculations (the more precise way to compute π) – or by measuring 
circles empirically (as the ancient Egyptians did). And “It’s raining or not 
raining” is an analytic truth that can be known either a priori (and justified 
by truth tables, see §6.6) – or by deducing it from the empirical statement 
“It’s raining.” But perhaps any analytic statement that’s known a posteriori 
also could be known a priori. 

The biggest issue is this: “Do we have any synthetic a priori knowledge?” 
This asks whether there’s any statement A such that: 

• A is synthetic (not self-contradictory either to affirm or to deny), 
• we know A to be true, and 
• our knowledge of A is based on reason (and not sense experience)? 

In one sense of the term, an empiricist is one who rejects such knowledge – 
and who thus limits what we can know by pure reason to analytic statements. 
By contrast, a rationalist is one who accepts such knowledge – and who thus 
gives a greater scope to what we can know by pure reason.1 

Empiricists deny the possibility of synthetic a priori knowledge for two 
main reasons. First, it’s difficult to understand how there could be such 
knowledge. Analytic a priori knowledge is fairly easy to grasp. Suppose a 
statement is true simply because of the meaning and logical relations of the 
concepts involved; then we can know it in an a priori fashion by reflecting on 
these concepts and logical relations. But suppose a statement could logically 
be either true or false. How could we then possibly know by pure thinking 
which it is? 

Second, those who accept synthetic a priori truths differ on what these 
 
1 More broadly, empiricists are those who emphasize a posteriori knowledge, while rational-
ists are those who emphasize a priori knowledge. 



 

 

truths are. They just follow their prejudices and call them “deliverances of 
reason.” 

Rationalists accept synthetic a priori knowledge for two main reasons. 
First, the opposite view (at least if it’s claimed to be known) seems self-
refuting. Consider empiricists who claim to know “There’s no synthetic a 
priori knowledge.” Now this claim is synthetic (it’s not true by how we 
defined the terms “synthetic” and “a priori,” and it’s not self-contradictory to 
deny). And it would have to be known a priori (since we can’t justify it by 
sense experience). So the empiricist’s claim would have to be synthetic a 
priori knowledge, which it rejects. 0050 

Second, we seem to have synthetic a priori knowledge of ideas like this: 

If you believe you see an object to be red and have no special reason to doubt 
your perception [e.g., the lighting is strange or you’re on mind-altering drugs], 
then it’s reasonable for you to believe that you see an actual red object. 

This claim is synthetic; it’s not true because of how we’ve defined terms, and 
skeptics can deny it without self-contradiction. It’s presumably known to be 
true; if we didn’t know such truths, then we couldn’t justify any empirical 
beliefs. And it’s known a priori; empirical knowledge depends on it instead of 
it depending on empirical knowledge. So we have synthetic a priori 
knowledge of this claim. So there’s synthetic a priori knowledge. 

The dispute over synthetic a priori knowledge influences how we do phi-
losophy. Can basic ethical principles be known a priori? Empiricists say no; so 
then we know basic ethical principles either empirically or not at all. But 
rationalists can (and often do) think that we know basic ethical truths a 
priori, from reason alone (through either intuition or some rational con-
sistency test). 

3.7a Exercise 
Suppose we knew each of these to be true. Would our knowledge likely be a priori or 
a posteriori? Take terms in their most natural senses. Some examples are controver-
sial. 

All triangles are triangles. 

This would be known a priori. 

Use the examples from §3.6a. 



4 Fallacies and Argumentation 

This chapter deals with arguing well, recognizing fallacies, avoiding incon-
sistencies, developing your own arguments, and analyzing arguments that 
you read. 

4.1 Good arguments 

A good argument, to be logically correct and fulfill the purposes for which we 
use arguments, should: 

1. be deductively valid (or inductively strong) and have premises all true; 
2. have its validity (or inductive strength) and truth-of-premises be as evident as 
practically possible to the parties involved; 
3. be clearly stated (using understandable language and making clear what the 
premises and conclusion are); 
4. avoid circularity, ambiguity, and emotional language; and 
5. be relevant to the issue at hand. 

If you fulfill these, then you’re arguing well. 
First, a good argument should be deductively valid (or inductively strong – 

see Chapter 5) and have premises all true. We often criticize an argument by 
trying to show that the conclusion doesn’t follow from (or isn’t supported by) 
the premises, or that one or more of the premises are false. 

Second, a good argument should have its validity (or inductive strength) 
and truth-of-premises be as evident as practically possible to the parties 
involved. Arguments are less effective if they presume premises that others 
see as false or controversial. Ideally, we’d like to use only premises that 
everyone will accept as immediately obvious; but in practice, this is too high 
an ideal. We often appeal to premises that will only be accepted by those of 
similar political, religious, or philosophical views. And sometimes we appeal 
to hunches, like “I can get to the gun before the thief does”; while not ideal, 
this may be the best we can do at a given moment. 

Third, a good argument should be clearly stated; it should use understand-
able language and make clear what the premises and conclusion are. Obscure 



 

 

or overly complex language makes reasoning harder to grasp. 
When we develop an argument, a good strategy is to put it on paper in a 

0052 preliminary way and then reread it several times, trying to make im-
provements. Try to express the ideas more simply and clearly, and think how 
others may object or misunderstand. Often ideas first emerge in a confused 
form; clarity comes later, after much hard work. While mushy thinking is 
often unavoidable in the early development of an idea, it’s not acceptable in 
the final product. 

People often argue without making clear what their premises and conclu-
sions are; sometimes we get stream-of-consciousness ramblings sprinkled 
with an occasional “therefore.” While this is unacceptable, a good argument 
needn’t spell everything out; it’s often fine to omit premises that are obvious 
to the parties involved. If I’m hiking on the Appalachian Trail, I might say to 
my hiking partner: “We can’t still be on the right trail, since we don’t see 
white blazes on the trees.” This is fine if my partner knows that we’d see 
white blazes if we were on the right trail; then the full argument would be 
pedantic: 

We don’t see white blazes on the trees. 
If we were still on the right trail, then we’d see white blazes on the trees. 
∴ We aren’t still on the right trail. 

In philosophy, it’s often wise to spell out all our premises, since unstated 
ideas are often crucial but unexamined. Suppose someone argues: “We can’t 
be free, since all our actions are determined.” This assumes the italicized 
premise: 

All human actions are determined. 
No determined action is free. 
∴ No human actions are free. 

We should be aware that we’re assuming this controversial premise. 
So a good argument should be valid (or inductively strong) and have 

premises all true, this validity/strength and truth should be as evident as 
practically possible, and it should be clearly stated. Our final conditions say 
that the argument should (4) avoid circularity, ambiguity, and emotional 
language; and (5) be relevant to the issue at hand. Five common fallacies tie 
into these final conditions. 

Our first fallacy is circularity: 



 

An argument is circular if it presumes the truth of what is to be proved. 

A series of arguments is circular if it uses a premise to prove a conclusion – 
and then uses that conclusion to prove the premise. 

“The soul is immortal because it can’t die” is circular; since the premise just 
repeats the conclusion in different words, the argument takes for granted 
what it’s supposed to prove. A circular series of arguments might say: “A is 
true because B is true, and B is true because A is true.” A circular argument is 
also said to be question begging; this differs from the new (and confusing) 
usage in 0053 which “begging a question” means “raising a question.” 

Here’s a second fallacy, and a crude argument that exemplifies it: 

An argument is ambiguous if it changes the meaning of a term or phrase 
within the argument. 

Love is an emotion. 
God is love. 
∴ God is an emotion. 

Premise 1 requires that we take “love” to mean “the feeling of love” – which 
makes premise 2 false or doubtful. Premise 2 requires that we take “love” to 
mean “a supremely loving person” or “the source of love” – which makes 
premise 1 false or doubtful. We can have both premises clearly true only by 
shifting the meaning of “love.” Ambiguity is also called equivocation. 

Unclear sentence structures can bring ambiguities. For example, “pretty 
little girls’ camp” can mean “camp for little girls who are pretty,” “pretty 
camp for little girls,” or “pretty camp that is little and for girls.” 

It’s important to avoid emotionally slanted terms when we reason: 

To appeal to emotion is to stir up feelings instead of arguing in a logical 
manner. 

Students, when asked to argue against a theory, often just describe the theory 
in derogatory language; so a student might dismiss Descartes by calling his 
views “superficial” or “overly dualistic.” But such verbal abuse doesn’t give 
any reason for thinking a view wrong. Often the best way to argue against a 
theory is to find some false implication and then reason as follows: 



 

 

If the theory is true, then this other thing also would be true. 
This other thing isn’t true. 
∴ The theory isn’t true. 

Recall that an argument consists of premises and a conclusion. 
Our last condition says that a good argument must be relevant to the issue 

at hand. A clearly stated argument might prove something and yet still be 
defective, since it may be beside the point in the current context: 

An argument is beside the point if it argues for a conclusion irrelevant to the 
issue at hand. 

Hitler, when facing a group opposed to the forceful imposition of dictator-
ships, shifted their attention by attacking pacifism; his arguments, even if 
sound, were beside the point. Such arguments are also called red herrings, 
after a practice used in training hunting dogs: a red herring fish would be 
dragged across the trail to 0054 distract the dog from tracking an animal. In 
arguing, we must keep the point at issue clearly in mind and not be misled by 
a smelly fish. 

Students sometimes use this “beside the point” label too broadly, to apply 
to almost any fallacy. This fallacy isn’t about the premises being irrelevant to 
the conclusion; instead, it’s about the conclusion (regardless of whether it’s 
proved) being irrelevant to the issue at hand. Suppose a politician is asked 
“Where do you stand about the proposed tax cuts?” but evades answering, 
instead shifting our attention to the need for a strong military. These state-
ments are beside the point, since they don’t answer the question. 

One common form of this fallacy has its own name: 

A straw man argument misrepresents an opponent’s views. 

This is common in politics. Candidate A for mayor suggests cutting a few 
seldom-used stations on the rapid transit system. Then candidate B’s cam-
paign ad expresses shock that A wants to dismantle the whole transit system, 
which so many citizens depend on; the ad attacks, not what A actually holds, 
but only a “straw man” – a scarecrow of B’s invention. Campaign ads and 
speeches that distort an opponent’s view have recently got so bad that “fact 
checkers” and “truth squads” have arisen to point out misleading language 
and downright falsehoods – regardless of which side engages in these. 

Again, a good argument is valid (or inductively strong) and has premises 
all true; has this validity/strength and truth be as evident as practically 



 

possible; is clearly stated; avoids circularity, ambiguity, and emotional 
language; and is relevant to the issue. Good arguments normally convince 
others, but not always. Some people aren’t open to rational argument on 
many issues; some believe that the earth is flat, despite good arguments to 
the contrary. And bad arguments sometimes convince people; Hitler’s beside 
the point fallacy and the candidate’s straw man fallacy can mislead and 
convince. Studying logic can help protect us from bad reasoning. The better 
we can distinguish good from bad reasoning, the less will politicians and 
others be able to manipulate people. 

“Proof” is roughly like “good argument.” But we can prove something even 
if our argument is unclear, contains emotional language, or is irrelevant to 
the issue at hand. And a proof must be very strong in its premises and in how 
it connects the premises to the conclusion; for the latter reason, it seems 
wrong to call inductive arguments “proofs.” So we can define a proof as a 
non-circular, non-ambiguous, deductively valid argument with clearly true 
premises. A refutation of a statement is a proof of the statement’s denial. 

“Proof” can have other meanings. Chapters 7 to 14 use “proof” in the tech-
nical sense of “formal proof,” to cover logical derivations that follow specified 
rules. And Exercise 3.5a explained that “prove” could have various meanings 
in the question, “Can we prove that there are external objects?” The word 
“proof” has a cluster of related meanings. 0055 

“Prove” and “refute” are often misused. These properly apply only to suc-
cessful arguments. A proof shows that something is true, and a refutation 
shows that something is false. Avoid saying things like “Hume proved this, 
but Kant refuted him.” This is self-contradictory, since it implies that Hume’s 
claim is both true and false – and that Hume showed it was true and Kant 
showed it was false. It’s better to say “Hume argued for this, but Kant criti-
cized his reasoning.” 

4.2 Informal fallacies 

A fallacy is a deceptive error of thinking; an informal fallacy is a fallacy not 
covered by some system of deductive or inductive logic. In working out the 
conditions for a good argument, we introduced five informal fallacies: 
circular, ambiguous, appeal to emotion, beside the point, and straw man. We 
now add thirteen more, in three groups. While this book covers most com-
mon fallacies, there are many others that aren’t listed here. 

Our first group includes six fallacies expressed in a premise–conclusion 
format. This first appeals to our herd instincts: 



 

 

Appeal to the crowd 

Most people believe A. 
∴ A is true. 

Most people think Wheaties is very nutritious. 
∴ Wheaties is very nutritious. 

Despite what people think, Wheaties cereal might have little nutritional 
value. Discovering its nutritional value requires checking its nutrient content; 
group opinion proves nothing. While we all recognize the fallacy here, group 
opinion still may influence us. Humans are only partially rational. 

The opposition fallacy comes from dividing people into “our group” (which 
has the truth) and “our opponents” (who are totally wrong): 

Opposition 

Our opponents believe A. 
∴ A is false. 

Those blasted liberals say we should raise taxes. 
∴ We shouldn’t raise taxes. 

The problem here is that our opponents may be right. 
The genetic fallacy dismisses a belief on the basis of its origin: 

Genetic fallacy 

We can explain why you believe A. 
∴ A is false. 

Any psychologist would see that you believe A because of such and such. 
∴ A is false. 

One who has superficially studied a little psychology may dismiss another’s 
0056 views in this way. An appropriate (but nasty) reply is, “And what is the 
psychological explanation for why you confuse psychological explanations 
with logical disproofs?” To show a belief to be false, we must argue against 
the content of the belief; it’s not enough to explain how the belief came to be. 

This next one has two closely related forms: 



 

Appeal to ignorance 

No one has proved A. 
∴ A is false. 

No one has disproved A. 
∴ A is true. 

No one has proved there’s a God. 
∴ There’s no God. 

No one has proved there’s no God. 
∴ There’s a God. 

Something not proved might still be true, just as something not disproved 
might still be false. An “appeal to ignorance” must have one of these forms; 
it’s not just any case where someone speaks out of ignorance. 

This next one uses a Latin name for “after this therefore because of this”: 

Post hoc ergo propter hoc 

A happened after B. 
∴ A was caused by B. 

Paul had a beer and then got 104% on his logic test. 
∴ He got 104% because he had beer. 

The premise was true (there were bonus points). Some students concluded: 
“So if I have a beer before the test, I’ll get 104%” and “If I have a six-pack, I’ll 
get 624%.” Proving causal connections requires more than just the sequence 
of two factors; the factors might just happen to have occurred together. It’s 
not even enough that factors always occur together; day always follows night, 
and night always follows day, but neither causes the other. Proving causal 
connections is difficult (see Mill’s methods in §5.7). 

This next one is also called division–composition: 



 

 

Part–whole 

This is F. 
∴ Every part of this is F. 

Every part of this is F. 
∴ This is F. 

My essay is good. 
∴ Every sentence of my essay is good. 

Every sentence of my essay is good. 
∴ My essay is good. 

The first argument is wrong because an essay might be good despite having 
some poor sentences. The second is wrong because each sentence of the 
essay might be good without the essay as a whole being good; the fine 
individual sentences might not make sense together. So something might be 
true of a whole without being true of the parts, or true of the parts without 
being true of the whole. A property that characterizes a whole but not any 
parts is sometimes called an emergent property: being alive is an emergent 
property possessed by a cell but not by any component molecules – and 
water may be clear and wet without 0057 individual H2O molecules being 
clear or wet. More controversially, some say thinking is an emergent proper-
ty possessed by the brain but not by its cells. 

In rare cases, these fallacy forms might be abbreviated forms of good rea-
soning. Suppose you know that people in your society almost never have false 
beliefs; then this “appeal to the crowd” could be correct inductive reasoning: 

Almost always, what most people in my society believe is true. 
Most people in my society believe A. 
That’s all we know about the matter. 
∴ Probably A is true. 

Or suppose you know that your opponent Jones is always wrong. Then this 
could be sound reasoning: “Everything Jones says is false, Jones says A, so A is 
false.” But correct forms of these six fallacy forms are unusual in real life. 

Our next group has three types of reasoning with correct and fallacious 
forms. This first type of reasoning appeals to expert opinion: 



 

Appeal to authority – correct form: 

X holds that A is true. 
X is an authority on the subject. 
The consensus of authorities agrees with X. 
∴ There’s a presumption that A is true. 

Incorrect forms omit premise 2 or 3, or conclude that A must be true. 

This one has the correct form: 

Your doctor tells you A. 
She’s an authority on the subject. 
The other authorities agree with her. 
∴ There’s a presumption that A is true. 

This conclusion means that we ought to believe A unless we have special 
evidence to the contrary. If the doctor is a great authority and the consensus 
of authorities is large, then the argument becomes stronger; but it’s never 
totally conclusive. All the authorities in the world might agree on something 
that they later discover to be wrong; so we shouldn’t think that something 
must be so because the authorities say it is. It’s also wrong to appeal to a 
person who isn’t an authority in the field (a sports hero endorsing coffee 
makers, for example). And finally, it’s weak to appeal to one authority (re-
garding the safety of nuclear energy, for example) when the authorities 
disagree widely. The appeal to authority can go wrong in many ways. Yet 
many of our trusted beliefs (that Washington was the first US president, for 
example, or that there’s such a country as Japan) rest quite properly on the 
say so of others. 

An “authority” might be a calculator or computer instead of a human. My 
calculator has proved itself reliable, and it gives the same result as other 
reliable calculators. So I believe it when it tells me that 679 • 177 = 120,183. 
0058 

This next one uses a Latin name for “against the person” (which is opposed 
to ad rem, “on the issue”): 

Ad hominem – correct form: 

X holds that A is true. 
In holding this, X violates legitimate rational standards (for example, X is 
inconsistent, biased, or not correctly informed). 
∴ X isn’t fully reasonable in holding A. 

Incorrect forms use factors irrelevant to rational competence (for example, X 
is a member of a hated group or beats his wife) or conclude that A is false. 



 

 

This one has the correct form: 

Rick holds that people of this race ought to be treated poorly. 
In holding this, Rick is inconsistent (because he doesn’t think that he ought to 
be treated that way if he were in their exact place) and so violates legitimate 
rational standards. 
∴ Rick isn’t fully reasonable in his views. 

A “personal attack” argument can be either legitimate or fallacious. In our 
example, we legitimately conclude that Rick, because he violates rational 
standards, isn’t fully reasonable in his beliefs. It would be fallacious to draw 
the stronger conclusion that his beliefs must be wrong; to show his beliefs to 
be wrong, we must argue against the beliefs, not against the person. A more 
extreme ad hominem was exemplified by Nazis who argued that Einstein’s 
theories must be wrong since he was Jewish; being Jewish was irrelevant to 
Einstein’s competence as a scientist. 

This next form of reasoning lists and weighs reasons for and against: 

Pro–con – correct form: 

The reasons in favor of act A are …. 
The reasons against act A are …. 
The former reasons outweigh the latter. 
∴ Act A ought to be done. 

Incorrect form: 

The reasons in favor of act A are …. 
∴ Act A ought to be done. 

This one has the correct form: 

The reasons in favor of getting an internal-frame backpack are …. 
The reasons against getting an internal-frame backpack are …. 
The former reasons outweigh the latter. 
∴ I ought to get an internal-frame backpack. 

People sometimes make decisions by folding a piece of paper in half and 
listing reasons in favor on one side and reasons against on the other; then 
they decide intuitively which side has stronger (not necessarily more) 
reasons. This method forces us to look at both sides of an issue. In the incor-
rect form, we just look at half the picture; we say that you should do this 
(because of such and such advantages) or that you shouldn’t do it (because of 
such and such disadvantages). 0059 This fallacy is also called “one-sided” or 
“stacking the deck.” 



 

We can expand our three correct forms into standard inductive and deduc-
tive arguments. A correct appeal to authority becomes a strong inductive 
argument if we add this inductively confirmed premise: “The consensus of 
authorities on a subject is usually right.” Correct ad hominem arguments 
become deductively valid if we add: “Anyone who, in believing A, violates 
legitimate rational standards is thereby not fully reasonable in believing A.” 
And correct pro–con arguments become deductively valid if we add: “If the 
reasons in favor of A outweigh the reasons against A, then A ought to be 
done.” 

Our final group has four miscellaneous fallacies. Here’s the first fallacy 
(which is also called false dilemma): 

Black-and-white thinking oversimplifies by assuming that one or another of 
two extreme cases must be true. 

One commits this fallacy in thinking that people must be logical or emotional, 
but can’t be both. My thesaurus lists these terms as having opposite mean-
ings; but if they really had opposite meanings, then no one could be both at 
once – which indeed is possible. In fact, all four combinations are common: 

logical and emotional 
logical and unemotional 
illogical and emotional 
illogical and unemotional 

People who think in a black-and-white manner prefer simple dichotomies, 
like logical-emotional, capitalist-socialist, or intellectual-jock. Such people 
have a hard time seeing that the world is more complicated than that. 

This next fallacy is also called hasty generalization: 

To use a false stereotype is to assume that the members of a certain group are 
more alike than they actually are. 

People commit this fallacy in thinking that all Italians exist only on spaghetti, 
that all New Yorkers are uncaring, or that all who read Karl Marx want to 
overthrow the government. False stereotypes can be detrimental to the 
stereotyped. A study compared scores on a math test of two otherwise 
identical groups of young girls; just the first group was told beforehand that 
girls are genetically inferior in math – and this group did much worse on the 
test. 



 

 

This next fallacy substitutes violence for reasoning: 

To appeal to force is to use threats or intimidation to get a conclusion accept-
ed. 

0060 A parent might say, “Just agree and shut up!” Parents and teachers hold 
inherently intimidating positions and are often tempted to appeal to force. 

This last fallacy is also called trick question: 

A complex question is a question that assumes the truth of something false or 
doubtful. 

The standard example is: “Are you still beating your wife?” A “yes” implies 
that you still beat your wife, while a “no” implies that you used to beat her. 
The question combines a statement with a question: “You have a wife and 
used to beat her; do you still beat her?” The proper response is: “Your 
question presumes something that’s false, namely that I have a wife and used 
to beat her.” Sometimes it’s misleading to give a “yes” or “no” answer. 

4.2a Exercise: LogiCola R 
Identify the fallacies in the following examples. Not all are clear-cut; some examples 
are controversial and some commit more than one fallacy. All the examples here are 
fallacious. Use these labels to identify the fallacies: 

aa = appeal to authority 
ac = appeal to the crowd 
ae = appeal to emotion 

af = appeal to force 
ah = ad hominem 

ai = appeal to ignorance 
am = ambiguous 

bp = beside the point 
bw = black and white 

ci = circular 
cq = complex question 

fs = false stereotype 
ge = genetic 

op = opposition 
pc = pro–con 
ph = post hoc 

pw = part–whole 
sm = straw man 



 

This sports hero advertises a popcorn popper on TV. He says it’s the best 
popcorn popper, so this must be true. 

This is aa (appeal to authority). There’s no reason to think the sports hero is 
an authority on popcorn poppers. 

1. Are you still wasting time with all that book-learning at the university? 

2. The Bible tells the truth because it’s God’s word. We know the Bible is God’s 
word because the Bible says so and it tells the truth. 

3. You should vote for this candidate because she’s intelligent and has much 
experience in politics. 

4. The Equal Rights Amendment was foolish because its feminist sponsors were 
nothing but bra-less bubbleheads. 

5. No one accepts this theory anymore, so it must be wrong. 

6. Either you favor a massive arms buildup, or you aren’t a patriotic American. 

7. The president’s veto was the right move. In these troubled times we need 
decisive leadership, even in the face of opposition. We should all thank the presi-
dent for his courageous move. 

8. Each member of this team is unbeatable, so this team must be unbeatable. 0061 

9. My doctor told me to lose weight and give up smoking. But she’s an overweight 
smoker herself, so I can safely ignore her advice. 

10. Belief in God is explained in terms of one’s need for a father figure; so it’s false. 

11. There are scientific laws. Where there are laws there must be a lawgiver. 
Hence someone must have set up the scientific laws to govern our universe, and 
this someone could only be God. 

12. The lawyer for the defense claims that there’s doubt that Smith committed the 
crime. But, I ask, are you going to let this horrible crime go unpunished because of 
this? Look at the crime; see how horrible it was! So you see clearly that the crime 
was horrible and that Smith should be convicted. 

13. Free speech is for the common good, since unrestrained expression of opinion 
is in people’s interest. 

14. This is a shocking and stupid proposal. Its author must be either a dishonest 
bum or a complete idiot. 

15. Aristotle said that heavy objects fall faster than light ones, so it must be true. 

16. Each of these dozen cookies (or drinks) by itself isn’t harmful; one little one 
won’t hurt! Hence having these dozen cookies (or drinks) isn’t harmful. 



 

 

17. Before Barack Obama became the Democratic candidate for US president, he 
ran in a series of primary elections. He noted that he played basketball before the 
Iowa primary, and then won the vote, while he neglected to play before the New 
Hampshire primary, and then lost. He concluded (in jest) “At that point I was 
certain that we had to play on every primary.” 

18. Only men are rational animals. No woman is a man. Therefore no woman is a 
rational animal. 

19. I’m right, because you flunk if you disagree with me! 

20. The discriminating backpacker prefers South Glacier tents. 

21. Those who opposed the war were obviously wrong; they were just a bunch of 
cowardly homosexual Communists. 

22. We should legalize gambling in our state, because it would bring in new tax 
revenue, encourage tourists to come and spend money here, and cost nothing 
(just the passing of a new law). 

23. Do you want to be a good little boy and go to bed? 

24. This man is probably a Communist. After all, nothing in the files disproves his 
Communist connections. 

25. People who read Fortune magazine make a lot of money. So if I subscribe to 
Fortune, then I too will make a lot of money. 

26. Feminists deny all difference between male and female. But this is absurd, as 
anyone with eyes can see. 

27. Each part of life (eyes, feet, and so on) has a purpose. Hence life itself must 
have a purpose. 

28. So you’re a business major? You must be one of those people who care only 
about the almighty dollar and aren’t concerned about ideas. 

29. My opponent hasn’t proved that I obtained these campaign funds illegally. So 
we must conclude that I’m innocent. 

30. Those dirty Communists said that we Americans should withdraw from the 
Panama Canal, so obviously we should have stayed there. 0062 

31. Karl Marx was a personal failure who couldn’t even support his family, so his 
political theory must be wrong. 

32. Religion originated from myth (which consists of superstitious errors). So 
religion must be false. 

33. Suzy brushed with Ultra Brilliant and then attracted boys like a magnet! Wow 
– I’m going to get some Ultra Brilliant. Then I’ll attract boys too! 

34. Did you kill the butler because you hated him or because you were greedy? 

35. My parents will be mad at me if I get a D, and I’ll feel so stupid. Please? You 
know how I loved your course. I surely deserve at least a C. 

36. Miracles are impossible because they simply can’t happen. 



 

37. I figure that a person must be a Communist if he doesn’t think the American 
free-enterprise system is flawless and the greatest system in the world. 

38. Everyone thinks this beer is simply the best. So it must be the best. 

39. We ought to oppose this, since it’s un-American. 

40. Practically every heroin addict first tried marijuana. Therefore, marijuana 
causes heroin addiction. 

41. Most college students are mainly concerned with sports, liquor, and sex. So 
this is normal. But Duane is mainly concerned with poetry. So he must be abnor-
mal and thus unhealthy. 

42. Each of the things in my backpack is light, so my loaded backpack must be 
light. 

43. You’re wrong in disagreeing with me, because what I said is true. 

44. Everyone thinks the Democrat is the better candidate, so it must be true. 

45. We should reject Mendel’s genetic theories, since he was a monk and thus 
couldn’t have known anything about science. 

46. Every time I backpack it seems to rain. I’m going backpacking next week. So 
this will cause it to rain. 

47. It hasn’t been proved that cigarettes are dangerous, so it’s only reasonable to 
conclude that they aren’t dangerous. 

48. In a commercial filled with superb scenery, sexy girls, and soft music: “Buy a 
Ford Mustang – it’s a super car!” 

49. Atheism is absurd. Atheists deny God because they can’t see him. But who has 
seen electrons either? 

50. President George W. Bush was in office for several years, and then the finan-
cial crisis occurred in 2008. Therefore the crisis occurred because Bush was in 
office. 

51. Do you support freedom and the unrestricted right to buy weapons? 

52. We don’t know how the first forms of life could have emerged by natural 
causes from the primeval chemical soup that covered the earth. So we must 
assume that they didn’t emerge by natural causes; so they had to have had a 
divine origin. 

53. Since no atom in this rock is heavy or green, this rock cannot be heavy or 
green. 

54. That car can’t be any good, since it was made in Detroit. 

55. All doctors are men with medical degrees. But no woman is a man with a 
medical degree. Therefore, no woman is a doctor. 

56. If you don’t keep quiet about our bank’s dishonest practices, you’re apt to lose 
your job. 



 

 

57. A black cat crossed my path, and then later I flunked my logic test. So this 
proves that black cats are unlucky. 0063 

58. Either you respect and agree with your teacher, or you’re insolent and don’t 
deserve a good grade. 

59. In spite of warnings from lifeguards, my girlfriend went swimming without a 
worry. She said that she didn’t have to worry about man-eating sharks. 

60. Will you contribute to our collection for famine relief, or are you insensitive to 
the suffering of other people? 

4.2b Another Fallacy Exercise: LogiCola R 
1. When are we going to guarantee all the people of this country the health care 
that they deserve? 

2. When are we going to understand that the government cannot afford to pay for 
universal health care? 

3. The professor’s letter of recommendation said, “I cannot praise this student’s 
study habits too highly.” 

4. No one has proven that humans are causing global warming; so we should 
assume that the heating of the earth has purely natural causes. 

5. Christians are peaceful, Muslims are terrorists. 

6. I never had problems with headaches before I studied logic. So studying logic 
must cause my headaches. 

7. This candidate’s ideas are really scary; don’t they make you afraid? I fear what 
would happen to our country if this candidate were elected. 

8. Charles Darwin, who came up with the theory of evolution, presumably thought 
that his grandfather was a monkey. 

9. You ask me why I deposited the company funds in my personal banking ac-
count. But why are you so doubtful about my integrity? Don’t you believe that we 
all need to be more trusting? 

10. American military experts testified in the first decade of the 21st century that 
Iraq was developing weapons of mass destruction; so this must be true. 

11. If all persons in a group work to maximize their individual self-interest, then 
the group is working effectively to maximize its own self-interest. 

12. The liberal elite media did it again! Those idiots are out to attack those of us 
who have solid, pro-American values. 

13. My mother demands that I clean up after I make waffles. She is an incredible 
neatness freak! She wants me to devote my whole life to keeping her kitchen 
spotless! 

14. Liberation theology got some of its concepts (like oppressive social struc-
tures) from atheistic Marxists, and so these concepts should be rejected. 



 

15. This backpacking tent is very lightweight, and so this is the one you should 
get. 

16. Everyone knows there ain’t no gold in the Grand Canyon. 

17. The Democrats want to raise tax rates on the rich and lower them on the 
middle class. This is part of their plan to move the country into socialism. 

18. No one has given conclusive evidence showing that aliens from outside our 
planet didn’t land near Roswell in 1947. So we should believe the witnesses who 
say that they encountered such aliens. 

19. You should vote for me because I will lower your taxes. 

20. Humans are “hardwired” so that, at least for the most part, they believe in 
God. So belief in God is rational. 0064 

21. Humans are “hardwired” so that, at least for the most part, they believe in 
God. So belief in God is irrational. 

22. The second exam question asked me to describe Aristotle’s approach to ethics. 
But since I didn’t know anything about this, I instead described Plato’s approach. 

23. Those horrible city folk vote Democratic; so we country folk should vote 
Republican. 

24. If you don’t want to suffer an unfortunate accident, you’d better find my client 
innocent. 

25. We should take either all of the Bible literally or else none of literally. 

26. Men are logical, women are emotional. 

27. Since there’s no good evidence that there’s intelligent life in other parts of the 
universe, it’s only reasonable to conclude that there’s no such life. 

28. Since Martin Heidegger developed many of his ideas when he was a Nazi sup-
porter in Germany, we should disregard his ideas. 

29. Gensler, who authored the Routledge Introduction to Logic, wears sandals 
with socks and claims that this is very fashionable; so this must be so. 

30. We shouldn’t listen when this Republican argues for tax relief for the rich; 
after all, her family was very rich. 

31. If you don’t buy some Girl Scout Cookies, I’ll tell everyone how cheap you are. 

32. My favorite Russian tennis star claims that Canon cameras are the best; so I 
plan to get one. 

33. Where did you hide the dead body of your murder victim? 

34. I read on the Internet that global warming is a hoax; so this must be true. 

35. Cheating on exams can’t be wrong; I mean, everyone does it. 

36. The Republicans say that they are against “big government.” But they really 
want to eliminate all social services for those in need, so the rich can become even 
richer. 



 

 

37. Last night I shot a burglar in my pajamas. I don’t know how he got into my 
pajamas. 

38. Are you going to admit that you’re wrong? 

39. Look at all the bad things that happened to our country while my opponent 
was in office! If you don’t want to elect an official who’ll bring about such bad 
things, then you should vote against my opponent. 

40. Everything in the universe has a cause; so the universe also has a cause. 

41. If you need another reference for my honesty, I can get Mariana Smith to 
vouch for me. Oh, you’ve never heard of Mariana Smith? Well, I can vouch for her. 

42. I installed LogiCola on my computer, and then two weeks later my computer 
failed. LogiCola must be to blame! 

43. So, you ask, which of my campaign promises will have to wait if we don’t have 
enough funds to fulfill them all? Instead of responding, I’d like to address what’s 
really troubling the people of this country, namely why the current administra-
tion is so dishonest. 

44. Either you favor the Republicans or you aren’t patriotic. 

45. I had foolish and immature ideas like yours when I was your age. 

46. Ancient Romans to Christians: “If you refuse to renounce your faith and 
worship the gods of Rome, we’ll feed you to the lions.” 

47. All logicians are emotionless calculators. 0065 

48. When Gensler baked his first batch of cookies, he used very good ingredients. 
Therefore the cookies that he baked were very good. 

49. We shouldn’t listen when this Democrat argues for tax relief for the poor; after 
all, her family was very poor. 

50. God must have created the world, since surely someone must have created it. 

51. Most Americans supported President George W. Bush’s invasion of Iraq, so 
this invasion must have been a good thing. 

52. You should take Gensler’s logic course because he has a great sense of humor. 

53. If you weren’t so stupid, you’d agree with me. 

54. To a junior Member of Congress: “If you don’t vote for this Bill, you’ll never be 
appointed to any important committees.” 

55. Why does my opponent want to lead our country into socialism? 

56. Since each cell in the human organism is incapable of thought, thus the human 
organism itself is incapable of thought. 

57. The Volkswagen was first developed by the Nazis, and so it must be an evil 
car. 

58. Those crude country folk support this idea; so we city folk should be against it. 



 

59. Dr Jones, you can’t prove that I didn’t come up independently with the same 
essay that occurs with word-by-word similarity on the Internet. So you must 
assume that I’m innocent of plagiarism. 

60. Gensler’s logic book is the best. My proof is that it says so inside, on the last 
problem of §4.2b. 

4.3 Inconsistency 

Inconsistency is the most important fallacy – the most important deceptive 
error of thinking. Students writing on philosophical issues for the first time 
often express inconsistent views, as in this example: 

Since morality is relative to culture, no duties bind universally. What’s right in one 
culture is wrong in another. Universal duties are a myth. Relativism should make 
us tolerant toward others; we can’t say that we’re right and they’re wrong. So 
everyone ought to respect the values of others.1 

Here the first statement is incompatible with the last: 

“No duties bind universally.” 
“Everyone ought to respect the values of others.” 

If everyone ought to respect the values of others, then some duties bind 
universally. And if no duties bind universally, then neither does the duty to 
respect the values of others. This inconsistency isn’t trivial; it cuts deeply. 
The unexamined views that we use to guide our lives are often radically 
incoherent; putting these views into words often brings out their incoher-
ence. The ancient Greek philosopher Socrates was adept at showing people 
how difficult it was to 0066 have consistent beliefs on the deeper questions of 
life. 

Inconsistency is common in other areas too. Someone running for political 
office might talk to environmentalists one day and industrialists the next. 
Each group might be told exactly what it wants to hear. The first group is told 
“I’ll support stronger clean-air standards”; the second is told “I’ll try to lower 
clean-air standards.” We can be sure that the politician, if elected, will violate 
some of the promises; one can’t fulfill incompatible promises. 

We often aren’t aware of our inconsistency. For example, one might be-
lieve all three of these: 

 
1 See my Ethics: A Contemporary Introduction, 3rd ed. (New York: Routledge, 2018), Chapter 
2. 



 

 

1. God is good. 
2. Predestination is true. (God immediately causes everything that happens.) 
3. God damns sinners to eternal punishment. 

These three beliefs aren’t inconsistent in themselves. But the person might 
have other beliefs that add to these three to make an inconsistent set: 

4. If predestination is true, then God causes us to sin. 
5. If God causes us to sin and yet damns sinners to eternal punishment, then God 
isn’t good. 

This set of five beliefs is inconsistent. Beliefs 2 and 4 entail “God causes us to 
sin.” This, with 3 and 5, entails “God isn’t good” – which contradicts 1. So the 
five beliefs can’t all be true together. Someone who believes all five might not 
be aware of the inconsistency; the beliefs might not have come together in 
the person’s consciousness at the same time. 

Inconsistency is a sign that our belief system is flawed and that we need to 
change something. Logic can tell us that our belief system is inconsistent. But 
it can’t tell us how to rearrange beliefs to regain consistency; that’s up to us. 

Controversies often arise when a set of individually plausible statements 
can’t consistently be combined. Consider this group of statements: 

F = Some human actions are free. 
D = All human actions are determined. 
I = No determined actions are free. 

Even though each claim by itself is plausible, the set is inconsistent. If we take 
any two of the statements as premises, we can infer the denial of the third. 
Hard determinists take D (determinism) and I (that determinism is incom-
patible with free will) as premises. They conclude not-F (that we have no free 
will): 

All human actions are determined. 
No determined actions are free. 
∴ No human actions are free. 

D 
I 
∴ Not-F 0067 

Indeterminists take F (free will) and I (that determinism is incompatible with 
free will) as premises. They conclude not-D (the falsity of determinism): 



 

Some human actions are free. 
No determined actions are free. 
∴ Some human actions aren’t determined. 

F 
I 
∴ Not-D 

Soft determinists take F (free will) and D (determinism) as premises. They 
conclude not-I (that determinism isn’t incompatible with free will): 

Some human actions are free. 
All human actions are determined. 
∴ Some determined actions are free. 

F 
D 
∴ Not-I 

Each of the three arguments has plausible premises. All three arguments are 
valid, but at most only one of them can have true premises. 

The three arguments relate to each other in an interesting way. Each ar-
gument is a “turnaround” of the other two. An argument is a turnaround of 
another argument if each results from the other by switching the denial of a 
premise with the denial of the conclusion. Here is an example: 

Hard determinism 

D 
I 
∴ Not-F 

Indeterminism (switches the denial of a premise with the denial of the 
conclusion) 

F 
I 
∴ Not-D 

As you’ll see from the exercises, several classical philosophical disputes 
involve turnaround arguments. In each dispute, we have a set of individually 
plausible statements that can’t consistently be combined. 

A single statement may be inconsistent with itself. A self-refuting statement 
is a statement that makes such a sweeping claim that it ends up denying 
itself. Suppose I tell you: “Everything that I tell you is false.” Could this be 
true? Not if I tell it to you; then it has to be false. The statement refutes itself. 



 

 

Or suppose I say: “I know that there’s no human knowledge.” This couldn’t be 
true. If it were true, then there would be some human knowledge – thus 
refuting the claim. A self-refuting claim often starts as a seemingly big, bold 
insight. The bubble bursts when we see that it destroys itself. 

Consistency relates ethical beliefs to actions in a special way. Suppose I 
believe that this man is bleeding. That belief doesn’t commit me, under pain 
of inconsistency, to any specific act; how I live can’t be inconsistent with this 
belief (taken by itself). But suppose I believe that I ought to call the doctor. 
This ethical belief does commit me, under pain of inconsistency, to action. If I 
don’t act to call the doctor, then the way I live is inconsistent with my belief. 
Consistency requires a harmony between our ethical beliefs and how we live. 
0068 

Many consistency arguments in ethics depend on the universalizability 
principle, on which nearly all philosophers agree. Universalizability claims 
that whatever is right (wrong, good, bad, etc.) in one case also would be right 
(wrong, good, bad, etc.) in any exactly or relevantly similar case, regardless of 
the individuals involved. Here’s an example adapted from the Good Samari-
tan parable (Luke 10:30–5). Suppose that, while I’m jogging, I see a man 
who’s been beaten, robbed, and left to die. Should I help him, perhaps by 
making a phone call? I think of excuses why I shouldn’t. I’m busy, don’t want 
to get involved, and so on. I say to myself, “It would be all right for me not to 
help him.” But then I consider an exactly reversed situation. I imagine myself 
in his place; I’m the one who’s been beaten, robbed, and left to die. And I 
imagine him being in my place; he’s jogging, sees me in my sad state, and has 
the same excuses. I ask myself, “Would it be all right for this man not to help 
me in this situation? Surely not!” But then I’m inconsistent. What’s all right 
for me to do to another has to be all right for the other to do to me in an 
imagined exactly reversed situation.1 

4.3a Exercise 
Construct a turnaround argument based on the three incompatible statements in the 
box. Include statement C as a premise of your argument. 

A. There are no universal duties. 
B. Everyone ought to respect the dignity of others. 
C. If everyone ought to respect the dignity of others, then there are universal 
duties. 

 
1 For more on consistency in ethics, see Chapters 13 and 14 of this present book and Chapters 
7 to 9 of my Ethics: A Contemporary Introduction, 3rd ed. (New York: Routledge, 2018). 



 

If everyone ought to respect the dignity of others, then there are universal 
duties. 
Everyone ought to respect the dignity of others. 
∴ There are universal duties. 

1. Construct a different turnaround argument based on the three statements in 
this first box. Again, include statement C as a premise of your argument. 

2. Construct a turnaround argument based on the four incompatible statements in 
this second box. Include statement A as a premise of your argument. 

A. If we have ethical knowledge, then either ethical truths are provable or 
there are self-evident ethical truths. 
B. We have ethical knowledge. 
C. Ethical truths aren’t provable. 
D. There are no self-evident ethical truths. 

3. Following the directions in 2, construct a second such turnaround argument. 

4. Following the directions in 2, construct a third such turnaround argument. 0069 

5. Construct a turnaround argument based on the three incompatible statements 
in this third box. 

A. All human concepts come from sense experience. 
B. The concept of logical validity is a human concept. 
C. The concept of logical validity doesn’t come from sense experience. 

6. Following the directions in 5, construct a second such turnaround argument. 

7. Following the directions in 5, construct a third such turnaround argument. 

8. If an argument is valid, then is its turnaround necessarily also valid? Argue for 
the correctness of your answer. 

The next seven examples are self-refuting statements. Explain how each self-refutes. 

9. No statement is true. 

10. Every rule has an exception. 

11. One ought not to accept statements that haven’t been proved. 

12. Any statement whose truth or falsity we can’t decide through scientific exper-
iments is meaningless. 

13. There’s no such thing as something being “true.” There are only opinions, each 
being “true for” the person holding it, none being just “true.” 



 

 

14. We can know only what’s been proved using experimental science. I know 
this. 

15. It’s impossible to express truth in human concepts. 

4.4 Constructing arguments 

This book presents many logical tools; these can help turn mushy thinking 
into clear reasoning. You should use these logical tools where appropriate in 
your own reading and writing. 

Imagine that your ethics teacher gives you this assignment: 

Suppose you work for a small company called Mushy Software. You can get a big 
contract for your company, but only by bribing an official of Enormity Incorpo-
rated. Would it be right for you to offer the bribe? Write a paper taking a position 
on this. Give a clear argument explaining the reasoning behind your answer. 

From your study of logic, you know that an argument is a set of statements 
divided into premises and a conclusion. The assignment tells you to construct 
a valid argument along these lines: 

[Insert plausible premise.] 
[Insert plausible premise.] 
∴ Offering the bribe is / isn’t right. 

Phrase your argument as clearly and simply as possible, and make sure that 
it’s 0070 valid in some acceptable logical system. After sketching various 
arguments, you might arrive at this (which is valid in syllogistic and quantifi-
cational logic): 

No dishonest act is right. 
Offering the bribe is a dishonest act. 
∴ Offering the bribe isn’t right. 

When you propose an argument, it’s wise to ask how an opponent could 
object to it. While the form here is clearly valid, there might be some difficulty 
with the premises. How could an opponent attack the premises? 

One way to attack a universal claim is to find a counterexample: 

Counterexample: To refute “all A is B,” find something that’s A but not B; to 
refute “no A is B,” find something that’s A and also B. 



 

Premise 1 says “No dishonest act is right.” You could refute this by finding an 
action that’s dishonest and also right. Can you think of any such action? 
Imagine a case in which the only way to provide food for your starving family 
is by stealing. Presumably, stealing here is dishonest but also right: 

This act of stealing is a dishonest act. 
This act of stealing is right. 
∴ Some dishonest acts are right. 

This is valid in syllogistic and quantificational logic. So if the premises here 
are true, then premise 1 of your original argument is false. 

Modus tollens gives another simple way to attack a claim: 

Modus tollens 

To refute claim A, find a clearly false claim B that A implies. Then argue as 
below: 

If A then B. 
Not-B. 
∴ Not-A. 

Try to find some clearly false claim that one of the premises implies. This 
argument seems to work: 

If no dishonest act is right, then it wouldn’t be right to steal food for your starving 
family when this is needed to keep them from starving. 
It would be right to steal food for your starving family when this is needed to keep 
them from starving. 
∴ Some dishonest acts are right. 0071 

This is valid in propositional logic. If the premises are true, then premise 1 of 
your original argument is false. This modus tollens objection is similar in 
intent to the counterexample objection, but phrased differently. 

How can you respond to the objection? You have three options: 

• Counterattack: Attack the arguments against your premise. 
• Reformulate: Reword your original premises so they avoid the objection but 

still lead to your conclusion. 
• Change strategy: Trash your argument and try another approach. 

On the counterattack option, you’d maintain that the arguments against 



 

 

your premise either are invalid or else have false premises. Here you might 
claim that stealing is wrong in this hypothetical case. This would be biting the 
bullet – taking a stand that seems to go against common sense in order to 
defend your theory. Here you’d claim that it’s wrong to steal to keep your 
family from starving; this is a difficult bullet to bite. 

On the reformulate option, you’d rephrase premise 1 to avoid the objection 
but still lead to your conclusion. You might add the italicized qualification: 
“No dishonest act that isn’t needed to avoid disaster is right.” You’d have to 
explain what “avoid disaster” here means and you’d have to add another 
premise that says “Offering the bribe isn’t needed to avoid disaster.” Then 
you’d look for further objections to the revised argument. 

On the change strategy option, you’d trash your original argument and try 
another approach. You might, for example, argue that offering the bribe is 
right (or wrong) because it’s legal (or illegal), or accords with (or violates) 
the self-interest of the agent, or maximizes (or doesn’t) the long-term inter-
ests of everyone affected by the action. Then, again, you’d have to ask wheth-
er there are objections to your new argument. 

As you refine your reasoning, it’s helpful to imagine a little debate going 
on. First present your argument to yourself. Then pretend to be your oppo-
nent and try to attack the argument. You might even enlist your friends to 
come up with objections; that’s what professional philosophers do. Then 
imagine yourself trying to reply to your opponent. Then pretend to be your 
opponent and try to attack your reply. Repeat the process until you’re 
content with the position you’re defending and the argumentation behind it. 

4.4a Exercise 
Give a valid argument with plausible premises for or against these statements. For 
this exercise, you needn’t believe these premises, but you have to regard them as 
plausible. Don’t forget what you learned in Chapter 3 (“Meaning and Definitions”) 
about the need to understand what a statement means before you defend or attack it. 
0072 

Any act is right if and only if it’s in the agent’s self-interest. (ethical egoism) 

If ethical egoism is true, then it would be right for Jones to torture and kill 
you if this were in Jones’s self-interest. 
It wouldn’t be right for Jones to torture and kill you if this were in Jones’s 
self-interest. 
∴ Ethical egoism isn’t true. 

1. Offering the bribe is in the agent’s self-interest. 

2. Every act is right if and only if it’s legal. 

3. All acts that maximize good consequences are right. 



 

4. Offering the bribe maximizes the long-term interests of everyone concerned. 

5. Offering the bribe is a dishonest act. 

6. Some wrong actions are errors made in good faith. 

7. No error made in good faith is blameworthy. 

8. All socially useful acts are right. 

9. No acts of punishing the innocent are right. 

10. The belief that there is a God is unnecessary to explain our experience. 

11. All beliefs unnecessary to explain our experience ought to be rejected. 

12. All beliefs that give practical life benefits are pragmatically justifiable. 

13. The idea of a perfect circle is a human concept. 

14. The idea of a perfect circle doesn’t derive from sense experience. 

15. All ideas gained in our earthly existence derive from sense experience. 

[I took many examples from §2.3a. The English arguments in this book are a rich 
source of further problems for this exercise.] 

4.5 Analyzing arguments 

To get better at analyzing arguments, get into the habit of sketching a prem-
ise–conclusion version of arguments that you read or hear. Often the argu-
ments will be as simple as a modus tollens (“If A then B, not-B, therefore not 
A”); but sometimes they’ll get more complicated. It’s important to listen and 
read carefully, with the aim of getting at the heart of the reasoning. 

Here are four steps that you may find helpful in analyzing arguments in 
things you read. The steps are especially useful when you write an essay on 
an author’s reasoning; but you also can use them to critique your own 
writing. The steps assume that the passage contains reasoning (and not just 
description). 

1. Formulate the argument in English. Identify and write out the premises and 
conclusion. Aim for a valid argument expressed clearly and directly. Use the 
principle of charity: interpret unclear reasoning in the way that gives the best 
argument. 0073 
2. Supply implicit premises where needed, avoid emotional terms, and phrase 
similar ideas in similar words. This step can be difficult if the author’s argument is 
unclear. 
3. Translate into some logical system and test for validity. If the argument is 
invalid, you might try step 1 again with a different formulation. If you can’t get a 
valid argument, you can skip the next two steps. 



 

 

4. Identify difficulties. Star controversial premises. Underline obscure or ambigu-
ous terms; explain what you think the author means by these. 
5. Appraise the premises. Try to decide if the premises are true. Look for informal 
fallacies, especially circularity and ambiguity. Give further arguments (your own 
or the author’s) for or against the premises. 

Let’s try this on a famous passage from David Hume: 

Since morals, therefore, have an influence on the actions and affections, it follows, 
that they cannot be deriv’d from reason; and that because reason alone, as we 
have already prov’d, can never have any such influence. Morals excite passions, 
and produce or prevent actions. Reason of itself is utterly impotent in this par-
ticular. The rules of morality, therefore, are not conclusions of our reason. No one, 
I believe, will deny the justness of this inference; nor is there any other means of 
evading it, than by denying that principle, on which it is founded. As long as it is 
allow’d, that reason has no influence on our passions and actions, ‘tis in vain to 
pretend, that morality is discover’d only by a deduction of reason. An active 
principle can never be founded on an inactive ….1 

First read the passage several times. Focus on the reasoning and try to put 
it into words; it usually takes several tries to get a clear argument. Here our 
analysis might look like this: 

All moral judgments influence our actions and feelings. 
Nothing from reason influences our actions and feelings. 
∴ No moral judgments are from reason. 

Next translate into some logical system and test for validity. Here we could 
use either syllogistic or quantificational logic: 

all M is I 
no R is I 
∴ no M is R 

(x)(Mx ⊃ Ix) 
∼(∃x)(Rx • Ix) 
∴ ∼(∃x)(Mx • Rx) 

The argument tests out valid in either case. 
Next identify difficulties. Star controversial premises and underline ob-

scure or ambiguous terms: 
 
1 David Hume, A Treatise of Human Nature (Oxford: Clarendon Press, 1888), page 457 (Book 
III, Part I, Section I). 



 

* All moral judgments influence our actions and feelings. 
* Nothing from reason influences our actions and feelings. 
∴ No moral judgments are from reason. 0074 

Try to figure out what Hume meant by these underlined words. By “reason,” 
Hume seems to mean “the discovery of truth or falsehood.” Thus we can 
rephrase his argument as follows: 

* All moral judgments influence our actions and feelings. 
* No discovery of truth or falsehood influences our actions and feelings. 
∴ No moral judgments are a discovery of truth or falsehood. 

“Influences” also is tricky. “X influences Y” could have either of two meanings: 

“X independently of our desires influences Y.” 
“X when combined with our desires influences Y.” 

Finally, appraise the premises. If we take “influences” in the first sense, 
then there’s a problem with premise 1, which would then mean “All moral 
judgments, independently of our desires, influence our actions and feelings.” 
This seems false, since there are people who accept moral judgments but 
have no desire or motivation to follow them; the actions and feelings of such 
a person thus wouldn’t be influenced by these moral judgments. If we take 
“influences” in the second sense, then there’s a problem with premise 2, 
which would then mean “No discovery of truth or falsehood, when combined 
with our desires, influences our actions and feelings.” This also seems false, 
since the discovery of the truth that this flame would burn our finger, com-
bined with our desire not to get burned, surely influences our actions and 
desires. Hume’s argument is plausible because “influences” is ambiguous. 
Depending on how we take this term, one premise or the other becomes false 
or doubtful. So Hume’s argument is flawed. 

Here we’ve combined formal techniques (expressing an argument in a 
logical system) with informal methods (common-sense judgments, defini-
tions, and the fallacy of ambiguity). We’ve used these to formulate and 
criticize an argument on the foundations of ethics. Our criticisms, of course, 
might not be final. A Hume defender might attack our arguments against 
Hume’s premises, suggest another reading of the argument, or rephrase the 
premises to avoid our criticisms. But our criticisms, if clearly and logically 
expressed, will likely move the discussion forward. At its best, philosophical 
discussion involves reasoning together in a clear-headed, logical manner. 

It’s important to be fair when we criticize another’s reasoning. Such criti-
cism can be part of a common search for truth; we shouldn’t let it descend 
into a vain attempt to score points. In appraising the reasoning of others, we 



 

 

should follow the same standards of fairness that we want others to follow in 
their appraisal of our reasoning. Distortions and other fallacies are beneath 
the dignity of beings, such as ourselves, who are capable of reasoning. 



5 Inductive Reasoning 

Much of our reasoning deals with probabilities. We observe patterns and 
conclude that, based on these, such and such a belief is probably true. This is 
inductive reasoning. 

5.1 The statistical syllogism 

The Appalachian Trail (AT), a 2,160-mile footpath from Georgia to Maine in 
the eastern US, has a series of lean-to shelters. Suppose we backpack on the 
AT and plan to spend the night at Rocky Gap Shelter. We’d like to know 
beforehand whether there’s water (a spring or stream) close by. If we knew 
that all AT shelters have water, or that none do, we could reason deductively: 

All AT shelters have water. 
Rocky Gap is an AT shelter. 
∴ Rocky Gap has water. 

No AT shelters have water. 
Rocky Gap is an AT shelter. 
∴ Rocky Gap doesn’t have water. 

Both are deductively valid. Both have a tight connection between premises 
and conclusion; if the premises are true, the conclusion has to be true. 
Deductive validity is “all or nothing.” Deductive arguments can’t be “half-
valid,” nor can one be “more valid” than another. 

In fact, most of the shelters have water, but a few don’t. Of the shelters that 
I’ve visited, roughly 90 percent (depending on season and rainfall) have had 
water. If we knew that 90 percent had water, we could reason inductively: 

90 percent of AT shelters have water. 
Rocky Gap is an AT shelter. 
That’s all we know about the matter. 
∴ Probably Rocky Gap has water. 

This is a strong inductive argument. Relative to the premises, the conclusion 



 

 

is a good bet. But it could turn out false, even though the premises are all 
true. 

The “That’s all we know about the matter” premise means “We have no 
further information that influences the conclusion’s probability.” Suppose we 
just met a thirsty backpacker complaining that the water at Rocky Gap had 
dried up; 0076 that would change the conclusion’s probability. The premise 
claims that we have no such further information. 

Inductive arguments differ from deductive ones in two ways. (1) Inductive 
arguments vary in how strongly the premises support the conclusion; “99 
percent of AT shelters have water” supports the conclusion more strongly 
than does “60 percent of AT shelters have water.” We have shades of gray 
here – not the black and white of deductive validity/invalidity. (2) Even a 
strong inductive argument has only a loose connection between premises 
and conclusion. The premises make the conclusion at most only highly prob-
able; the premises might be true while the conclusion is false. Inductive 
reasoning is a form of guessing based on recognizing and extending known 
patterns and resemblances. 

So a deductive argument claims that it’s logically necessary that if the 
premises are all true, then so is the conclusion. An inductive argument claims 
that it’s likely (but not logically necessary) that if the premises are all true, 
then so is the conclusion. This chapter focuses on inductive arguments. 

If we refine our conclusion to specify a numerical probability, we get the 
classic statistical syllogism form: 

Statistical Syllogism 

 N percent of A’s are B’s. 
 X is an A. 
 That’s all we know about the matter. 
∴ It’s N percent probable that X is a B. 

90 percent of AT shelters have water. 
Rocky Gap is an AT shelter. 
That’s all we know about the matter. 
∴ It’s 90 percent probable that Rocky Gap has water. 

Here’s another example: 



 

50 percent of coin tosses are heads. 
This is a coin toss. 
That’s all we know about the matter. 
∴ It’s 50 percent probable that this is heads. 

Suppose that all we know affecting the probability of the toss being heads is 
that 50 percent of coin tosses are heads and that this is a coin toss. Then it’s 
50 percent probable to us that the toss is heads. This holds if we hadn’t yet 
tossed the coin, or if we tossed it but didn’t yet know how it landed. The 
matter is different if we know how it landed. Then it’s no longer just 50 
percent probable to us that it’s heads; rather, we know that it’s heads or that 
it’s tails. 

Statistical syllogisms apply most cleanly if we know little about the subject. 
Suppose we know these two facts about Michigan’s football team: 

• Michigan has first down and runs 70 percent of the time on first down. 
• Michigan is behind and passes 70 percent of the time when it’s behind. 0077  

Relative to the first fact, Michigan probably will run. Relative to the second 
fact, Michigan probably will pass. But it’s unclear what Michigan probably 
will do relative to both facts. It gets worse if we add facts about the score, the 
time left, and the offensive formation. Each fact by itself may lead to a clear 
conclusion about what Michigan probably will do; but the combination 
muddies the issue. Too much information can confuse us when we apply 
statistical syllogisms. 

Chapter 1 distinguished valid from sound deductive arguments. Valid as-
serts a correct relation between premises and conclusion, but says nothing 
about the truth of the premises; sound includes both “valid” and “has true 
premises.” It’s convenient to have similar terms for inductive arguments. 
Let’s say that an argument is strong inductively if the conclusion is probable 
relative to the premises. And let’s say that an argument is reliable inductively 
if it’s strong and has true premises. So then: 

• With DEDUCTIVE ARGUMENTS: a correct premise–conclusion link makes the 
argument VALID; and VALID plus true premises makes the argument SOUND. 

• With INDUCTIVE ARGUMENTS: a correct premise–conclusion link makes the 
argument STRONG; and STRONG plus true premises makes the argument 
RELIABLE. 

Here’s a very strong inductive argument that isn’t reliable: 



 

 

 Michigan loses 99 percent of the times it plays. 
 Michigan is playing today. 
 That’s all we know about the matter. 
∴ Probably Michigan will lose today. 

This is very strong, because relative to the premises the conclusion is very 
probable. But the argument isn’t reliable, since premise 1 is false. 

5.2 Probability calculations 

Sometimes we can calculate probabilities precisely. Coins tend to land heads 
half the time and tails the other half; so each coin has a 50 percent chance of 
landing heads and a 50 percent chance of landing tails. Suppose we toss two 
coins. There are four possible combinations of heads (H) and tails (T) for the 
two coins: 

HH HT TH TT 

Each case is equally probable. So our chance of getting two heads is 25 
percent (.25 or ¼), since it happens in 1 out of 4 cases. Here’s the rule (where 
“prob” is short for “the probability” and “favorable cases” are those in which 
A is true): 0078 

This rule holds if every case is equally likely: 

Prob of A = the number of favorable cases / the total number of cases 

Our chance of getting at least one head is 75 percent (.75 or ¾), since it 
happens in 3 of 4 cases. 

With odds, the ratio concerns favorable and unfavorable cases (“unfavora-
ble cases” are those in which A is false). The odds are in your favor if the 
number of favorable cases is greater (then your probability is greater than 50 
percent): 

The odds in favor of A = the number of favorable cases / the number of 
unfavorable cases 

So the odds are 3 to 1 in favor of getting at least one head – since it happens 
in 3 cases and fails in only 1 case. The odds are against you if the number of 



 

unfavorable cases is greater (so your probability is less than 50 percent): 

The odds against A = the number of unfavorable cases / the number of 
favorable cases 

Odds are usually given in whole numbers, with the larger number first. We 
wouldn’t say “The odds are 1 to 3 in favor of getting two heads”; rather, we’d 
put the larger number first and say “The odds are 3 to 1 against getting two 
heads.” Here are examples of how to convert between odds and probability: 

• The odds are even (1 to 1) that we’ll win = The probability of our winning 
is 50 percent. 

• The odds are 7 to 5 in favor of our winning = The probability of our win-
ning is 7/12 (7 favorable cases out of 12 total cases, or 58.3 percent). 

• The odds are 7 to 5 against our winning = The probability of our winning 
is 5/12 (5 favorable cases out of 12 total cases, 41.7 percent). 

• The probability of our winning is 70 percent = The odds are 7 to 3 in favor 
of our winning (70 percent favorable to 30 percent unfavorable). 

• The probability of our winning is 30 percent = The odds are 7 to 3 against 
our winning (70 percent unfavorable to 30 percent favorable). 

We’ll now learn some rules for calculating probabilities. The first two rules 
are about necessary truths and self-contradictions: 0079 

If A is a necessary truth: Prob of A = 100 percent. 

If A is a self-contradiction: Prob of A = 0 percent. 

Our chance of a specific coin being either heads or not heads is 100 percent. 
And our chance of it being both heads and not heads (at one time) is 0 
percent. 

This next rule relates the probability of a given event happening to the 
probability of that event not happening: 

Prob of not-A = 100 percent – prob of A. 

So if our chance of getting two heads is 25 percent, then our chance of not 
getting two heads is 75 percent (100 percent – 25 percent). 

The next rule concerns events that are independent of each other, in that 



 

 

the occurrence of one doesn’t make the occurrence of the other any more or 
any less likely (the first coin being heads, for example, doesn’t make it any 
more or any less likely that the second coin will be heads): 

If A and B are independent: 

Prob of (A and B) = prob of A • prob of B. 

Probabilities multiply with AND. So our chance of throwing two heads (25 
percent) and then throwing two heads again (25 percent) is 6.25 percent (25 
percent • 25 percent). 

This next rule holds for events that are mutually exclusive, in that they 
can’t both happen together: 

If A and B are mutually exclusive: 

Prob of (A or B) = prob of A + prob of B. 

Probabilities add with OR. It can’t happen that we throw two heads and also 
(on the same toss of two coins) throw two tails. The probability of either 
event is 25 percent. So the probability of one or the other happening (getting 
two heads or two tails) is 50 percent (25 percent + 25 percent). When the 
two events aren’t mutually exclusive, we use this more complex rule: 

This holds even if A and B aren’t mutually exclusive: 

Prob of (A or B) = Prob of A + prob of B – prob of (A and B). 

Suppose we calculate the probability of getting at least one head when we flip 
0080 two coins. Coin 1 being heads and coin 2 being heads aren’t mutually 
exclusive, since they might both happen together; so we apply the more 
complex rule. The chance of coin 1 being heads or coin 2 being heads = the 
chance of coin 1 being heads (50 percent) + the chance of coin 2 being heads 
(50 percent) – the chance of coin 1 and coin 2 both being heads (25 percent). 
So our chance of getting at least one head is 75 percent (50 + 50 – 25). If A 
and B are mutually exclusive, then the probability of (A and B) = 0 and the 
simpler rule gives the same result. 

Suppose we throw two dice. There are six equally probable possibilities for 
each die. Here are the possible combinations and resulting totals (the num-
bers on the left are for the first die, the numbers on the top are for the second 
die, and the other numbers are the totals): 



 

 1 2 3 4 5 6 
1 
2 
3 
4 
5 
6 

2 
3 
4 
5 
6 
7 

3 
4 
5 
6 
7 
8 

4 
5 
6 
7 
8 
9 

5 
6 
7 
8 
9 

10 

6 
7 
8 
9 

10 
11 

7 
8 
9 

10 
11 
12 

These 36 combinations each have an equal 1/36 probability. The chance of 
getting 12 is 1/36, since we get 12 in only 1 of 36 cases. The chance of getting 
11 is 1/18 (2/36) – since we get 11 in 2 of 36 cases. Similarly, we have a 1/6 
(6/36) chance of getting 10 or higher, and a 5/6 (30/36) chance of getting 9 
or lower. 

Suppose we have a standard deck of 52 cards. What’s our chance of getting 
2 aces when dealt 2 cards? We might think that, since 1/13 of the cards are 
aces, our chance of getting two aces is 1/169 (1/13 • 1/13). But that’s wrong. 
Our chance of getting an ace on the first draw is 1/13, since there are 4 aces 
in the 52 cards, and 4/52 = 1/13. But if we get an ace on the first draw, then 
there are only 3 aces left in the 51 cards. So our chance of getting a second 
ace is 1/17 (3/51). Thus, our chance of getting 2 aces is 1/221 (1/13 • 1/17), 
or about 0.45 percent. 

Here the events aren’t independent. Getting an ace on the first card reduc-
es the number of aces left and our chance of drawing an ace for the second 
card. This is unlike coins, where getting heads on one toss doesn’t affect our 
chance of getting heads on the next toss. If events A and B aren’t independent, 
we need this rule for determining the probability of the conjunction (A and 
B): 

This holds even if A and B aren’t independent: 

Prob of (A and B) = Prob of A • (prob of B after A occurs). 

This reflects the reasoning about our chance of getting 2 aces from a 52-card 
deck. What’s our chance with a double 104-card deck? Our chance of getting a 
first ace is again 1/13 (since there are 8 aces among the 104 cards, and 
8/104 = 1/13). After we get a first ace, there are 7 aces left in the 103 cards, 
and so our chance of a second ace is 7/103. So the probability of getting a 
first ace and then 0081 a second ace = 1/13 (the probability of the first ace) • 
7/103 (the probability of the second ace). This works out to 7/1339 (1/13 • 
7/103), or about 0.52 percent. So our chance of getting 2 aces when dealt 2 
cards from a double 104-card deck is about 0.52 percent (or slightly better 
than the 0.45 with a standard deck). 

Mathematically fair betting odds are in reverse proportion to probability. 



 

 

Suppose we bet on whether, in drawing 2 cards from a standard 52-card 
deck, we’ll draw 2 aces. There’s a 1/221 chance of this, so the odds are 220 to 
1 against us. If we bet $1, we should get $220 if we win. If we play for a long 
time under such betting odds, our gains and losses will likely roughly equal-
ize. In a casino, the house takes its cut and so we get a lower payoff. So if we 
play there a long time under such odds, probably we’ll lose and the casino 
will win. That’s why Las Vegas casinos look like the palaces of emperors. 

5.2a Exercise: LogiCola P (P, O, & C) 
Work out the following problems. A calculator is useful for some of them. 

You’re playing blackjack and your first card is an ace. What’s your chance of 
getting a card worth 10 (a 10, jack, queen, or king) for your next card? You’re 
using a standard 52-card deck. 

There are 16 such cards (one 10, J, Q, and K for each suit) from 51 remaining 
cards. So your chance is 16/51 (about 31.4 percent). 

1. What would the answer to the sample problem be with a double 104-card 
deck? 

2. Suppose the Cubs and Mets play baseball today. There’s a 60 percent chance of 
rain, which would cancel the game. If the teams play, the Cubs have a 20 percent 
chance of winning. What chance do the Cubs have of winning today? 

3. You’re tossing coins. You tossed 5 heads in a row using a fair coin. What’s the 
probability now that the next coin will be heads? 

4. You’re about to toss 6 coins. What’s the probability that all 6 will be heads? 

5. Suppose there’s an 80 percent chance that the winner of the Michigan versus 
Ohio State game will go to the Rose Bowl, a 60 percent chance that Michigan will 
beat Ohio State, and a 30 percent chance that Michigan will win the Rose Bowl if it 
goes. Then what’s the probability that Michigan will win the Rose Bowl? 

6. Suppose you bet $10 that Michigan will win the Rose Bowl. Assuming the 
probabilities of the last example and mathematically fair betting odds, how much 
money should you win if Michigan wins the Rose Bowl? 

7. You’re playing blackjack and get an ace for the first card. You know that the 
cards used on the only previous hand were a 5, a 6, two 7’s, and two 9’s, and that 
all these are in the discard pile. What’s your chance of getting a card worth 10 (a 
10, jack, queen, or king) for the next card? You’re using a standard 52-card deck. 

8. What would the answer to the last problem be with a double 104-card deck? 

9. You’re throwing a pair of dice. Your sister bets you even money that you’ll 
throw an even number (adding both together). Is she playing you for a sucker? 



 

10. Your sister is throwing a pair of dice. She says, “I bet I’ll throw a number 
divisible by three.” What are the mathematically fair betting odds? 0082 

11. You’re dealt five cards: two 3s, a 4, a 6, and a 7. If you get another card, what’s 
the probability that it will be a 5? What’s the probability that it will be a 3? 

12. You’re at a casino in Las Vegas and walk by a $1 slot machine that says “Win 
$2,000!” Assume that this is the only way you can win and that it gives mathemat-
ically fair odds or worse. What’s your chance of winning if you deposit $1? 

13. What’s the probability, ignoring leap-year complications, that both your 
parents have their birthday on the same day of the year (whatever day that may 
be)? 

14. Our football team, Michigan, is 2 points behind with a few seconds left. We 
have the ball, fourth and two, on the Ohio State 38. We could have the kicker try a 
long field goal, which would win the game. The probability of kicking this goal is 
30 percent. Or we could try to make a first down and then kick from a shorter 
distance. There’s a 70 percent probability of making a first down and a 50 percent 
probability of making the shorter field goal if we make the first down. Which 
alternative gives us a better chance to make the field goal? 

15. Our team, Michigan, is 2 points ahead with a minute left. Ohio State is going 
for it on fourth down. It’s 60 percent probable that they’ll pass, and 40 percent 
probable that they’ll run. We can defense the pass or defense the run. If we de-
fense the pass, then we’re 70 percent likely to stop a pass but only 40 percent 
likely to stop a run. If we defense the run, then we’re 80 percent likely to stop a 
run but only 50 percent likely to stop a pass. What should we do? 

5.3 Philosophical questions 

We’ll now consider four philosophical questions on probability. Philosophers 
disagree about how to answer these questions. 

1. Are the ultimate scientific laws governing the universe deterministic or proba-
bilistic in nature? 

Some think all ultimate scientific laws are deterministic; we use probability 
only because we lack knowledge. Suppose we knew all scientific laws and the 
complete state of the world at a given time. Then we could in principle 
infallibly predict whether the coin will come up heads, whether it will rain 
three years from today, and who will win the World Cup in 30 years. This is 
the thesis of determinism. 

Others say that some or all of the ultimate laws governing our world are 
probabilistic. Such laws say that under given conditions a result will probably 
obtain, but not that it must obtain. The world is a dice game. 

The empirical evidence on this issue is inconclusive. Quantum physics 



 

 

today embraces probabilistic laws but could someday return to deterministic 
laws. The issue is complicated by the controversy over whether determinism 
is an empirical or an a priori issue (§3.7); some think reason (not experience) 
gives us certainty that the world is deterministic. 0083 

2. What does “probable” mean? And can every statement be assigned a numerical 
probability relative to given evidence? 

“Probable” has various senses. “The probability of heads is 50 percent” could 
be taken in at least four ways: 

• Ratio of observed frequencies: We’ve observed that coins land heads about 
half of the time. 

• Ratio of abstract possibilities: Heads is one of the two equally likely abstract 
possibilities. 

• Measure of actual confidence: We have the same confidence in the toss being 
heads as we have in it not being heads. 

• Measure of rational confidence: It’s rational to have the same confidence in the 
toss being heads as in it not being heads. 

We used a ratio of observed frequencies to calculate the probability of 
finding water at Rocky Gap Shelter. And we used a ratio of abstract possibili-
ties to calculate the probability of being dealt two aces. But sometimes these 
ratio approaches can’t give numerical probabilities. Neither ratio approach 
gives a numerical probability to “Michigan will run” relative to information 
about ancient Greek philosophy or relative to this combination: 

• Michigan has first down and runs 70 percent of the time on first down. 
• Michigan is behind and passes 70 percent of the time when it’s behind.1 

Only in special cases do the ratio approaches give numerical probabilities. 
The measure of actual confidence sometimes yields numerical probabili-

ties. Consider these statements: 

“There’s life on other galaxies.” 
“Michigan will beat Ohio State this year.” 
“There’s a God.” 

If you regard 1-to-1 betting odds on one of these as fair, then your actual 
 
1 Here it would be helpful to know what Michigan does on first down when they’re behind. But 
the same problem continues if other factors are relevant (e.g., how much time is left in the 
game). 



 

confidence in the statement is 50 percent. But you may be unwilling to 
commit yourself to such odds. Maybe you can’t say if your confidence in the 
statement is less or greater than your confidence that a coin toss will be 
heads. Then we can’t assign numbers to your actual confidence. The rational 
confidence view, too, would have trouble assigning numerical probabilities in 
these cases. 

Some doubt that probability as rational confidence satisfies the standard 
probability rules of the last section. These rules say that necessary state-
ments always are 100 percent probable. But consider a complex proposition-
al logic formula 0084 that’s a necessary truth, even though your evidence 
suggests that it isn’t; perhaps your normally reliable logic teacher tells you 
that it’s not a necessary truth – or perhaps in error you get a truth-table line 
of false (see §6.5). Relative to your data, it seems rational not to put 100 
percent confidence in the formula, even though it in fact is a necessary truth. 
So is probability theory wrong? 

Probability theory is idealized rather than wrong. It describes the confi-
dence an ideal reasoner would have; an ideal reasoner would always recog-
nize necessary truths and put 100 percent confidence in them. So we have to 
be careful applying probability theory to the beliefs of non-ideal human 
beings; we must be like physicists who give simple equations for frictionless 
bodies and then keep in mind that these are idealized when applying the 
equations to real cases. 

Probability as actual confidence definitely can violate the probability rules. 
Many would calculate the probability of drawing 2 aces from a 52 or 104 card 
deck as 1/169 (1/13 • 1/13); so they’d regard 168-to-1 betting odds as fair. 
But the probability rules say this is wrong (§5.2). 

3. How does probability relate to how ideally rational persons believe? 

Some think ideally rational persons would believe all and only those state-
ments that are more than 50 percent probable. But this has strange implica-
tions. Suppose that Austria, Brazil, and China each has a 33 ⅓ percent chance 
of winning the World Cup. Then each of these is 66 ⅔ percent probable: 

“Austria won’t win the World Cup, but Brazil or China will.” 
“Brazil won’t win the World Cup, but Austria or China will.” 
“China won’t win the World Cup, but Austria or Brazil will.” 

On the view just described, ideally rational persons would believe all three 
statements. But this is silly; only a very confused person could do this. 

The view has other problems. Why pick 50 percent? Why wouldn’t ideally 
rational persons believe all and only those statements that are at least 60 
percent (or 75 percent or 90 percent) probable? And there are further 



 

 

problems if there’s no way to work out numerical probabilities. 
The view gives an ideal of selecting all beliefs in a way that’s free of subjec-

tive factors (like feelings and practical interests). Some find this ideal attrac-
tive. Pragmatists find it repulsive. They believe in following subjective factors 
on issues that our intellects can’t decide. They think that numerical probabil-
ity doesn’t apply to life’s deeper issues (like free will, God, or basic moral 
principles). 

4. How does probability relate to how ideally rational persons act? 

Some think ideally rational persons always act to maximize expected gain. In 
working out what to do, they’d list the possible alternative actions (A, B, C, …) 
and then consider the possible outcomes (A1, A2, A3, …) of each action. The 
gain or loss of each outcome 0085 would be multiplied by the probability of 
that outcome occurring; adding these together gives the action’s expected 
gain. So an action’s expected gain is the sum of probability-times-gain of its 
various possible outcomes. Ideally rational persons, on this view, would 
always do whatever had the highest expected gain (or the lowest expected 
loss when all alternatives lose). 

What is “gain” here? Is it pleasure or desire-satisfaction, for oneself or 
one’s group or all affected by the action? Or is it financial gain, for oneself or 
one’s company? Consider an economic version of the theory, that ideally 
rational gamblers would always act to maximize their expected financial gain. 
Imagine that you’re such an “ideally rational gambler.” You find a game of 
dice that pays $3,536 on a $100 bet if you throw 12. You’d work out the 
expected gain of playing or not playing (alternatives P and N) in this way: 

P. PLAYING. There are two possible outcomes: P1 (I win) and P2 (I lose). P1 is 
1/36 likely and gains $3,536; P1 is worth (1/36 • $3,536) or $98.22. P2 is 35/36 
likely and loses $100; P2 is worth (35/36 • –$100), or –$97.22. The expected gain 
of alternative P is ($98.22 – 97.22), or $1. 

N. NOT PLAYING. On this alternative, I won’t win or lose anything. The expected 
gain of alternative N is (100 percent • $0), or $0. 

So then you’d play. If you played this dice game only once, you’d be 97 
percent likely to lose money. But the occasional payoff is great; you’d likely 
gain about a million dollars if you played a million times. 

“Ideally rational gamblers” would gamble if the payoff were favorable, but 
not otherwise. Since casinos take their cut, their payoff is lower; ideally 
rational gamblers wouldn’t gamble there. But people have interests other 
than money; for many, gambling is great fun, and they’re willing to pay for 
the fun. 

Some whose only concern is money refuse to gamble even when the odds 



 

are in their favor. Their concern may be to have enough money. They may 
better satisfy this by being cautious; they don’t want to risk losing what they 
have for the sake of gaining more. Few people would endanger their total 
savings for the 1-in-900 chance of gaining a fortune 1000 times as great. 

Another problem with the “maximize expected gain” policy is that it’s often 
difficult or impossible to give objective numerical probabilities and to 
multiply probability by gain. So this policy faces grave difficulties if taken as 
an overall guide to life. But it can sometimes be useful as a rough guide. At 
times it’s helpful to work out the expected gain of the various alternatives, 
perhaps guessing at the probabilities and gains involved. 

I once had two alternatives in choosing a flight: 

Ticket A costs $250 and allows me to change my return date. 
Ticket B costs $200 and has a $125 charge if I change my return date. 

Which ticket is a better deal for me? Intuitively, A is better if a change is very 
likely, while B is better if a change is very unlikely. But we can be more 
precise. 0086 Let x represent the probability of my changing the return. Then: 

Expected cost of A = $250. 
Expected cost of B = $200 + ($125 • x). 

Algebra shows the expected costs are identical if x is 40 percent. So A is 
better if a change is more than 40 percent likely, while B is better if a change 
is less likely than that. Judging from past experiences, the probability of my 
changing the return date was less than 40 percent. Thus, ticket B minimized 
my expected cost. So I bought ticket B. 

In some cases, however, it might be more rational to pick A. Maybe I have 
$250 but I don’t have the $325 that option B might cost me; so I’d be in great 
trouble if I had to change the return date. It might then be more rational to 
follow “better safe than sorry” and pick A. 

5.3a Exercise: LogiCola P (G, D, & V) 
Suppose you decide to believe all and only statements that are more probable than 
not. You’re tossing three coins; which of the next six statements would you believe? 

Either the first coin will be heads, or all three will be tails. 

You’d believe this, since it happens in 5 of 8 cases: HHH HHT HTH HTT THH THT 
TTH TTT 



 

 

1. I’ll get three heads. 

2. I’ll get at least one tail. 

3. I’ll get two heads and one tail. 

4. I’ll get either two heads and one tail, or else two tails and one head. 

5. The first coin will be heads. 

For problems 6 through 10, suppose you decide to do in all cases whatever would 
maximize your expected financial gain. 

6. You’re deciding whether to keep your life savings in a bank (which pays a 
dependable 10 percent) or invest in Mushy Software. If you invest in Mushy, you 
have a 99 percent chance of losing everything and a 1 percent chance of making 
120 times your investment this year. What should you do? 

7. You’re deciding whether to get hospitalization insurance. There’s a 1 percent 
chance per year that you’ll have a $10,000 hospital visit (ignore other hospitaliza-
tions); the insurance would cover it all. What’s the most you’d agree to pay per 
year for this insurance? 

8. You’re running a company that offers hospitalization insurance. There’s a 1 
percent chance per year that a customer will have a $10,000 hospital visit (ignore 
other hospitalizations); the insurance would cover it all. What’s the least you 
could charge per year for this insurance to likely break even? 0087 

9. You’re deciding whether to invest in Mushy Software or Enormity Incorpo-
rated. Mushy stock has a 30 percent probability of gaining 80 percent, and a 70 
percent probability of losing 20 percent. Enormity stock has a 100 percent proba-
bility of gaining 11 percent. Which should you invest in? 

10. You’re deciding whether to buy a computer from Cut-Rate or Enormity. Both 
models perform identically. There’s a 60 percent probability that either machine 
will need repair over the period you’ll keep it. The Cut-Rate model is $600 but will 
be a total loss (requiring the purchase of another computer for $600) if it ever 
needs repair. The Enormity Incorporated model is $900 but offers free repairs. 
Which should you buy? 

5.4 Reasoning from a sample 

Recall our statistical syllogism about the Appalachian Trail: 

 90 percent of the AT shelters have water. 
 Rocky Gap is an AT shelter. 
 That’s all we know about the matter. 
∴ Probably Rocky Gap has water. 

Premise 1 says 90 percent of the shelters have water. I might know this 



 

because I’ve checked all 300 shelters and found that 270 of them had water. 
More likely, I base my claim on inductive reasoning. On my AT hikes (and I’ve 
hiked the whole Georgia-to-Maine distance), I’ve observed a large and varied 
group of shelters, and about 90 percent have had water. I conclude that 
probably roughly 90 percent of all the shelters (including those not ob-
served) have water: 

Sample-projection syllogism 

 N percent of examined A’s are B’s. 
 A large and varied group of A’s has been examined. 
∴ Probably roughly N percent of all A’s are B’s. 

90 percent of examined AT shelters have water. 
A large and varied group of AT shelters has been examined. 
∴ Probably roughly 90 percent of all AT shelters have water. 

Such reasoning assumes that a large and varied sample probably gives us a 
good idea of the whole. The strength of such reasoning depends on: (1) size 
of sample; (2) variety of sample; and (3) cautiousness of conclusion. 

1. Other things being equal, a larger sample gives a stronger argument. A 
projection based on a small sample (ten shelters, for example) would be 
weak. My sample included about 150 shelters. 

2. Other things being equal, a more varied sample gives a stronger argu-
ment. A sample is varied to the extent that it proportionally represents the 
diversity of the whole. AT shelters differ. Some are on high ridges, others are 
in valleys. 0088 Some are on the main trail, others are on blue-blazed side 
trails. Some are in wilderness areas, others are in rural areas. Our sample is 
varied to the extent that it reflects this diversity. 

We’d have a weak argument if we examined only the dozen or so shelters 
in Georgia. This sample is small, has little variety, and covers only one part of 
the trail; but the poor sample might be all we have. Background information 
can help us to criticize a sample. Suppose we checked only AT shelters 
located on mountain tops or ridges. If we knew that water tends to be scarcer 
in such places, we’d judge this sample to be biased. 

3. Other things being equal, we get a stronger argument if we have a more 
cautious conclusion. We have stronger reason for thinking the proportion of 
shelters with water is “between 80 and 95 percent” than for thinking that it’s 
“between 89 and 91 percent.” Our original argument says “roughly 90 
percent.” This is vague; whether it’s too vague depends on our purposes. 

Suppose our sample-projection argument is strong and has premises all 
true. Then it’s likely that roughly 90 percent of the shelters have water. But 
the conclusion is only a rational guess; it could be far off. It’s may even 



 

 

happen that every shelter that we didn’t check is dry. Inductive reasoning 
brings risk. 

Here’s another sample-projection argument: 

 52 percent of the voters we checked favor the Democrat. 
 A large and varied group of voters has been checked. 
∴ Probably roughly 52 percent of all voters favor the Democrat. 

Again, our argument is stronger if we have a larger and more varied sample 
and a more cautious conclusion. A sample of 500 to 1000 people supposedly 
yields a margin of likely error of less than 5 percent; we should then construe 
our conclusion as “Probably between 57 percent and 47 percent of all voters 
favor the Democrat.” To get a varied sample, we might select people using a 
random process that gives everyone an equal chance of being included. We 
also might try to have our sample proportionally represent groups (like 
farmers and the elderly) that tend to vote in a similar way. We should word 
our survey fairly and not intimidate people into giving a certain answer. And 
we should be clear whether we’re checking registered voters or probable 
voters. Doing a good pre-election survey isn’t easy. 

A sample-projection argument ends the way a statistical syllogism begins – 
with “N percent of all A’s are B’s.” It’s natural to connect the two: 

 90 percent of examined AT shelters have water. 
 A large and varied group of AT shelters has been examined. 
∴ Probably roughly 90 percent of all AT shelters have water. 
 Rocky Gap is an AT shelter. 
 That’s all we know about the matter. 
∴ It’s roughly 90 percent probable that Rocky Gap has water. 0089 

A sample-projection argument could use “all” instead of a percentage: 

 All examined cats purr. 
 A large and varied group of cats has been examined. 
∴ Probably all cats purr. 

This conclusion makes a strong claim, since a single non-purring cat would 
make it false; this makes the argument riskier and weaker. We could expand 
the argument further to draw a conclusion about a specific cat: 



 

 All examined cats purr. 
 A large and varied group of cats has been examined. 
∴ Probably all cats purr. 
 Socracat is a cat. 
∴ Probably Socracat purrs. 

Thus sample-projection syllogisms can have various forms. 

5.4a Exercise 
Evaluate the following inductive arguments. 

After contacting 2 million voters on telephone, we conclude that Landon will 
beat Roosevelt in 1936 by a landslide for the US presidency. (This was an 
actual prediction.) 

The sample was biased. Those who could afford telephones during the De-
pression tended to be richer and more Republican. Roosevelt won easily. 

1. I randomly examined 200 Loyola University Chicago students at the law school 
and found that 15 percent were born in Chicago. So probably 15 percent of all 
Loyola students were born in Illinois. 

2. I examined every Loyola student whose Social Security number ended in 3 and 
I found that exactly 78.4 percent of them were born in Chicago. So probably 78.4 
percent of all Loyola students were born in Chicago. 

3. Italians are generally fat and lazy. How do I know? Well, when I visited Rome 
for a weekend last year, all the hotel employees were fat and lazy – all six of them. 

4. I meet many people in my daily activities; the great majority of them intend to 
vote for the Democrat. So the Democrat probably will win. 

5. The sun has risen every day as long as humans can remember. So the sun will 
likely rise tomorrow. (How can we put this into standard form?) 

Consider this inductive argument: “Lucy got an A on the first four logic quizzes, so 
probably she’ll also get an A on the fifth logic quiz.” Would each of the statements 6 
through 10 strengthen or weaken this argument? 

6. Lucy has been sick for the last few weeks and has missed most of her classes. 

7. The first four quizzes were on formal logic, while the fifth is on informal logic. 
0090 

8. Lucy has never received less than an A in her life. 

9. A student in this course gets to drop the lowest of the five quizzes. 

10. Lucy just took her Law School Admissions Test. 



 

 

We’ll later see a deductive version of the classic argument from design for the 
existence of God (§7.1b #4). The following inductive version has a sample-projection 
form and is very controversial. Evaluate the truth of the premises and the general 
inductive strength of the argument. 

11. The universe is orderly (like a watch that follows complex laws). 
Most orderly things we’ve examined have intelligent designers. 
We’ve examined a large and varied group of orderly things. 
That’s all we know about the matter. 
∴ The universe probably has an intelligent designer. 

5.5 Analogical reasoning 

Suppose you’re exploring your first Las Vegas casino. The casino is huge and 
filled with people. There are slot machines for nickels, dimes, quarters, and 
dollars. There are tables for blackjack and poker. There’s a big roulette wheel. 
There’s a bar and an inexpensive all-you-can-eat buffet. 

You then go into your second Las Vegas casino and notice many of the 
same things: the size of the casino, the crowd, the slot machines, the blackjack 
and poker tables, the roulette wheel, and the bar. You’re hungry. Recalling 
what you saw in your first casino, you conclude, “I bet this place has an 
inexpensive all-you-can-eat buffet, just like the first casino.” 

This is an argument by analogy. The first and second casinos are alike in 
many ways, so they’re probably alike in some further way: 

 Most things true of casino 1 also are true of casino 2. 
 Casino 1 has an all-you-can-eat buffet. 
 That’s all we know about the matter. 
∴ Probably casino 2 also has an all-you-can-eat buffet. 

Here’s a more wholesome example (about Appalachian Trail shelters): 

 Most things true of the first AT shelter are true of this second one. 
 The first AT shelter had a logbook for visitors. 
 That’s all we know about the matter. 
∴ Probably this second shelter also has a logbook for visitors. 

We argue that things similar in many ways are likely similar in a further way. 
Statistical and analogical arguments are closely related: 0091 

Statistical 



 

Most large casinos have buffets. 
Circus Circus is a large casino. 
That’s all we know about the matter. 
∴ Probably Circus Circus has a buffet. 

Analogical 

Most things true of casino 1 are true of casino 2. 
Casino 1 has a buffet. 
That’s all we know about the matter. 
∴ Probably casino 2 has a buffet. 

The first rests on our experience of many casinos, while the second rests on 
our experience of many features that two casinos have in common. 

Here’s the general form of the analogy syllogism: 

Analogy syllogism 

Most things true of X also are true of Y. 
X is A. 
That’s all we know about the matter. 
∴ Probably Y is A. 

Premise 1 is rough. In practice, we don’t just count similarities; rather we 
look for how relevant the similarities are to the conclusion. While the two 
casinos were alike in many ways, they also differed in some ways: 

• Casino 1 has a name whose first letter is “S,” while casino 2 doesn’t. 
• Casino 1 has a name whose second letter is “A,” while casino 2 doesn’t. 
• Casino 1 has quarter slot machines by the front entrance, while casino 2 has 

dollar slots there. 

These factors aren’t relevant and so don’t weaken our argument that casino 2 
has a buffet. But the following differences would weaken the argument: 

• Casino 1 is huge, while casino 2 is small. 
• Casino 1 has a bar, while casino 2 doesn’t. 
• Casino 1 has a big sign advertising a buffet, while casino 2 has no such sign. 

These factors would make a buffet in casino 2 less likely. 
So we don’t just count similarities when we argue by analogy; many simi-

larities are trivial and unimportant. Rather, we look to relevant similarities. 
But how do we decide which similarities are relevant? We somehow appeal 



 

 

to our background information about what things are likely to go together. 
It’s difficult to give rules here – even vague ones. 

Our “Analogy Syllogism” formulation is a rough sketch of a subtle form of 
reasoning. Analogical reasoning is elusive and difficult to put into strict rules. 
0092 

5.5a Exercise: LogiCola P (I) 
Suppose you’re familiar with this Gensler logic book but with no others. Your friend 
Sarah is taking logic and uses another book. You think to yourself, “My book discuss-
es analogical reasoning, and so Sarah’s book likely does too.” Which of these bits of 
information would strengthen or weaken this argument – and why? 

Sarah’s course is a specialized graduate course on quantified modal logic. 

This weakens the argument; such a course probably wouldn’t discuss 
analogical reasoning. (This answer presumes background information.) 

1. Sarah’s book has a different color. 

2. Sarah’s book also has chapters on syllogisms, propositional logic, quantifica-
tional logic, and meaning and definitions. 

3. Sarah’s course is taught by a member of the math department. 

4. Sarah’s chapter on syllogisms doesn’t use the star test. 

5. Sarah’s book is abstract and has few real-life examples. 

6. Sarah’s book isn’t published by Routledge. 

7. Sarah’s book is entirely on informal logic. 

8. Sarah’s book has cartoons. 

9. Sarah’s book has 100 pages on inductive reasoning. 

10. Sarah’s book has 10 pages on inductive reasoning. 

Suppose your friend Tony at another school took an ethics course that discussed 
utilitarianism. You’re taking an ethics course next semester. You think to yourself, 
“Tony’s course discussed utilitarianism, and so my course likely will too.” Which of 
these bits of information would strengthen or weaken this argument – and why? 

11. Tony’s teacher transferred to your school and will teach your course as well. 

12. Tony’s course was in medical ethics, while yours is in general ethical theory. 

13. Both courses use the same textbook. 

14. Tony’s teacher has a good reputation, while yours doesn’t. 

15. Your teacher is a Marxist, while Tony’s isn’t. 



 

5.6 Analogy and other minds 

We’ll now study a classic philosophical example of analogical reasoning. This 
will help us to appreciate the elusive nature of such arguments. 

Consider these two hypotheses: 

• There are other conscious beings (with thoughts and feelings) besides me. 
• I’m the only conscious being. Other humans are like cleverly constructed 

robots; they have outer behavior but no inner thoughts and feelings. 

We all accept the first hypothesis and reject the second. How can we justify 
this 0093 intellectually? Consider that I can directly feel my own pain, but not 
the pain of others. When I experience the pain behavior of others, how do I 
know that this behavior manifests an inner experience of pain? 

One approach appeals to an argument from analogy: 

Most things true of me also are true of Jones. (We’re both alike in general behav-
ior, nervous system, and so on.) 
I generally feel pain when showing outward pain behavior. 
This is all I know about the matter. 
∴ Probably Jones also feels pain when showing outward pain behavior. 

Since Jones and I are alike in most respects, we’re probably alike in a further 
respect – that we both feel pain when we show pain behavior. But then 
there’d be other conscious beings besides me. 

Here are four ways to criticize this argument: 

• Jones and I also differ in many ways. This may weaken the argument. 
• Since I can’t directly feel Jones’s pain, I can’t have direct access to the truth of 

the conclusion. This makes the argument peculiar and may weaken it. 
• I have a sample-projection argument against there being other conscious 

beings: “All the conscious experiences that I’ve experienced are mine; but I’ve 
examined a large and varied group of conscious experiences. And so probably 
all conscious experiences are mine (but then I’m the only conscious being).” 

• Since the analogical argument is weakened by such considerations, it at most 
makes it only somewhat probable that there are other conscious beings. But 
normally we take this belief to be solidly based. 

Suppose we reject the analogical argument. Then why should we believe in 
other minds? Because it’s an instinctive, commonsense belief that hasn’t been 
disproved and that’s in our practical and emotional interests to accept? Or 
because of a special rule of evidence, not based on analogy, that experiencing 



 

 

another’s behavior justifies beliefs about their mental states? Or because talk 
about mental states is really just talk about behavior (so “being in pain” 
means “showing pain behavior”)? Or maybe there’s no answer – and I don’t 
really know if there are other conscious beings besides me. 

The analogical argument for other minds highlights problems with induc-
tion. Philosophers seldom dispute whether deductive arguments have a 
correct connection between premises and conclusion; instead, they dispute 
the truth of the premises. But with inductive arguments it’s often disputed 
whether and to what extent the premises, if true, provide good reason for 
accepting the conclusion. Those who like things neat and tidy prefer deduc-
tive to inductive reasoning. 0094 

5.7 Mill’s methods 

John Stuart Mill, a 19th-century British philosopher, formulated five methods 
for arriving at and justifying beliefs about causes. We’ll study three of these. 
His basic idea is that factors that regularly occur together may be causally 
related. 

Suppose that Alice, Bob, Carol, and David were at a party. Alice and David 
got sick, and food poisoning is suspected. Hamburgers, pie, and ice cream 
were served. This chart shows who ate what and who got sick (where Hm = 
Hamburger, Pi = Pie, IC = Ice Cream, Sk = Sick, y = yes, and n = no): 

 Hm Pi IC Sk 
Alice y y n y 
Bob n n y n 

Carol y n n n 
David n y y y 

To find what caused the sickness, we’d search for a factor that correlates with 
the “yes” answers in the “sick” column. This suggests that the pie did it. Pie is 
the only thing eaten by all and only those who got sick. This reasoning 
reflects Mill’s method of agreement: 

Agreement 

A occurred more than once. 
B is the only additional factor that occurred if and only if A occurred. 
∴ Probably B caused A, or A caused B. 



 

Sickness occurred more than once. 
Eating pie is the only additional factor that occurred if and only if sickness 
occurred. 
∴ Probably eating pie caused sickness, or sickness caused the eating of pie. 

The second alternative, that sickness caused the eating of pie (perhaps by 
bringing about a special craving?), is interesting but implausible. So we’d 
conclude that the people probably got sick because of eating the pie. 

The “probably” is important. Eating the pie and getting sick might just 
happen to have occurred together; maybe there’s no causal connection. Some 
unmentioned factor (maybe drinking bad water while hiking) might have 
caused the sicknesses. Or maybe the two sicknesses had different causes. 

We took for granted a simplifying assumption. We assumed that the two 
cases of sickness had the same cause which was a single factor on our list and 
always caused sickness. Our investigation may force us to give up this 
assumption and consider more complex solutions. But it’s good to try simple 
solutions first and avoid complex ones as long as we can. 

We can definitely conclude that eating the hamburgers doesn’t necessarily 
make a person sick, since Carol ate them but didn’t get sick. Similarly, eating 
the ice cream doesn’t necessarily make a person sick, since Bob ate it but 
didn’t get sick. Let’s call this sort of reasoning the “method of disagreement”: 
0095 

Disagreement 

A occurred in some case. 
B didn’t occur in the same case. 
∴ A doesn’t necessarily cause B. 

Eating the ice cream occurred in Bob’s case. 
Sickness didn’t occur in Bob’s case. 
∴ Eating the ice cream doesn’t necessarily cause sickness. 

Mill used this form of reasoning but didn’t include it in his five methods. 
Suppose two factors – eating pie and eating hamburgers – occurred in just 

those cases where someone got sick. Then the method of agreement wouldn’t 
lead to any definite conclusion about which caused the sickness. To make 
sure it was the pie, we might do an experiment. We take two people, Eduardo 
and Frank, who are as alike as possible in health and diet. We give them all 
the same things to eat, except that we feed pie to Eduardo but not to Frank. 
(This is unethical, but it makes a good example.) Then we see what happens. 
Suppose Eduardo gets sick but Frank doesn’t; then we can conclude that the 



 

 

pie probably caused the sickness. This follows Mill’s method of difference: 

Difference 

A occurred in the first case but not the second. 
The cases are otherwise identical, except that B also occurred in the first case 
but not in the second. 
∴ Probably B is (or is part of) the cause of A, or A is (or is part of) the cause of 
B. 

Sickness occurred in Eduardo’s case but not Frank’s. 
The cases are otherwise identical, except that eating pie occurred in Edu-
ardo’s case but not Frank’s. 
∴ Probably eating pie is (or is part of) the cause of the sickness, or the sick-
ness is (or is part of) the cause of eating pie. 

Since we made Eduardo eat the pie, we reject the second main alternative. So 
probably eating pie is (or is part of) the cause of the sickness. The cause 
might simply be the eating of the pie (which contained a virus). Or the cause 
might be this combined with one’s poor physical condition. 

Another unethical experiment illustrates Mill’s method of variation. This 
time we find four victims (George, Henry, Isabel, and Jodi) and feed them 
varying amounts of pie (where 1 = tiny slice, 2 = small slice, 3 = normal slice, 
4 = two slices).  They get sick in varying degrees (where 1 = slightly sick, 2 = 
somewhat sick, 3 = very sick, 4 = wants to die): 

 Pie Sick 
George 1 1 
Henry 2 2 
Isabel 3 3 

Jodi 4 4 

So the pie probably caused the sickness, following Mill’s method of variation: 
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Variation 

A changes in a certain way if and only if B also changes in a certain way. 
∴ Probably B’s changes caused A’s, or A’s caused B’s, or some C caused both. 



 

People got sicker if and only if they ate more pie. 
∴ Probably eating pie caused the sickness, or the sickness caused the eating 
of pie, or something else caused both the eating and the sickness. 

The last two alternatives are implausible. So we conclude that eating the pie 
probably caused the sickness. 

Mill’s methods often give us a conclusion with several alternatives. Tem-
poral sequence can eliminate an alternative; the cause can’t come after the 
effect. Suppose we conclude this: “Either laziness during previous months 
caused the F on the final exam, or the F on the final exam caused laziness 
during the previous months.” Here we’d reject the second alternative. 

“Cause” can mean either “total cause” or “partial cause.” Suppose Jones got 
shot and then died. Misapplying the method of disagreement, we might 
conclude that being shot didn’t cause the death, since some who are shot 
don’t die. But the proper conclusion is rather that being shot doesn’t neces-
sarily cause death. We also can conclude that being shot wasn’t the total 
cause of Jones’s death (even though it might be a partial cause). What caused 
Jones’s death wasn’t just that he was shot. What caused the death was that he 
was shot in a certain way in certain circumstances (for example, through the 
head with no medical help). This is the total cause; anyone shot that exact 
way in those exact circumstances (including the same physical and mental 
condition) would have died. The method of disagreement deals with total 
causes, not partial causes. 

The ambiguities of the word “cause” run deep. “Factor A causes factor B” 
could mean any combination of these: 

Factor A will always (or probably) by itself (or in combination with factor C) 
directly (or through a further causal chain) bring about factor B; or the absence of 
factor A will … bring about the absence of factor B; or both. 

The probabilistic sense is controversial. Suppose that the incidence of lung 
cancer varies closely with heavy smoking, so heavy smokers are much more 
likely to get lung cancer. Could this probabilistic connection be enough for us 
to say that heavy smoking is a (partial) cause of lung cancer? Or is it wrong to 
use “cause” unless we have some factor C such that heavy smoking when 
combined with factor C always results in lung cancer? Part of the debate over 
whether a “causal connection” exists between heavy smoking and lung cancer 
is semantic. Can we use “cause” with probabilistic connections? If we can 
speak of Russian roulette causing death, then we can speak of heavy smoking 
causing lung cancer. 0097 



 

 

5.7a Exercise: LogiCola P (M & B) 
Draw whatever conclusions you can using Mill’s methods; supplement Mill’s meth-
ods by common sense when appropriate. Say which method you’re using, what 
alternatives you conclude from the method itself, and how you narrow the conclu-
sion down to a single alternative. Also say when Mill’s methods lead to no definite 
conclusion. 

Kristen’s computer gave error messages when she booted up. We changed 
things one at a time to see what would stop the messages. What worked was 
updating the video driver. 

By the difference method, probably updating the driver caused (or partially 
caused) the error messages to stop, or stopping the messages caused (or 
partially caused) us to update the driver. The latter can’t be, since the cause 
can’t happen after the effect. So probably updating the driver caused (or 
partially caused) the error messages to stop. 

1. Experiments show that a person’s reaction time is much longer after a few 
drinks but is relatively uninfluenced by a series of other factors. 

2. A study showed that people with no bacteria in their mouth get no cavities – 
and that people with no food particles in their mouth get no cavities. However, 
people with both bacteria and food particles in their mouth get cavities. 

3. Whenever Michelle drinks scotch and soda, she has a hangover the next day. 
Whenever she drinks gin and soda, she gets a hangover. Likewise, whenever she 
drinks rum and soda, she gets a hangover. 

4. The morning disc jockey on a radio station remarked in early December that 
the coldest temperature of the day seemed to occur later and later in the morning. 
The weather person pointed out that the sunrise had been getting later and later. 
In a few weeks both processes would reverse themselves, with the sunrise and 
the coldest temperature of the day both occurring earlier every day. 

5. Our research team at the medical center just discovered a new blood factor 
called “factor K.” Factor K occurs in everyone who has cancer but in no one else. 

6. When I sat eating on the rock slab in Grand Gulch, armies of little ants invaded 
the slab. Later I sat on the slab the same way except that I didn’t eat anything. In 
the second case the ants didn’t invade the slab. 

7. We just did an interesting study comparing the vacation periods of employees 
and the disappearance of food items. We found that when Megan is working, the 
items disappear, and when she’s away, they don’t disappear. 

8. People in several parts of the country have lower rates of tooth decay. Investi-
gations show that the only thing different about these places is that their water 
supply contains fluoride. 



 

9. We did an experiment where we selected two more or less identical groups and 
put fluoride in the first group’s water but not in the second group’s. The first 
group had a lower rate of tooth decay. 

10. Many backpackers think eating raw garlic gives you an odor that causes 
mosquitoes not to bite you. When hiking a mosquito-infested part of the Bruce 
Trail, I ate much raw garlic. The mosquitoes bit me in their usual bloodthirsty 
manner. 0098 

11. Little Will throws food on the floor and receives signs of disapproval from 
Mommy and Daddy. Such things happen regularly. When he eats his food without 
throwing it on the floor, he doesn’t get any disapproval. 

12. Everyone in our study who became a heroin addict had first tried marijuana. 

13. If you rub two surfaces together, the surfaces get warm. They’ll get warmer 
and warmer as you rub the surfaces together harder and faster. 

14. When we plot how many hours Alex studies against the grades he gets for his 
various exams, we see a close correlation. 

15. Matches that aren’t either heated or struck don’t light. Matches that are wet 
don’t light. Matches that aren’t in the presence of oxygen don’t light. Matches that 
are heated or struck, dry, and in the presence of oxygen do light. 

16. Little Will made a discovery. He keeps moving the lever on the radio up and 
down. He notices that the music gets louder and softer when he does this. 

17. We made a careful study of the heart rate of athletes and how it correlates 
with various factors. The only significant correlation we found is that those who 
do aerobic exercise (and those alone) have lower heart rates. 

18. We investigated many objects with a crystalline structure. The only thing they 
have in common is that all solidified from a liquid state. (Mill used this example.) 

19. After long investigation, we found a close correlation between night and day. 
If you have night, then there invariably, in a few hours, follows day. If you have 
day, then invariably, in a few hours, there follows night. 

20. Young Will has been experimenting with his electrical meter. He found that if 
he increases the electrical voltage, then he also increases the current. 

21. Whenever Kurt wears his headband, he makes all his field goals. Whenever he 
doesn’t wear it, he misses them all. This has been going on for many years. 

22. The fish in my father’s tank all died. We suspected either the fish food or the 
water temperature. We bought more fish and did everything the same except for 
changing the fish food. All the fish died. We then bought more fish and did every-
thing the same except for changing the water temperature. The fish lived. 

23. Bacteria introduced by visitors from the planet Krypton are causing an epi-
demic. We’ve found that everyone exposed to the bacteria gets sick and dies – 
except those who have a higher-than-normal heart rate. 

24. When we chart the inflation rate next to the growth in the national debt over 
several years, we find a close correlation. 



 

 

25. On my first backpack trip, I hiked long distances but wore only a single pair of 
socks. I got bad blisters on my feet. On my second trip, I did everything the same 
except that I wore two pairs of socks. I got only minor blisters. 

5.8 Scientific laws 

Ohm’s Law is about electricity. “Law” here suggests great scientific dignity 
and backing. Ohm’s Law is more than a mere hypothesis (preliminary conjec-
ture) or even a theory (with more backing than a hypothesis but less than a 
law). 0099 

Ohm’s Law is a formula relating electric current, voltage, and resistance; 
here I = current (in amps), E = voltage (in volts), and R = resistance (in 
ohms): 

Ohm’s Law: I = E/R 

An electric current of 1 amp (ampere) is a flow of 6,250,000,000,000,000,000 
electrons per second; a 100-watt bulb draws almost an amp, and the fuse 
may blow if you draw over 15 amps. Voltage pushes the electrons; your 
outlet may have 117 volts and your flashlight battery 1.5 volts. The voltage 
encounters an electrical resistance, which restricts the electron flow. A short 
wire has low resistance (less than an ohm) while an inch of air has high 
resistance (billions of ohms). Small carbon resistors go from less than an ohm 
to millions of ohms. Ohm’s Law says that current increases if you raise 
voltage or lower resistance. 

Electric current is like the flow of water through a garden hose. Voltage is 
like water pressure. Electrical resistance is like the hose’s resistance to the 
water flow; a long, thin hose has greater resistance than a short, thick one. 
The current or flow of water is measured in gallons per minute; it increases if 
you raise the water pressure or use a hose with less resistance. 

Ohm’s Law is a mathematical formula that lets us calculate various results. 
Suppose we put a 10-ohm resistor across your 117-volt electrical outlet; we’d 
get a current of 11.7 amps (not quite enough to blow your fuse): 

I = E/R = 117 volts/10 ohms = 11.7 amps. 

Ohm’s Law deals with unobservable properties (current, voltage, re-
sistance) and entities (electrons). Science allows unobservables if they have 
testable consequences or can somehow be measured. The term “unobserva-
ble” is vague. Actually we can feel certain voltages. The 1.5 volts from your 
flashlight battery can’t normally be felt, slightly higher voltages give a slight 



 

tingle, and the 117 volts from your outlet can give a dangerous jolt. Philoso-
phers dispute the status of unobservable entities. Are the ultimate elements 
of reality unobservables like atoms and electrons, or commonsense objects 
like chairs, or both? Or are atoms and chairs both just fictions to help us talk 
about our sensations? 

We can ask how scientific laws are discovered, or we can ask how they’re 
verified. History can tell us how Georg Simon Ohm discovered his law in 
1827; philosophy deals more with how such laws are verified (shown to be 
true). Roughly, scientific laws are verified by a combination of observation 
and argument; but the details get complicated. 

Suppose we want to verify Ohm’s Law. We’re given batteries, resistors, and 
a meter for measuring current, voltage, and resistance. The meter simplifies 
our task; we don’t have to define the fundamental units (ampere, volt, and 
ohm) or invent ways to measure them. Wouldn’t the meter make our task too 
easy? Couldn’t we just do a few experiments and then prove Ohm’s Law, 
using standard deductive and inductive reasoning? Unfortunately, it’s not 
that simple. 0100 

Suppose we hook up batteries of different voltages to a resistor: 

 

The voltmeter measures voltage, and the ammeter measures current. We 
start with a 10-ohm resistor. We try voltages of 1 volt and 2 volts and ob-
serve currents of .1 amp and .2 amp. Here’s a chart with the results (here the 
horizontal x-axis is for voltage, from 0 to 3 volts, and the vertical y-axis is for 
current, from 0 to .5 amps): 



 

 

 
If E = 1 volt and R = 10 ohms, then I = E/R = 1/10 = .1 amp. 

If E = 2 volts and R = 10 ohms, then I = E/R = 2/10 = .2 amp. 

Our observations accord with Ohm (I = E/R). So we argue inductively: 

All examined voltage–resistance–current cases follow Ohm. 
A large and varied group of such cases has been examined. 
∴ Probably all such cases follow Ohm. 

Premise 2 is weak, since we tried only two cases. But we can easily perform 
more experiments; after we do so, Ohm would seem to be securely based. 

The problem is that we can give an inductive argument for a second and 
incompatible hypothesis: “I = (E2 – 2E + 2)/R.” Let’s call this Mho’s Law. 
Surprisingly, our test results also accord with Mho. In the first case (one volt), 
I = .1 amp [since (12 – 2 • 1 + 2)/10 = (1 – 2 + 2)/10 = 1/10 = .1]; in the 
second case (two volts), I = .2 amp [since (22 – 2 • 2 + 2)/10 = (4 – 4 + 
2)/10 = 2/10 = .2]. So each examined case follows Mho. We can argue 
inductively as follows: 

All examined voltage–resistance–current cases follow Mho. 
A large and varied group of such cases has been examined. 
∴ Probably all such cases follow Mho. 

This inductive argument for Mho seems as strong as the one we gave for 
Ohm. Judging just from these arguments and test results, there seems to be 
no reason for preferring Ohm over Mho, or Mho over Ohm. 0101 

The two laws, while agreeing on both test cases so far, give conflicting 
predictions for further cases. Ohm says we’ll get 0 amps with 0 volts, and .3 
amp with 3 volts; Mho says we’ll get .2 amp with 0 volts, and .5 amp with 3 
volts: 



 

 
Ohm’s predictions 

  

 
Mho’s predictions 

The two laws are genuinely different, even though both give the same results 
for a voltage of 1 or 2 volts. 

We have to try a crucial experiment to decide between the theories. What 
happens with 3 volts? Ohm says we’ll get .3 amp, but Mho says we’ll get .5 
amp. If we do the experiment and get .3 amp, this would falsify Mho: 



 

 

If Mho is correct and we apply 3 volts to this 10-ohm resistor, then we get .5 amp 
current. 
We apply 3 volts to this 10-ohm resistor. 
We don’t get .5 amp current. 
∴ Mho isn’t correct. 

If M and A, then G Valid 
A 
Not-G 
∴ Not-M  

Premise 1 links a scientific hypothesis (Mho) to antecedent conditions (that 
3 volts have been applied to the 10-ohm resistor) to give a testable prediction 
(that we’ll get .5 amp current). Premise 2 says the antecedent conditions 
have been fulfilled. But premise 3 says the results conflict with what was 
predicted. Since this argument has true premises and is deductively valid, our 
experiment shows Mho to be wrong. 

Does our experiment similarly show that Ohm is correct? Unfortunately 
not. Consider this argument: 

If Ohm is correct and we apply 3 volts to this 10-ohm resistor, then we get .3 amp 
current. 
We apply 3 volts to this 10-ohm resistor. 
We get .3 amp current. 
∴ Ohm is correct. 

If O and A, then G Invalid 
A 
G 
∴ O 

This is invalid, as we could check using propositional logic (Chapter 6). So the 
premises don’t prove that Ohm is correct; and Ohm might fail for further 
cases. But the experiment strengthens our inductive argument for Ohm, since 
it gives a larger and more varied sample. So we can have greater trust that 
the pattern observed to hold so far will continue to hold. 

Here are three aspects of scientific method: 0102 

• Scientists often set up crucial experiments to decide between conflicting 
theories. Scientists dream up alternative theories and look for ways to decide 
between them. 

• We can sometimes deductively refute a theory through a crucial experiment. 
Experimental results, when combined with other suitable premises, can logi-
cally entail that a theory is false. 

• We can’t deductively prove a theory using experiments. Experiments can 



 

inductively support a theory and deductively refute opposing theories. But 
they can’t eliminate the possibility of the theory’s failing for further cases. 

Recall how the Mho problem arose. We had two test cases that agreed with 
Ohm. These test cases also agreed with another formula, one we called 
“Mho”; and the inductive argument for Mho seemed as strong as the one for 
Ohm. But Ohm and Mho gave conflicting predictions for further test cases. So 
we did a crucial experiment to decide between the two. Ohm won. 

There’s always another Mho behind the bush – so our problems aren’t 
over. However many experiments we do, there are always alternative theo-
ries that agree with all test cases so far but disagree on some further predic-
tions. In fact, there’s always an infinity of theories that do this. No matter how 
many dots we put on the chart (representing test results), we could draw an 
unlimited number of lines that go through all these dots but otherwise 
diverge. 

Suppose we conduct 1000 experiments in which Ohm works. There are 
alternative theories Pho, Qho, Rho, and so on that agree on these 1000 test 
cases but give conflicting predictions about further cases. And each theory 
seems to be equally supported by the same kind of inductive argument: 

All examined voltage–resistance–current cases follow this theory. 
A large and varied group of such cases has been examined. 
∴ Probably all such cases follow this theory. 

Even after 1000 experiments, Ohm is just one of infinitely many formulas 
that seem equally probable on the basis of the test results and inductive logic. 

In practice, we prefer Ohm on the basis of simplicity. Ohm is the simplest 
formula that agrees with all our test results. So we prefer Ohm to the alterna-
tives and see Ohm as firmly based. 

What is simplicity and how can we decide which of two scientific theories 
is simpler? We don’t have neat and tidy answers to these questions. In 
practice, though, we can tell that Ohm is simpler than Mho; we judge that 
Ohm’s formula and straight line are simpler than Mho’s formula and curved 
line. We don’t have a clear and satisfying definition of “simplicity”; yet we can 
apply this notion in a rough way in many cases. 

The simplicity criterion is a form of Ockham’s razor (§16.2): 0103 

Simplicity criterion: Other things being equal, we ought to prefer a simpler 
theory to a more complex one. 

The “other things being equal” qualification is important. Experiments may 
force us to accept very complex theories; but we shouldn’t accept such 



 

 

theories unless we have to. 
It’s unclear how to justify the simplicity criterion. Since inductive reason-

ing stumbles unless we presuppose the criterion, an inductive justification 
would be circular. Perhaps the criterion is a self-evident truth not in need of 
justification. Or perhaps it’s pragmatically justified: 

If the simplicity criterion isn’t correct, then no scientific laws are justified. 
Some scientific laws are justified. 
∴ The simplicity criterion is correct. 

Does premise 2 beg the question against the skeptic? Can this premise be 
defended without appealing to the criterion? The simplicity criterion is vague 
and raises complex problems, but we can’t do without it. 

Coherence is another factor that’s important for choosing between theo-
ries: 

Coherence criterion: Other things being equal, we ought to prefer a theory 
that harmonizes with existing well-established beliefs. 

Mho has trouble here, since it predicts that 0 volts across a 10-ohm resistor 
produces a .2 amp current. But then it follows, using an existing well-
grounded belief that current through a resistor produces heat, that a 10-ohm 
resistor with no voltage applied produces heat. While nice for portable 
handwarmers, this would be difficult to harmonize with the conservation of 
energy. So the coherence criterion leads us to doubt Mho. 

Do further tests continue to confirm Ohm? The answer is complicated. 
Some resistors give, not a straight-line chart, but a curve; this happens if we 
use an incandescent light bulb for the resistor. Instead of rejecting Ohm, 
scientists say that heating the resistor changes the resistance. This seems 
satisfactory, since the curve becomes straighter if the resistor is kept cooler. 
And we can measure changes in resistance when the resistor is heated 
externally. 

Another problem is that resistors will burn up or explode if enough voltage 
is applied. This brings an irregularity into the straight-line chart. But again, 
scientists regard this as changing the resistance, and not as falsifying Ohm. 

A more serious problem is that some devices don’t even roughly match the 
pattern predicted by Ohm. A Zener diode, for example, draws almost no 
current until a critical voltage is reached; then it draws a high current: 0104 



 

 
Zener diode curve 

Do such devices refute Ohm? Not necessarily. Scientists implicitly qualify 
Ohm so it applies just to “pure resistances” and not to things like Zener 
diodes. This seems circular. Suppose that a “pure resistor” is any device that 
satisfies Ohm. Then isn’t it circular to say that Ohm holds for “pure resistors”? 
Doesn’t this just mean that Ohm works for any device for which it works? 

In practice, people working in electronics quickly learn which devices 
satisfy Ohm and which don’t. The little tubular “resistors” follow Ohm closely 
(neglecting slight changes caused by heating and major changes when we 
burn up the resistor). Zener diodes, transistors, and other semiconductors 
generally don’t follow Ohm. So Ohm can be a useful principle, even though it’s 
difficult to specify in any precise and non-circular manner the cases where it 
applies. 

5.8a Exercise 
Sketch in a rough way how we might verify or falsify these hypotheses. Point out any 
special difficulties likely to arise. 

Women have less innate logical ability than men. 

We’d give a logic test to large and varied groups of either sex, and see how 
results differ. If women tested lower [they don’t – judging from a test I de-
signed for a friend in psychology], this wouldn’t itself prove lower innate 
ability, since the lower scores might come from different social expectations 
or upbringing. It would be difficult to avoid this problem completely; but we 
might try testing groups in cultures with less difference in social expectations 
and upbringing. 

1. Neglecting air resistance, objects of any weight fall at the same speed. 

2. Germs cause colds. 



 

 

3. A huge Ice-Age glacier covered most of Wisconsin about 10,000 years ago. 

4. Regular moderate use of marijuana is no more harmful than regular moderate 
use of alcohol. 

5. When couples have several children, the child born first tends to have greater 
innate intelligence than the one born last. 

6. Career-oriented women tend to have marriages that are more successful than 
those of home-oriented women. 

7. Factor K causes cancer. 0105 

8. Water is made up of molecules consisting of two atoms of hydrogen and one 
atom of oxygen. 

9. Organisms of a given biological species randomly develop slightly different 
traits; organisms with survival-promoting traits tend to survive and pass these 
traits to their offspring. New biological species result when this process continues 
over millions of years. This is how complex species developed from simple organ-
isms, and how humans developed from lower species. 

10. Earth was created 5,000 years ago, complete with all current biological spe-
cies. 

5.9 Best-explanation reasoning 

Suppose you made fudge for a party. When you later open the refrigerator, 
you find that most of the fudge is gone. You also find that your young son, 
who often steals deserts, has fudge on his face. The child denies that he ate 
the fudge. He contends that Martians appeared, ate the fudge, and spread 
some on his face. But you aren’t fooled. The better and more likely explana-
tion is the child ate the fudge. So this is what you believe. 

This is an inference to the best explanation. Intuitively, we should accept 
the best explanation for the data. Consider what we said about Ohm’s Law in 
the previous section. Ohm’s Law explains a wide range of phenomena about 
electrical voltage, current, and resistance. Besides having testable implica-
tions that accord well with our experience, the law also has other virtues, 
including clarity, simplicity, and coherence with existing well-established 
beliefs. Unless someone comes up with a better explanation of the data, we 
should accept Ohm’s Law. 

Our best argument for the theory of evolution has a similar form: 



 

We ought to accept the best explanation for the wide range of empirical facts 
about biological organisms (including comparative structure, embryology, geo-
graphical distribution, and fossil records). 
The best explanation for the wide range of empirical facts about biological organ-
isms is evolution. 
∴ We ought to accept evolution. 

A fuller formulation would elaborate on what these empirical facts are, 
alternative ways to explain them, and why evolution provides a better 
explanation than its rivals. Some think our core beliefs about most things, 
including the existence of material objects, other minds, and perhaps God, are 
to be justified as inferences to the best explanation. 

Particularly interesting is the “fine-tuning” inference for the existence of 
God. Here the empirical data to be explained is that the basic physical con-
stants that govern the universe (like the gravitational constant “g,” the charge 
and mass of the proton, the density of water, and the total mass of the 
universe) are within the very narrow range that makes it possible for life to 
evolve. Stephen Hawking 0106 gives this example: “If the rate of expansion 
one second after the Big Bang had been smaller by even one part in a hun-
dred thousand million million, the universe would have recollapsed before it 
ever reached its present size”1 – which would have blocked the evolution of 
life. So life requires the expansion rate to be correct to the 17th decimal 
place; and other constants are similar. How is this empirical data to be 
explained? Could this precise combination of physical constants have come 
about by chance? Some atheists propose that there are an infinity of parallel 
universes, each governed by a different physics, and that it was highly likely 
that some of these parallel universes could produce life. But many theists 
claim that the simplest and best explanation involves God: that the universe 
was caused by a great mind who “fine tuned” its physical laws to make 
possible the emergence of life. 

The general form of the inference to the best explanation raises some is-
sues. On what grounds should we evaluate one explanation as “better” than 
another? Should we accept the best possible explanation (even though no one 
may yet have thought of it) or the best currently available explanation (even 
though none of the current explanations may be very good)? And why is the 
best explanation most likely to be the true one? 

 
1 A Brief History of Time, tenth anniversary edition (New York: Bantam Books, 1998), page 
126; he also gives other examples and discusses their theological implications. Anthony Flew 
(There Is a God (New York: HarperCollins, 2007), pp. 113–21) and Francis S. Collins (The 
Language of God (New York: Free Press, 2006), pp. 63–84) were prominent atheists who 
converted to theism due to the fine-tuning argument. Http://www.harryhiker.com/reason.pdf 
defends the argument and http://www.harryhiker.com/genesis.exe is a corresponding 
Windows computer game. 

http://www.harryhiker.com/genesis.exe
Http://www.harryhiker.com/reason.pdf


 

 

5.10 Problems with induction 

We’ve seen that inductive logic isn’t as neat and tidy as deductive logic. Now 
we’ll consider two further perplexing problems: how to formulate principles 
of inductive logic and how to justify these principles. 

We’ve formulated inductive principles in rough ways that if taken literally 
can lead to absurdities. For example, our statistical-syllogism formulation can 
lead to this absurd inference: 

60 percent of all Chicago voters are Democrats. 
This non-Democrat is a Chicago voter. 
That’s all we know about the matter. 
∴ It’s 60 percent probable that this non-Democrat is a Democrat. 

Actually, “This non-Democrat is a Democrat” is 0 percent probable, since it’s 
a self-contradiction. So our statistical syllogism principle isn’t entirely 
correct. 

We noted that the analogy syllogism is oversimplified in its formulation. 
We need to rely on relevant similarities instead of just counting resem-
blances. But 0107 “relevant similarities” is hard to pin down. 

Sample-projection syllogisms suffer from a problem raised by Nelson 
Goodman. Consider this argument: 

All examined diamonds are hard. 
A large and varied group of diamonds has been examined. 
∴ Probably all diamonds are hard. 

Given that the premises are true, the argument would seem to be a good one. 
But consider this second argument, which has the same form except that we 
substitute a more complex phrase for “hard”: 

All examined diamonds are such that they are hard-if-and-only-if-they-were-
examined-before-the-year-2222. 
A large and varied group of diamonds has been examined. 
∴ Probably all diamonds are such that they are hard-if-and-only-if-they-were-
examined-before-the-year-2222. 

Premise 1 is tricky to understand. It’s not yet 2222. So if all examined dia-
monds are hard, then they are such that they are hard-if-and-only-if-they-
were- examined-before-the-year-2222. So premise 1 is true. Premise 2 also is 
true. Then this second argument also would seem to be a good one. 

Consider a diamond X that will first be examined after 2222. By our first 



 

argument, diamond X probably is hard; by the second, it probably isn’t hard. 
So our sample projection argument leads to conflicting conclusions. 

Philosophers have discussed this problem for decades. Some suggest that 
we qualify the sample-projection syllogism form to outlaw the second 
argument; but it’s unclear how to eliminate the bad apples without also 
eliminating the good ones. As yet, there’s no agreement on how to solve the 
problem. 

Goodman’s problem is somewhat like one we saw in the last section. Here 
we had similar inductive arguments for two incompatible laws: Ohm and 
Mho: 

All examined electrical cases follow Ohm’s Law. 
A large and varied group of cases has been examined. 
∴ Probably all electrical cases follow Ohm’s Law. 

All examined electrical cases follow Mho’s Law. 
A large and varied group of cases has been examined. 
∴ Probably all electrical cases follow Mho’s Law. 

Even after 1000 experiments, there still are an infinity of theories that give 
the same test results in these 1000 cases but conflicting results in further 
cases. And we could “prove,” using an inductive argument, that each of these 
incompatible theories is probably true. But this is absurd. We can’t have each 
of an infinity of conflicting theories be probably true. Our sample-projection 
syllogism thus leads to absurdities. 0108 

We got around this problem in the scientific-theory case by appealing to 
simplicity: “Other things being equal, we ought to prefer a simpler theory to a 
more complex one.” While “simpler” here is vague and difficult to explain, we 
seem to need some such simplicity criterion to justify any scientific theory. 

Simplicity is important in our diamond case, since 1 is simpler than 2: 

1. All diamonds are hard. 
2. All diamonds are such that they are hard-if-and-only-if-they-were-examined-
before-the-year-2222. 

By our simplicity criterion, we ought to prefer 1 to 2, even if both have 
equally strong inductive backing. So the sample-projection syllogism seems 
to need a simplicity qualification too; but it’s not clear how to formulate it. 

So it’s difficult to formulate clear inductive-logic principles that don’t lead 
to absurdities. Inductive logic is less neat and tidy than deductive logic. 

Our second problem is how to justify inductive principles. For now, let’s 
ignore the problem we just talked about. Let’s pretend that we have clear 
inductive principles that roughly accord with our practice and don’t lead to 



 

 

absurdities. Why follow these principles? 
Consider this inductive argument (which says roughly that the sun will 

probably come up tomorrow, since it has come up every day in the past): 

All examined days are days in which the sun comes up. 
A large and varied group of days has been examined. 
Tomorrow is a day. 
∴ Probably tomorrow is a day in which the sun comes up. 

Even though the sun has come up every day in the past, it still might not 
come up tomorrow. Why think that the premise gives good reason for 
accepting the conclusion? Why accept this or any inductive argument? 

David Hume several centuries ago raised this problem about the justifica-
tion of induction. We’ll discuss five responses. 

1. Some suggest that, to justify induction, we need to presume that nature 
is uniform. If nature works in regular patterns, then the cases we haven’t 
examined will likely follow the same patterns as the ones we have examined. 

There are two problems with this suggestion. First, what does it mean to 
say “Nature is uniform”? Let’s be concrete. What would this principle imply 
about the regularity (or lack thereof) of Chicago weather patterns? “Nature is 
uniform” seems either very vague or clearly false. 

Second, what’s the backing for the principle? Justifying “Nature is uniform” 
by experience would require inductive reasoning. But then we’re arguing in a 
circle – using the uniformity idea to justify induction, and then using induc-
tion to justify the uniformity idea. This presumes what’s being doubted: that 
it’s reasonable to follow inductive reasoning in the first place. Or is the 
uniformity idea perhaps a self-evident truth not in need of justification? But 
it’s 0109 implausible to claim self-evidence for a claim about what the world is 
like. 

2. Some suggest that we justify induction by its success. Inductive methods 
work. Using inductive reasoning, we know what to do for a toothache and 
how to fix cars. We use such reasoning continuously and successfully in our 
lives. What better justification for inductive reasoning could we have than 
this? 

This seems like a powerful justification. But there’s a problem. Let’s as-
sume that inductive reasoning has worked in the past; how can we then 
conclude that it probably will work in the future? The argument is inductive, 
much like our sunrise argument: 



 

Induction has worked in the past. 
∴ Induction probably will work in the future. 

The sun has come up every day in the past. 
∴ The sun probably will come up tomorrow. 

So justifying inductive reasoning by its past success is circular; it uses induc-
tive reasoning and thus presupposes that such reasoning is legitimate. 

3. Some suggest that it’s part of the meaning of “reasonable” that beliefs 
based on inductive reasoning are reasonable. “Reasonable belief” just means 
“belief based on experience and inductive reasoning.” So it’s true by defini-
tion that beliefs based on experience and inductive reasoning are reasonable. 

There are two problems with this. First, the definition is wrong. It really 
isn’t true by definition that all and only things based on experience and 
inductive reasoning are reasonable. There’s no contradiction in disagreeing 
with this – as there would be if this definition were correct. Mystics see their 
higher methods as reasonable, and skeptics see the ordinary methods as 
unreasonable. Both groups might be wrong, but they aren’t simply contra-
dicting themselves. 

Second, even the correctness of the definition wouldn’t solve the problem. 
Suppose that standards of inductive reasoning are built into the conventional 
meaning of our word “reasonable.” Suppose that “reasonable belief” simply 
means “belief based on experience and inductive reasoning.” Then why 
follow what’s “reasonable” in this sense? Why not instead follow the skeptic’s 
advice and avoid believing such things? So this semantic approach doesn’t 
answer the main question: Why follow inductive reasoning at all? 

4. Karl Popper suggests that we avoid inductive reasoning. But we seem to 
need such reasoning in our lives; without inductive reasoning, we have no 
basis for believing that bread nourishes and arsenic kills. And suggested 
substitutes for inductive reasoning don’t seem adequate. 

5. Some suggest that we approach justification in inductive logic the same 
way we approach it in deductive logic. How can we justify the validity of 
deductive principles like modus ponens (“If A then B, A ∴ B”)? Can we prove 
such principles? Perhaps we can prove modus ponens by doing a truth table 
(§6.6) and then arguing this way: 0110 

If the truth table for modus ponens never gives true premises and a false conclu-
sion, then modus ponens is valid. 
The truth table for modus ponens never gives true premises and a false conclu-
sion. 
∴ Modus ponens is valid. 

Premise 1 is a necessary truth and premise 2 is easy to check. The conclusion 
follows. Therefore, modus ponens is valid. But the problem is that the argu-



 

 

ment itself uses modus ponens. So this attempted justification is circular, 
since it presumes from the start that modus ponens is valid. 

Aristotle long ago showed that every proof must eventually rest on some-
thing unproved; otherwise, we’d need an infinite chain of proofs or else 
circular arguments – and neither is acceptable. So why not just accept the 
validity of modus ponens as a self-evident truth – a truth that’s evident but 
can’t be based on anything more evident? If we have to accept some things as 
evident without proof, why not accept modus ponens as evident without 
proof? 

I have some sympathy with this approach. But, if we accept it, we shouldn’t 
think that picking logical principles is purely a matter of following “logical 
intuitions.” Logical intuitions vary enormously among people. The pretest 
that I give shows that most beginning logic students have poor intuition 
about the validity of simple arguments. But even though untrained logical 
intuitions differ, still we can reach agreement on many principles of logic. 
Early on, we introduce the notion of logical form. And we distinguish be-
tween valid and invalid forms – such as these two: 

Modus ponens 

If A then B Valid 
A 
∴ B 

Affirming the consequent 

If A then B Invalid 
B 
∴ A 

Students at first are poor at distinguishing valid from invalid forms. They 
need concrete examples like these: 

If you’re a dog, then you’re an animal.  Valid 
You’re a dog. 
∴ You’re an animal. 

If you’re a dog, then you’re an animal.  Invalid 
You’re an animal. 
∴ You’re a dog. 

After enough well-chosen examples, the validity of modus ponens and the 
invalidity of affirming the consequent become clear. 

So, despite the initial clash of intuitions, we eventually reach clear logical 



 

principles of universal rational appeal. We do this by searching for clear 
formulas that lead to intuitively correct results in concrete cases without 
leading to any clear absurdities. We might think that this procedure proves 
modus ponens: 0111 

If modus ponens leads to intuitively correct results in concrete cases without 
leading to any clear absurdities, then modus ponens is valid. 
Modus ponens leads to intuitively correct results in concrete cases without lead-
ing to any clear absurdities. 
∴ Modus ponens is valid. 

But this reasoning itself uses modus ponens; the justification is circular, since 
it presumes from the start that modus ponens is valid. So this procedure of 
testing modus ponens by checking its implications doesn’t prove modus 
ponens. But I think it gives a “justification” for it, in some sense of “justi-
fication.” This is vague, but I don’t know how to make it more precise. 

I suggested that we justify inductive principles the same way we justify 
deductive ones. Realizing that we can’t prove everything, we wouldn’t 
demand a proof. Rather, we’d search for clear formal inductive principles that 
lead to intuitively correct results in concrete cases without leading to any 
clear absurdities. Once we reached such inductive principles, we’d rest 
content with them and not look for any further justification. 

This is the approach that I’d use in justifying inductive principles. But the 
key problem is the one discussed earlier. As yet we seem unable to find clear 
formal inductive principles that lead to intuitively correct results in concrete 
cases without leading to any clear absurdities. We just don’t know how to 
formulate inductive principles very rigorously. This is what makes the 
current state of inductive logic intellectually unsatisfying. 

Inductive reasoning has been very useful. Inductively, we assume that it 
will continue to be useful. In our lives, we can’t do without it. But the intellec-
tual basis for inductive reasoning is shaky. 

  



 

6 Basic Propositional Logic 

Propositional logic studies arguments whose validity depends on “if-then,” 
“and,” “or,” “not,” and similar notions. This chapter covers the basics and the 
next covers proofs. Our later logical systems build on what we learn here. 

6.1 Easier translations 

We’ll now create a “propositional language,” with precise rules for cons-
tructing arguments and testing validity. Our language uses capital letters for 
true-or-false statements, parentheses for grouping, and five special logical 
connectives (“∼” squiggle, “•” dot, “∨” vee, “⊃” horseshoe, and “≡” threebar): 

∼P = Not-P 
(P • Q) = Both P and Q 
(P ∨ Q) = Either P or Q 
(P ⊃ Q) = If P then Q 

(P ≡ Q) = P if and only if Q 

A grammatically correct formula of our language is called a wff, or well-
formed formula. Wffs are sequences that we can construct using these rules:1 

1. Any capital letter is a wff. 
2. The result of prefixing any wff with “∼” is a wff. 
3. The result of joining any two wffs by “•” or “∨” or “⊃” or “≡” and enclosing 
the result in parentheses is a wff. 

These rules let us build wffs like the following: 

P 
= I live in Paris. 

∼Q 
 
1 Pronounce “wff” as “woof” (as in “wood”). We’ll take letters with primes (like A´ and A´´) to 
be additional letters. 



 

= I don’t live in Quebec. 

(P • ∼Q) 
= I live in Paris and I don’t live in Quebec. 

(N ⊃ (P • ∼Q)) 
= If I’m Napoleon, then I live in Paris and not Quebec. 0113 

“∼P” doesn’t need or use parentheses. A wff requires a pair of parentheses 
for each “•,” “∨,” “⊃,” or “≡.” So “∼P • Q” is malformed and not a wff; this 
ambiguous formula could be given parentheses in two ways: 

(∼P • Q) = Both not-P and Q 
∼(P • Q) = Not both P and Q 

The first says definitely that P is false and Q is true. The second just says that 
not both are true (at least one is false). Don’t read both the same way, as “not 
P and Q.” Read “both” for the left-hand parenthesis, or use pauses: 

(∼P • Q) = Not-P (pause) and (pause) Q 
∼(P • Q) = Not (pause) P and Q 

Logic is easier if you read the formulas correctly. These two also differ: 

(P • (Q ⊃ R)) = P, and if Q then R 
((P • Q) ⊃ R) = If P-and-Q, then R 

The first says P is definitely true, but the second leaves us in doubt about this. 
Here’s a useful rule for translating from English into logic, with examples: 

Put “(x” wherever you see “both,” “either,” or “if.” 

Either not A or B = (∼A ∨ B) 
Not either A or B = ∼(A ∨ B) 
If both A and B, then C = ((A • B) ⊃ C) 
Not both not A and B = ∼(∼A • B) 

Our translation rules have exceptions and need to be applied with common 
sense. So don’t translate “I saw them both” as “S(a” – which isn’t a wff. 

Here’s another rule: 



 

 

Group together parts on either side of a comma. 

If A, then B and C = (A ⊃ (B • C)) 
If A then B, and C = ((A ⊃ B) • C) 

If you’re confused on where to divide a sentence without a comma, ask 
yourself where a comma would naturally go, and then translate accordingly: 

If it snows then I’ll go outside and I’ll ski 
= (S ⊃ (G • K)) 
If it snows, then I’ll go outside and I’ll ski 

Be sure that your capital letters stand for whole statements. “Gensler is 
happy” is just “G”; don’t use “(G • H)” (“Gensler and happy”?). Similarly, “Bob 
and Lauren got married to each other” is just “M”; “(B • L)” would be wrong, 
since the English sentence doesn’t mean “Bob got married and Lauren got 
married” (which omits “to each other”). However, it would be correct to 
translate 0114 “Bob and Lauren were sick” as “(B • L)”; here “and” connects 
whole statements since the English means “Bob was sick and Lauren was 
sick.” 

It doesn’t matter what letters you use, as long as you’re consistent. Use the 
same letter for the same idea and different letters for different ideas. If you 
use “P” for “I went to Paris,” then use “∼P” for “I didn’t go to Paris.” 

Order and grouping don’t matter in wffs using “•,” “∨,” or “≡” as the only 
connective:1 

(A • B) = (B • A) 
((A • B) • C) = (A • (B • C)) 

Order matters with “⊃”; these two make different claims: 

If it’s a dog, then it’s an animal = (D ⊃ A) 
If it’s an animal, then it’s a dog = (A ⊃ D) 

We can switch the parts of an if-then if we negate them; so “If it’s a dog, then 
it’s an animal” “(D ⊃ A)” is equivalent to the contrapositive “If it’s not an 
animal, then it’s not a dog” “(∼A ⊃ ∼D).” 

 
1 Order matters in English when “and” means “and then”; “Suzy got married and had a baby” 
differs from “Suzy had a baby and got married.” Our “•” is simpler and more abstract, and 
ignores temporal sequence. §§7.5 and 15.2 have additional equivalences. 



 

6.1a Exercise: LogiCola C (EM & ET)1 
Translate these English sentences into wffs. 

Both not A and B. 

(∼A • B) 

1. Not both A and B. 

2. Both A and either B or C. 

3. Either both A and B or C. 

4. If A, then B or C. 

5. If A then B, or C. 

6. If not A, then not either B or C. 

7. If not A, then either not B or C. 

8. Either A or B, and C. 

9. Either A, or B and C. 

10. If A then not both not B and not C. 

11. If you get an error message, then the disk is bad or it’s a Macintosh disk. 

12. If I bring my digital camera, then if my batteries don’t die then I’ll take pic-
tures of my backpack trip and put the pictures on my Web site. 

13. If you both don’t exercise and eat too much, then you’ll gain weight. 0115 

14. The statue isn’t by either Cellini or Michelangelo. 

15. If I don’t have either $2 in exact change or a bus pass, I won’t ride the bus. 

16. If Michigan and Ohio State play each other, then Michigan will win. 

17. Either you went through both Dayton and Cinci, or you went through Louis-
ville. 

18. If she had hamburgers then she ate junk food, and she ate French fries. 

19. I’m going to Rome or Florence and you’re going to London. 

20. Everyone is male or female. 

 
1 Exercise sections have a boxed sample problem that’s worked out. They also refer to 
LogiCola computer exercises (see Preface), which give a fun and effective way to master the 
material. Problems 1, 3, 5, 10, 15, and so on are worked out in the answer section at the back of 
the book. 



 

 

6.2 Basic truth tables 

Let “P” stand for “I went to Paris” and “Q” for “I went to Quebec.” Each could 
be true or false (the two truth values) – represented by “1” and “0” (or 
sometimes “T” and “F”). There are four possible combinations: 

P Q  
0 0 
0 1 
1 0 
1 1 

Both are false 
Just Q is true 
Just P is true 
Both are true 

I went to neither Paris nor Quebec 
I went to Quebec but not Paris 
I went to Paris but not Quebec 
I went to both Paris and Quebec 

A truth table gives a logical diagram for a wff. It lists all possible truth-value 
combinations for the letters and says whether the wff is true or false in each 
case. The truth table for “•” (“and”) is very simple: 

P Q (P • Q) 

0 0 
0 1 
1 0 
1 1 

0 
0 
0 
1 

“I went to Paris and I went to Quebec.” 

“(P • Q)” is a conjunction; P and Q are its conjuncts. 

“(P • Q)” claims that both parts are true. So “I went to Paris and I went to 
Quebec” is false in the first three cases (where one or both parts are false) – 
and true only in the last case. These truth equivalences give the same infor-
mation: 

(0 • 0) = 0  (false • false) = false 
(0 • 1) = 0  (false • true) = false 
(1 • 0) = 0  (true • false) = false 
(1 • 1) = 1  (true • true) = true 



 

“(0 • 0) = 0” says that an AND statement is false if both parts are false. The 
next two say that an AND is false if one part is false and the other part is true. 
And “(1 • 1) = 1” says that an AND is true if both parts are true. 

Here are the truth table and equivalences for “∨” (“or”): 0116 

P Q (P ∨ Q) 

0 0 
0 1 
1 0 
1 1 

0 
1 
1 
1 

(0 ∨ 0) = 0 
(0 ∨ 1) = 1 
(1 ∨ 0) = 1 
(1 ∨ 1) = 1 

 “I went to Paris or I went to Quebec.” 

“(P ∨ Q)” is a disjunction; P and Q are its disjuncts. 

“(P ∨ Q)” claims that at least one part is true. So “I went to Paris or I went to 
Quebec” is true just if I went to one or both places. Our “∨” symbolizes the 
inclusive sense of “or”; English also can use “or” in an exclusive sense, which 
claims that at least one part is true but not both: 

Inclusive “or”: A or B or both = (A ∨ B) 
Exclusive “or”: A or B but not both = ((A ∨ B) • ∼(A • B)) 

So the exclusive sense requires a longer symbolization.1 
Here are the truth table and equivalences for “⊃” (“if-then”): 

P Q (P ⊃ Q) 

0 0 
0 1 
1 0 
1 1 

1 
1 
0 
1 

(0 ⊃ 0) = 1 
(0 ⊃ 1) = 1 
(1 ⊃ 0) = 0 

 
1 People sometimes use “Either A or B” for the exclusive “or.” We won’t do this; instead, we’ll 
use “either” to indicate grouping and we’ll translate it as a left-hand parenthesis. 



 

 

(1 ⊃ 1) = 1 

“If I went to Paris, then I went to Quebec.” 

“(P ⊃ Q)” is a conditional; P is the antecedent and Q the consequent. 

“(P ⊃ Q)” claims that what we don’t have is the first part true and the second 
false. Suppose you say this: 

“If I went to Paris, then I went to Quebec.” 

By our table, you speak truly if you went to neither place, or to both places, or 
to Quebec but not Paris. You speak falsely if you went to Paris but not Que-
bec. Does that seem right to you? Most people think so, but some have 
doubts. 

Our truth table can produce strange results. Take this example: 

If I had eggs for breakfast, then the world will end at noon = (E ⊃ W) 

Suppose I didn’t have eggs, and so E is false. By our table, the conditional is 
then true – since if E is false then “(E ⊃ W)” is true. This is strange. We’d 
normally take the conditional to be false – since we’d take it to claim that my 
having eggs would cause the world to end. So translating “if-then” as “⊃” 
seem fishy. 

Our “⊃” symbolizes a simplified “if-then” that ignores causal connections 
and temporal sequence. “(P ⊃ Q)” has a very simple meaning; it just denies 
that we have P-true-and-Q-false: 0117 

(P ⊃ Q) = ∼(P • ∼Q) 

If P is true, then Q is true = We don’t have P true and Q false 

Translating “if-then” this way is a useful simplification, since it captures the 
part of “if-then” that normally determines validity. The simplification usually 
works; in the few cases where it doesn’t, we can use a more complex transla-
tion (as we’ll sometimes do in the chapters on modal logic). 

The truth conditions for “⊃” are hard to remember. These slogans may 
help: 



 

Falsity implies anything. 
(0 ⊃ 1) = 1 

Anything implies truth. 
(0 ⊃ 1) = 1 

Truth doesn’t imply falsity. 
(1 ⊃ 0) = 0 

“Falsity implies anything,” for example, means that the whole if-then is true if 
the first part is false; so “If I’m a billionaire, then …” is true, regardless of what 
replaces “…,” since I’m not a billionaire. 

Here are the table and equivalences for “≡” (“if-and-only-if”): 

P Q (P ≡ Q) 

0 0 
0 1 
1 0 
1 1 

1 
0 
0 
1 

(0 ≡ 0) = 1 
(0 ≡ 1) = 0 
(1 ≡ 0) = 0 
(1 ≡ 1) = 1 

“I went to Paris if and only if I went to Quebec.” 

“(P ≡ Q)” is a biconditional. 

“(P ≡ Q)” claims that both parts have the same truth value: both are true or 
both are false. So “≡” is much like “equals.” 

Here are the table and equivalences for “∼” (“not”): 

P ∼P 

0 
1 

1 
0 

∼0 = 1 
∼1 = 0 

“I didn’t go to Paris.” 

“∼P” is a negation. 

“∼P” has the opposite value of “P.” If “P” is true then “∼P” is false, and if “P” is 



 

 

false then “∼P” is true. 
This double-box sums up these basic truth equivalences (learn them well!): 

AND OR NOT 

(0 • 0) = 0 
(0 • 1) = 0 
(1 • 0) = 0 
(1 • 1) = 1 

(0 ∨ 0) = 0 
(0 ∨ 1) = 1 
(1 ∨ 0) = 1 
(1 ∨ 1) = 1 

∼0 = 1 
∼1 = 0 

both parts are true at least one part is true reverse the truth 
value 

 

IF-THEN IFF 

(0 ⊃ 0) = 1 
(0 ⊃ 1) = 1 
(1 ⊃ 0) = 0 
(1 ⊃ 1) = 1 

(0 ≡ 0) = 1 
(0 ≡ 1) = 0 
(1 ≡ 0) = 0 
(1 ≡ 1) = 1 

we don’t have first true & second false both parts have same truth value 

0118  

6.2a Exercise: LogiCola D (TE & FE) 
Calculate each truth value. 

(0 • 1) 

(0 • 1) = 0 

1. (0 ∨ 1) 

2. (0 • 0) 

3. (0 ⊃ 0) 

4. ∼0 

5. (0 ≡ 1) 

6. (1 • 0) 

7. (1 ⊃ 1) 

8. (1 ≡ 1) 

9. (0 ∨ 0) 

10. (0 ⊃ 1) 

11. (0 ≡ 0) 



 

12. (1 ∨ 1) 

13. (1 • 1) 

14. (1 ⊃ 0) 

15. ∼1 

16. (1 ∨ 0) 

17. (1 ≡ 0) 

6.3 Truth evaluations 

We can calculate a wff’s truth value if we know the truth value of its letters: 

Suppose that P = 1, Q = 0, and R = 0. What’s the truth value of “((P ⊃ Q) ≡ ∼R)”? 

First replace “P” with “1” and the other letters with “0,” to get “((1 ⊃ 0) ≡ 
∼0).” Then simplify from the inside out, using our basic truth equivalences, 
until we get “1” or “0.” Here we get “0,” so the formula is false: 

Formula: ((1 ⊃ 0) ≡ ∼0)  
Replace “(1 ⊃ 0)” with “0” and “∼0” with “1,” to get “(0 ≡ 1)” 
Replace “(0 ≡ 1)” with “0,” to get “0” 

In evaluating “((1 ⊃ 0) ≡ ∼0),” we keep looking for parts, here highlighted as 
“((1 ⊃ 0) ≡ ∼0),” that match the left side of our basic truth equivalences (see 
previous page), and then replace these parts with their equivalents. 

On this strategy, with formulas like “∼(1 ∨ 0),” first work out the truth 
value of the part in parentheses. Then apply “∼” to the result: 

Formula: ∼(1 ∨ 0) 
Replace “(1 ∨ 0)” with “1,” to get “∼1” 
Replace “∼1” with “0,” to get “0” 

Beginners often do this wrong. They distribute the NOT, going from “∼(1 ∨ 
0)” to “(∼1 ∨ ∼0)” (wrong!); this evaluates to “(0 ∨ 1)” and then “1” 
(wrong!). Don’t distribute “NOT”! With “∼(…),” first simplify the part in 
parentheses and then apply “∼” to the result.1 0119 
 
1 NOT (“∼”) doesn’t distribute in logic, since, for example, “∼(P • Q)” (which says that not both 
are true) differs from “(∼P • ∼Q)” (which says that both are false). Likewise MINUS (“–”) 
doesn’t distribute in math, since “–(2 • 2)” (which equals –4) differs from “(–2 • –2)” (which 
equals +4). 



 

 

6.3a Exercise: LogiCola D (TM & TH) 
Assume that A = 1 and B = 1 (A and B are both true) while X = 0 and Y = 0 (X and Y 
are both false). Calculate the truth value of each wff below. 

((A ∨ X) ⊃ ∼B) 

((1 ∨ 0) ⊃ ∼1) 
(1 ⊃ 0) 

0 

1. ∼(A • X) 

2. (∼A • ∼X) 

3. ∼(∼A • ∼X) 

4. (A ⊃ X) 

5. (∼X ≡ Y) 

6. (∼B ⊃ A) 

7. ∼(A ⊃ X) 

8. (B • (X ∨ A)) 

9. (∼(X • A) ∨ ∼B) 

10. (∼A ∨ ∼(X ⊃ Y)) 

11. ((A • ∼X) ⊃ ∼B) 

12. ∼(A ⊃ (X ∨ ∼B)) 

13. (∼X ∨ ∼(∼A ≡ B)) 

14. (∼Y ⊃ (A • X)) 

15. ∼((A ⊃ B) ⊃ (B ⊃ Y)) 

6.4 Unknown evaluations 

We can often figure out a formula’s truth value without knowing the value of 
some letters: 

Suppose that P = 1 and Q = ? (unknown). What’s the truth value of “(P ∨ Q)”? 

We might just see that “(1 ∨ ?)” is true, since an OR is true if at least one part 
is true. Or we can try it both ways; “(1 ∨ ?)” is true because it’s true either 
way: 



 

(1 ∨ 1) = 1 
(1 ∨ 0) = 1 

Here’s another example: 

Suppose that P = 1 and Q = ? What is the truth value of “(P • Q)”? 

We might just see that “(1 • ?)” is unknown, since its truth value depends on 
the unknown letter. Or we can try it both ways; “(1 • ?)” is unknown because 
it could turn out true and it could turn out false: 

(1 • 1) = 1 
(1 • 0) = 0 

6.4a Exercise: LogiCola D (UE, UM, & UH) 
Assume that T = 1 (T is true), F = 0 (F is false), and U = ? (U is unknown). Calculate 
the truth value of each wff below. 0120 

(∼T • U) 

(∼1 • ?) = (0 • ?) = 0 

1. (U • F) 

2. (U ⊃ ∼T) 

3. (U ∨ ∼F) 

4. (∼F • U) 

5. (F ⊃ U) 

6. (∼T ∨ U) 

7. (U ⊃ ∼T) 

8. (∼F ∨ U) 

9. (T • U) 

10. (U ⊃ ∼F) 

11. (U • ∼T) 

12. (U ∨ F) 



 

 

6.5 Complex truth tables 

A truth table for a wff is a diagram listing all possible truth-value combina-
tions for the wff’s letters and saying whether the wff would be true or false in 
each case. We’ve done simple tables already; now we’ll do complex ones. 

With n distinct letters we have 2n possible truth-value combinations. And 
so one letter gives 2 (21) combinations: 

A 
0 
1 

Two letters give 4 (22) combinations: 

A B 
0 0 
0 1 
1 0 
1 1 

Three letters give 8 (23) combinations: 

A B C 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

And n letters give 2n combinations. To get every combination, alternate 0’s 
and 1’s for the last letter the required number of times. Then alternate 0’s 
and 1’s for each earlier letter at half the previous rate: by twos, fours, and so 
on. This numbers the rows in base 2. 

Begin a truth table for “∼(A ∨ ∼B)” like this: 

A B ∼(A ∨ ∼B) 



 

0 0 
0 1 
1 0 
1 1 

 

The right side has the wff. The left side has each letter used in the wff; write 
each letter just once, regardless of how often it occurs. Below the letters, 
write all possible truth-value combinations. Then figure out the wff’s truth 
value for each line. The first line has A and B both false – which makes the 
whole wff false: 

Formula: ∼(A ∨ ∼B) 
Replace each letter with “0,” to get “∼(0 ∨ ∼0)” 
Replace “∼0” with “1,” to get “∼(0 ∨ 1)” 
Replace “(0 ∨ 1)” with “1,” to get “∼1” 
Replace “∼1” with “0,” to get “0” 0121 

The wff comes out “1,” “0,” and “0” for the next three lines; so we get: 

A B ∼(A ∨ ∼B) 

0 0 
0 1 
1 0 
1 1 

0 
1 
0 
0 

“∼(A ∨ ∼B)” is true if and only if A is false and B is true. The simpler wff “(∼A 
• B)” is equivalent, in that it’s true in the same cases. Both wffs are true in 
some cases and false in others – making them contingent statements. 

“(P ∨ ∼P)” is a tautology, since it comes out true in all cases: 

P (P ∨ ∼P) 

0 
1 

1 
1 

“I went to Paris or I didn’t go to Paris.” 

This formula, the law of the excluded middle, says that every statement is true 
or false. This holds in propositional logic, since we stipulated that capital 
letters stand for true-or-false statements. The law doesn’t always hold in 
English, since English allows statements that are too vague to be true or false, 
like “It’s raining” when there’s a slight drizzle or “My shirt is white” when it’s 



 

 

a light cream color. So the law is an idealization when applied to English. 
“(P • ∼P)” is a self-contradiction, since it comes out false in all cases: 

P (P • ∼P) 

0 
1 

0 
0 

“I went to Paris and I didn’t go to Paris.” 

“P and not-P” is always false in propositional logic, which presupposes that 
“P” stands for the same statement throughout. English is looser and lets us 
shift the meaning of a phrase in the middle of a sentence. “I went to Paris and 
I didn’t go to Paris” may express a truth if it means “I went to Paris (in that I 
landed once at the Paris airport) – but I didn’t really go there (in that I saw 
almost nothing of the city).” Because of the shift in meaning, this better 
translates as “(P • ∼Q).” 

6.5a Exercise: LogiCola D (FM & FH) 
Do a truth table for each wff. 0122 

((P ∨ Q) ⊃ R) 

P Q R ((P ∨ Q) ⊃ R) 

0 0 0 1 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 1 

1. (P ≡ ∼Q) 

2. (∼P • Q) 

3. (P ∨ (Q • ∼R)) 

4. ((P • ∼Q) ⊃ R) 

5. ((P ≡ Q) ⊃ Q) 

6. ((P ∨ ∼Q) ⊃ R) 

7. (∼Q ⊃ ∼P) 



 

8. (P ≡ (P • P)) 

9. ∼(P • (Q ∨ ∼R)) 

6.6 The truth-table test 

Recall how we defined VALID and INVALID for arguments: 

VALID = No possible case has premises all true and conclusion false. 

This can’t happen: 1, 1 ∴ 0 

INVALID = Some possible case has premises all true and conclusion false. 

This can happen: 1, 1 ∴ 0 

To use the truth-table test on a propositional argument: 

Construct a truth table showing the truth value of the premises and conclu-
sion for all possible cases. The argument is valid if and only if no possible case 
has premises all true and conclusion false. 

Suppose we want to test this invalid argument; first do a truth table for 
premises and conclusion, starting as follows: 

If you’re a dog, then you’re an animal. 
You’re not a dog. 
∴ You’re not an animal. 

(D ⊃ A) 
∼D 
∴ ∼A 

 D A (D ⊃ A), ∼D ∴ ∼A 

0 0 
0 1 
1 0 
1 1 

    

Then evaluate the three wffs on each truth combination. The first combina-



 

 

tion 0123 has D = 0 and A = 0, which makes all three wffs true: 

(D ⊃ A) = (0 ⊃ 0) = 1 
∼D = ∼0 = 1 
∼A = ∼0 = 1 

So the first line of our truth table looks like this: 

D A (D ⊃ A), ∼D ∴ ∼A 

0 0 1 1  1 

Work out the other three lines: 

D A (D ⊃ A), ∼D ∴ ∼A 

0 0 
0 1 
1 0 
1 1 

1 
1 
0 
1 

1 
1 
0 
0 

 1 
0 
1 
0 

Invalid – we can get true premises and a false conclusion (second line). 

The argument is invalid, since some possible case has premises all true and 
conclusion false. Perhaps you’re an animal but not a dog (but maybe a cat). 

With this next argument, again do a truth table for premises and conclu-
sion: 

If you’re a dog, then you’re an animal. 
You’re a dog. 
∴ You’re an animal. 

(D ⊃ A) 
D 
∴ A 

D A (D ⊃ A), D ∴ A 

0 0 
0 1 
1 0 
1 1 

1 
1 
0 
1 

0 
0 
1 
1 

 0 
1 
0 
1 



 

Valid – we never get true premises and a false conclusion. 

There’s a short-cut test. Recall that we’re looking for 110 (premises all true 
and conclusion false). The argument is invalid if 110 sometimes occurs; 
otherwise, it’s valid. To save time, first evaluate an easy wff and cross out 
lines that can’t be 110. In our last example, we might work out “D” first: 

D A (D ⊃ A), D ∴ A 

0 0 
0 1 
1 0 
1 1 

----- 
----- 

0 
0 
1 
1 

 --- 
--- 

The first two lines can’t be 110 (since the second digit is 0); so we cross them 
out and ignore them. Next we might evaluate “A”: 0124 

D A (D ⊃ A), D ∴ A 

0 0 
0 1 
1 0 
1 1 

----- 
----- 

   
----- 

0 
0 
1 
1 

 --- 
--- 
0 
1 

The bottom line can’t be 110 (since the last digit is 1); so we cross it out. 
Then we evaluate “(D ⊃ A)” for only one case – for which it comes out false. 
Since we never get 110, the argument is valid: 

D A (D ⊃ A), D ∴ A 

0 0 
0 1 
1 0 
1 1 

----- 
----- 

0 
----- 

0 
0 
1 
1 

 --- 
--- 
0 
1 

Valid – we never get true premises and a false conclusion. 

The short-cut method can save much time if otherwise we’d have to evaluate 
a long formula for eight or more cases. 

With a two-premise argument, look for 110. With three premises, look for 
1110. In general, look for a case having premises all true and conclusion false. 
The argument is valid if and only if this never occurs. 

The truth-table test can get tedious for long arguments. Arguments with 6 



 

 

letters need 64 lines – and ones with 10 letters need 1024 lines. So we’ll use 
the truth-table test only on fairly simple arguments.1 

6.6a Exercise: LogiCola D (AE, AM, & AH) 
First appraise intuitively. Then translate into logic (using the letters given) and use 
the truth-table test to determine validity. 

It’s in my left hand or my right hand. 
It’s not in my left hand. 
∴ It’s in my right hand. 

L R (L ∨ R), ∼L ∴ R0 
0 0 
0 1 
1 0 
1 1 

0 
1 
1 
1 

1 
1 
0 
0 

 00 
10 
00 
10 

Valid – we never get true premises & false conclusion. 

1. If you’re a collie, then you’re a dog. 
You’re a dog. 
∴ You’re a collie. [Use C and D.] 

2. If you’re a collie, then you’re a dog. 
You’re not a dog. 
∴ You’re not a collie. [Use C and D.] 0125 

3. If television is always right, then Anacin is better than Bayer. 
If television is always right, then Anacin isn’t better than Bayer. 
∴ Television isn’t always right. [Use T and B.] 

4. If it rains and your tent leaks, then your down sleeping bag will get wet. 
Your tent won’t leak. 
∴ Your down sleeping bag won’t get wet. [R, L, W] 

 
1 An argument that tests out “invalid” may be valid on grounds that go beyond the system in 
question. For example, “This is green, therefore something is green” translates into proposi-
tional logic as “T ∴ S” and tests out invalid; but it’s valid as “Gt ∴ (∃x)Gx” in quantificational 
logic. 



 

5. If I get Grand Canyon reservations and get a group together, then I’ll explore 
canyons during spring break. 
I’ve got a group together. 
I can’t get Grand Canyon reservations. 
∴ I won’t explore canyons during spring break. [R, T, E] 

6. There’s an objective moral law. 
If there’s an objective moral law, then there’s a source of the moral law. 
If there’s a source of the moral law, then there’s a God. (Other possible sources, 
like society or the individual, are claimed not to work.) 
∴ There’s a God. [Use M, S, and G; from C. S. Lewis.] 

7. If ethics depends on God’s will, then something is good because God desires it. 
Something isn’t good because God desires it. (Instead, God desires something 
because it’s already good.) 
∴ Ethics doesn’t depend on God’s will. [Use D and B; from Plato’s Euthyphro.] 

8. It’s an empirical fact that the basic physical constants are precisely in the 
narrow range of what is required for life to be possible. (This “fine-tuning princi-
ple” has considerable evidence behind it.) 
The best explanation for this fact is that the basic physical constants were caused 
by a great mind intending to produce life. (The main alternatives are the “chance 
coincidence” and “parallel universe” explanations.) 
If these two things are true, then it’s reasonable to believe that the basic structure 
of the world was set up by a great mind (God) intending to produce life. 
∴ It’s reasonable to believe that the basic structure of the world was set up by a 
great mind (God) intending to produce life. [Use E, B, and R; see §5.9.] 

9. I’ll go to Paris during spring break if and only if I’ll win the lottery. 
I won’t win the lottery. 
∴ I won’t go to Paris during spring break. [P, W] 

10. If we have a simple concept proper to God, then we’ve directly experienced 
God and we can’t rationally doubt God’s existence. 
We haven’t directly experienced God. 
∴ We can rationally doubt God’s existence. [S, E, R] 

11. If there is a God, then God created the universe. 
If God created the universe, then matter didn’t always exist. 
Matter always existed. 
∴ There is no God. [G, C, M] 0126 



 

 

12. If this creek is flowing, then either the spring upstream has water or this creek 
has some other water source. 
This creek has no other water source. 
This creek isn’t flowing. 
∴ The spring upstream has no water. [F, S, O] 

6.7 The truth-assignment test 

Recall how we defined VALID and INVALID for arguments: 

VALID = No possible case has premises all true and conclusion false. 

This can’t happen: 1, 1 ∴ 0 

INVALID = Some possible case has premises all true and conclusion false. 

This can happen: 1, 1 ∴ 0 

To use the truth-assignment test on a propositional argument: 

Set each premise to 1 and the conclusion to 0. Figure out the truth value of as 
many letters as possible. The argument is valid if and only if no possible way 
to assign 1 and 0 to the letters will keep the premises all 1 and conclusion 0. 

Suppose we want to test this valid argument: 

It’s in my left hand or my right hand. 
It’s not in my left hand. 
∴ It’s in my right hand. 

(L ∨ R) 
∼L 
∴ R 

Here’s how we work it out. First set each premise to 1 and the conclusion to 
0: 



 

(L ∨ R) = 1 
∼L = 1 
∴ R = 0 

Since premise 2 has ∼L = 1, making L = 0, write 0 above each L. A 0 super-
script above a letter, as in “∼L0,” says that that letter is false: 

(L0 ∨ R) = 1 
∼L0 = 1 
∴ R = 0 

Since the conclusion has R = 0, write 0 above each R: 0127 

(L0 ∨ R0) = 1 
∼L0 = 1 
∴ R0 = 0 

But then premise 1 can’t be true. So we can’t have true premises and a false 
conclusion. So it’s valid: 

(L0 ∨ R0) ≠ 1 Valid 
∼L0 = 1 
∴ R0 = 0 

So first assign 1 to the premises and 0 to the conclusion (just to see if this 
could work). Then figure out the truth values for the letters, and then for the 
longer formulas. If we have to cross something out, then the initial assign-
ment isn’t possible, and so the argument is valid. 

This next example shows how to work out an invalid argument: 

It’s in my left hand or my right hand. 
It’s not in my left hand. 
∴ It’s not in my right hand. 

(L ∨ R) 
∼L 
∴ ∼R 

First set each premise to 1 and the conclusion to 0: 

(L ∨ R) = 1 
∼L = 1 



 

 

∴ ∼R = 0 

Since premise 2 has ∼L = 1, making L = 0, write 0 above each L: 

(L0 ∨ R) = 1 
∼L0 = 1 
∴ ∼R = 0 

Since the conclusion has ∼R = 0, making R = 1, write 1 above each R: 

(L0 ∨ R1) = 1 
∼L0 = 1 
∴ ∼R1 = 0 

So we can have true premises and a false conclusion. So it’s invalid: 

(L0 ∨ R1) = 1 Invalid 
∼L0 = 1 
∴ ∼R1 = 0 

A truth table gives the same result when L = 0 and R = 1: 

L R (L ∨ R), ∼L ∴ ∼R 

0 1 1 1  0 

Invalid 

The truth-assignment test gives this result more quickly. 
Here’s another invalid argument: 

It’s in my left hand or my right hand. 
∴ It’s in my right hand. 

(L ∨ R) 
∴ R 

If we work this out, we get R false, but we get no value for L; so we give L a 
value that makes all premises true and conclusion false. Again, first set the 
premise to 1 and the conclusion to 0: 0128 



 

(L ∨ R) = 1 
∴ R = 0 

Since the conclusion has R=0, write 0 above each R: 

(L ∨ R0) = 1 
∴ R0 = 0 

To make the premise true, make L true: 

(L1 ∨ R0) = 1 
∴ R0 = 0 

So we can have true premises and a false conclusion. So it’s INVALID: 

(L1 ∨ R0) = 1 Invalid 
∴ R0 = 0 

If you don’t get a value for a letter, try it both ways (as 1 and as 0); if either 
gives true premises and a false conclusion, then the argument is invalid. 

In working out the truth values for the letters, try to make premises all 
true and conclusion false. The argument is invalid if there’s some way to do 
this. 

6.7a Exercise: LogiCola ES 
Test for validity using the truth-assignment test. 

(K ⊃ (I ∨ S)) 
∼I 
K 
∴ S 

(K1 ⊃ (I0 ∨ S0)) ≠ 1 Valid 
∼I0 = 1 
K1 = 1 
∴ S0 = 0 

(we can’t have 1110) 

1. ∼(N ≡ H) 
N 
∴ ∼H 



 

 

2. ((J • ∼D) ⊃ Z) 
∼Z 
D 
∴ ∼J 

3. ((T ∨ M) ⊃ Q) 
M 
∴ Q 

4. P 
∴ (P • Q) 

5. ((L • F) ⊃ S) 
S 
F 
∴ L 

6. ((A • U) ⊃ ∼B) 
B 
A 
∴ ∼U 

7. ((W • C) ⊃ Z) 
∼Z 
∴ ∼C 

8. Q 
∴ (P ⊃ Q) 

9. (E ∨ (Y • X)) 
∼E 
∴ X 

10. (∼T ⊃ (P ⊃ J)) 
P 
∼J 
∴ T 

11. ∼P 
∴ ∼(Q ⊃ P) 



 

12. ((∼M • G) ⊃ R) 
∼R 
G 
∴ M 

13. ∼(Q ≡ I) 
∼Q 
∴ I 

14. ((Q • R) ≡ S) 
Q 
∴ S 

15. A 
∼A 
∴ B 0129 

6.7b Exercise: LogiCola EE 3. 
First appraise intuitively. Then translate into logic and use the truth-assignment test 
to determine validity. 

If our country will be weak, then there will be war. 
Our country will not be weak. 
∴ There will not be war. 

(K0 ⊃ R1) = 1 Invalid 
∼K0 = 1 
∴ ∼R1 = 0 

(we can have 110) 

1. Some things are caused (brought into existence). 
Anything caused is caused by another. 
If some things are caused and anything caused is caused by another, then either 
there’s a first cause or there’s an infinite series of past causes. 
There’s no infinite series of past causes. 
∴ There’s a first cause. [A “first cause” (often identified with God) is a cause that 
isn’t itself caused by another; from St Thomas Aquinas.] 

2. If you pass and it’s intercepted, then the other side gets the ball. 
You pass. 
It’s not intercepted. 
∴ The other side doesn’t get the ball. 



 

 

3. If God exists in the understanding and not in reality, then there can be con-
ceived a being greater than God (namely, a similar being that also exists in reali-
ty). 
“There can be conceived a being greater than God” is false (since “God” is defined 
as “a being than which no greater can be conceived”). 
God exists in the understanding. 
∴ God exists in reality. [This is St Anselm’s famous ontological argument.] 

4. If existence is a perfection and God by definition has all perfections, then God 
by definition must exist. 
Existence is a perfection. 
God by definition has all perfections. 
∴ God by definition must exist. [From René Descartes.] 

5. If we have sensations of alleged material objects and yet no material objects 
exist, then God is a deceiver. 
God isn’t a deceiver. 
We have sensations of alleged material objects. 
∴ Material objects exist. [From René Descartes, who thus based our knowledge 
of the external material world on our knowledge of God.] 

6. If “good” is definable in experimental terms, then ethical judgments are scientif-
ically provable and ethics has a rational basis. 
Ethical judgments aren’t scientifically provable. 
∴ Ethics doesn’t have a rational basis. 0130 

7. If it’s right for me to lie and not right for you, then there’s a relevant difference 
between our cases. 
There’s no relevant difference between our cases. 
It’s not right for you to lie. 
 ∴ It’s not right for me to lie. 

8. If Newton’s gravitational theory is correct and there’s no undiscovered planet 
near Uranus, then the orbit of Uranus would be such-and-such. 
Newton’s gravitational theory is correct. 
The orbit of Uranus isn’t such-and-such. 
∴ There’s an undiscovered planet near Uranus. [This reasoning led to the dis-
covery of the planet Neptune.] 



 

9. If attempts to prove “God exists” fail in the same way as our best arguments for 
“There are other conscious beings besides myself,” then belief in God is reason- -
able if and only if belief in other conscious beings is reasonable. 
Attempts to prove “God exists” fail in the same way as our best arguments for 
“There are other conscious beings besides myself.” 
Belief in other conscious beings is reasonable. 
∴ Belief in God is reasonable. [From Alvin Plantinga.] 

10. If you pack intelligently, then either this teddy bear will be useful on the 
hiking trip or you won’t pack it. 
This teddy bear won’t be useful on the hiking trip. 
You won’t pack it. 
∴ You pack intelligently. 

11. If knowledge is sensation, then pigs have knowledge. 
Pigs don’t have knowledge. 
∴ Knowledge isn’t sensation. [From Plato.] 

12. If capital punishment is justified and justice doesn’t demand a vindication for 
past wrongs, then capital punishment reforms the offender or effectively deters 
crime. 
Capital punishment doesn’t reform the offender. 
Capital punishment doesn’t effectively deter crime. 
∴ Capital punishment isn’t justified. 

13. If belief in God were a purely intellectual matter, then either all smart people 
would be believers or all smart people would be non-believers. 
Not all smart people are believers. 
Not all smart people are non-believers. 
∴ Belief in God isn’t a purely intellectual matter. 

14. If you’re lost, then you should call for help or head downstream. 
You’re lost. 
∴ You should call for help. 0131 

15. If maximizing human enjoyment is always good and the sadist’s dog-torturing 
maximizes human enjoyment, then the sadist’s act is good. 
The sadist’s dog-torturing maximizes human enjoyment. 
The sadist’s act isn’t good. 
∴ Maximizing human enjoyment isn’t always good. 



 

 

16. If there’s knowledge, then either some things are known without proof or we 
can prove every premise by previous arguments infinitely. 
We can’t prove every premise by previous arguments infinitely. 
There’s knowledge. 
∴ Some things are known without proof. [From Aristotle.] 

17. If you modified your computer or didn’t send in the registration card, then the 
warranty is void. 
You didn’t modify your computer. 
You sent in the registration card. 
∴ The warranty isn’t void. 

18. If “X is good” means “Hurrah for X!” and it makes sense to say “If X is good,” 
then it makes sense to say “If hurrah for X!” 
It makes sense to say “If X is good.” 
It doesn’t make sense to say “If hurrah for X!” 
∴ “X is good” doesn’t mean “Hurrah for X!” [From Hector-Neri Castañeda.] 

19. If we have an idea of substance, then “substance” refers either to a simple 
sensation or to a complex constructed out of simple sensations. 
“Substance” doesn’t refer to a simple sensation. 
∴ We don’t have an idea of substance. [From David Hume.] 

20. If we have an idea of “substance” and we don’t derive the idea of “substance” 
from sensations, then “substance” is a thought category of pure reason. 
We don’t derive the idea of “substance” from sensations. 
We have an idea of “substance.” 
∴ “Substance” is a thought category of pure reason. [From Immanuel Kant.] 

21. If “good” means “socially approved,” then what is socially approved is neces-
sarily good. 
What is socially approved isn’t necessarily good. 
∴ “Good” doesn’t mean “socially approved.” 

22. [Generalizing the last argument, G. E. Moore argued that we can’t define 
“good” in terms of any empirical term “F” – like “desired” or “socially approved.”] 
If “good” means “F,” then what is F is necessarily good. 
What is F isn’t necessarily good. (We can consistently say “Some F things may not 
be good” without thereby violating the meaning of “good.”) 
∴ “Good” doesn’t mean “F.” 

23. If moral realism (the belief in objective moral truths) were true, then it could 
explain the moral diversity in the world. 
Moral realism can’t explain the moral diversity in the world. 
∴ Moral realism isn’t true. 0132 



 

6.8 Harder translations 

As you symbolize idiomatic English, keep following our earlier rules: (1) put 
“(x” wherever you see “both,” “either,” or “if”; and (2) group together parts on 
either side of a comma. Here we’ll add additional rules, with examples: 

Translate “but” (“yet,” “however,” “although,” and so on) as “and.” 

Michigan played but it lost 
= (P • L) 

The translation loses the contrast (or surprise), but this doesn’t affect 
validity. 

Translate “unless” as “or.” 

You’ll die unless you breathe 
= (D ∨ B) = (B ∨ D) 

Unless you breathe you’ll die 
= (D ∨ B) = (B ∨ D) 

“Unless” is also equivalent to “if not”; so we also could use “(∼B ⊃ D)” (“If you 
don’t breathe, then you’ll die”). 

Translate “just if” and “iff” (a logician word) as “if and only if.” 

I’ll agree just if you pay me $1,000 
= (A ≡ P) 

I’ll agree iff you pay me $1,000 
= (A ≡ P) 

The order of the letters doesn’t matter with “•” or “∨” or “≡.” 
Our next two rules are tricky. The first governs most conditional words: 



 

 

The part after “if” (“provided that,” “assuming that,” and so on) is the if-part 
(the antecedent, the part before the horseshoe).  

If A, then B 
= (A ⊃ B) 

Provided that A, B 
= (A ⊃ B) 

A, if B 
= (B ⊃ A) 

A, provided that B 
= (B ⊃ A) 

You’re an animal, if you’re a dog 
= (D ⊃ A) 

Provided that you’re a dog, you’re an animal 
= (D ⊃ A) 

“Only if” is different and follows its own rule: 

The part after “only if” is the then-part (the consequent, the part after the 
horseshoe). (Or just write “⊃” for “only if.”) 

A only if B 
= (A ⊃ B) 

Only if A, B 
= (B ⊃ A) 0133 

You’re alive only if you have oxygen 
= (A ⊃ O) 

Only if you have oxygen, are you alive 
= (A ⊃ O) 

The contrapositive translation “(∼O ⊃ ∼A)” (“If you don’t have oxygen, then 



 

you aren’t alive”) is equivalent and often sounds more intuitive. 
Here’s the rule for “sufficient” and “necessary”: 

“A is sufficient for B” means “If A then B.” 

“A is necessary for B” means “If not A then not B.” 

“A is necessary and sufficient for B” means “A if and only if B.” 

Water is sufficient for life 
= (W ⊃ L) 

Water is necessary for life 
= (∼W ⊃ ∼L) 

Water is necessary and sufficient for life 
= (W ≡ L) 

The order of the letters matters with “⊃,” but not with “≡.” 
Sometimes none of these rules applies and you just have to puzzle out the 

meaning on your own. 

6.8a Exercise: LogiCola C (HM & HT) 
Translate these English sentences into wffs. 

A, assuming that B. 

(B ⊃ A) 

1. If she goes, then you’ll be alone but I’ll be here. 

2. Your car will start only if you have fuel. 

3. I will quit unless you give me a raise. 

4. Taking the final is a sufficient condition for passing. 

5. Taking the final is necessary for you to pass. 

6. You’re a man just if you’re a rational animal. 

7. Unless you have faith, you’ll die. 

8. She neither asserted it nor hinted at it. 

9. Getting at least 96 is a necessary and sufficient condition for getting an A. 



 

 

10. Only if you exercise are you fully alive. 

11. I’ll go, assuming that you go. 

12. Assuming that your belief is false, you don’t know. 

13. Having a true belief is a necessary condition for having knowledge. 

14. You get mashed potatoes or French fries, but not both. 

15. You’re wrong if you say that. 0134 

6.9 Idiomatic arguments 

Our arguments so far have been phrased in a clear premise–conclusion 
format. Unfortunately, real-life arguments are seldom so neat and clean. 
Instead we often find convoluted wording or extraneous material. Important 
parts of the argument may be omitted or only hinted at. And it may be hard to 
pick out the premises and conclusion. It often takes hard work to reconstruct 
a clearly stated argument from a passage. 

Logicians like to put the conclusion (here italicized) last: 

“Socrates is human. If he’s human, then he’s mortal. So Socrates is mortal 

H 
(H ⊃ M) 
∴ M 

But people sometimes put the conclusion first, or in the middle: 

“Socrates must be mortal. After all, he’s human. And if he’s human, he’s mortal.” 

“Socrates is human. So he must be mortal – since if he’s human, he’s mortal.” 

Here “must” and “so” indicate the conclusion (which always goes last when 
we translate into logic). Here are some typical words that help us pick out 
premises and conclusion: 

These often indicate premises: 

Because, for, since, after all … 
I assume that, as we know … 
For these reasons … 



 

These often indicate conclusions: 

Hence, thus, so, therefore … 
It must be, it can’t be … 
This proves (or shows) that … 

When you don’t have this help, ask yourself what is argued from (these are 
the premises) and what is argued to (this is the conclusion). 

In reconstructing an argument, first pick out the conclusion. Then symbol-
ize the premises and conclusion; this may involve untangling idioms like “A 
unless B” (which translates as “A or B”). If you don’t get a valid argument, try 
adding unstated but implicit premises (you may need to add a premise that 
uses letters that only occur once); using the “principle of charity,” interpret 
unclear reasoning in the way that gives the best argument. 

Here’s a twisted argument – and how it goes into premises and a conclu-
sion: 

The gun must have been shot recently! It’s still hot. 

The gun is still hot. 
∴ The gun was shot recently. 

H 
∴ S 0135 

Since this seems to presume an implicit premise, we add a plausible one that 
makes the argument valid. Then we translate into logic and test for validity: 

If the gun is still hot, then it was shot recently. (implicit) 
The gun is still hot. 
∴ The gun was shot recently. 

(H ⊃ S) Valid 
H 
∴ S 

6.9a Exercise: LogiCola E (F & I) 
First appraise intuitively. Then pick out the conclusion, translate into logic, and 
determine validity using the truth-assignment test. Supply implicit premises if 
needed. 



 

 

Knowledge is good in itself only if it’s desired for its own sake. So knowledge 
is good in itself, since it’s desired for its own sake. 

(G0 ⊃ D1) = 1 Invalid 
D1 = 1 
∴ G0 = 0 

The conclusion is “So knowledge is good in itself”: “G.” 

1. Knowledge can’t be sensation. If it were, then we couldn’t know something that 
we aren’t presently sensing. [From Plato.] 

2. Presuming that we followed the map, then unless the map is wrong there’s a 
pair of lakes just over the pass. We followed the map. There’s no pair of lakes just 
over the pass. Hence the map is wrong. 

3. If they blitz but don’t get to our quarterback, then our wide receiver will be 
open. So our wide receiver won’t be open, as shown by the fact that they won’t 
blitz. 

4. My true love will marry me only if I buy her a Rolls–Royce. It follows that she’ll 
marry me, since I’ll buy her a Rolls–Royce. 

5. The basic principles of ethics can’t be self-evident truths, since if they were 
then they’d largely be agreed upon by intelligent people who have studied ethics. 

6. That your views are logically consistent is a necessary condition for your views 
to be sensible. Your views are logically consistent. So your views are sensible. 

7. If Ohio State wins but Nebraska doesn’t, then the Ohio Buckeyes will be nation-
al champions. So it looks like the Ohio Buckeyes won’t be national champs, since 
Nebraska clearly is going to win. 

8. The filter capacitor can’t be blown. This is indicated by the following facts. 
You’d hear a hum, presuming that the silicon diodes work but the filter capacitor 
is blown. But you don’t hear a hum. And the silicon diodes work. 

9. There’s oxygen present. And so there will be a fire! My reason for saying this is 
that only if there’s oxygen present will there be a fire. 

10. We have no moral knowledge. This is proved by the fact that if we did have 
moral knowledge then basic moral principles would be either provable or self-
evident. But they aren’t provable. And they aren’t self-evident either. 

11. It must be a touchdown! We know that it’s a touchdown if the ball broke the 
plane of the end zone. 0136 

12. Assuming that it wasn’t an inside job, then the lock was forced unless the thief 
stole the key. The thief didn’t steal the key. We may infer that the robbery was an 
inside job, inasmuch as the lock wasn’t forced. 

13. It must be the case that we don’t have any tea bags. After all, we’d have tea 
bags if your sister Carol drinks tea. Of course, Carol doesn’t drink tea. 



 

14. We can’t still be on the right trail. We’d see the white Appalachian Trail blazes 
on the trees if we were still on the right trail. 

15. If God is omnipotent, then he could make hatred inherently good – unless 
there’s a contradiction in hatred being inherently good. But there’s no contradic-
tion in this. And God is omnipotent. I conclude that God could make hatred inher-
ently good. [From William of Ockham, who saw morality as depending on God’s 
will.] 

16. Taking the exam is a sufficient condition for getting an A. You didn’t take the 
exam. This means you don’t get an A. 

17. If Texas or Arkansas wins, then I win my $10 bet. I guess I win $10. Texas just 
beat Oklahoma 17–14! 

18. Unless you give me a raise, I’ll quit. Therefore I’m quitting! 

19. Empirical knowledge must be impossible. My reason for saying this is that 
there’s no independent way to prove that our senses are reliable. Empirical 
knowledge would be possible, of course, only if there were an independent way to 
prove that our senses are reliable. 

20. It’s virtuous to try to do what’s good. On the other hand, it’s not virtuous to try 
to do what’s socially approved. I conclude that, contrary to cultural relativism, 
“good” doesn’t mean “socially approved.” I assume, of course, that if “good” meant 
“socially approved” and it was virtuous to try to do what’s good, then it would be 
virtuous to try to do what’s socially approved. 

21. Moral conclusions can be deduced from non-moral premises only if “good” is 
definable using non-moral predicates. But “good” isn’t so definable. So moral 
conclusions can’t be deduced from non-moral premises. 

22. The world can’t need a cause. If the world needed a cause, then so would God. 

6.10 S-rules 

Inference rules are rules of valid reasoning that provide the building blocks 
for formal proofs (which we begin in the next chapter). We’ll name our 
inference rules after the type of wff that they operate on, like AND or IF-
THEN. 

S-rules simplify statements. Our first S-rule simplifies AND statements and 
is itself called “AND”: 

AND 
(P • Q) 
–––––– 

P, Q 

AND statement, so both parts are true. 



 

 

From an AND statement, we can infer each part: “It’s cold and windy; there-
fore it’s cold, therefore it’s windy.” Negative parts work the same way: 0137 

It’s not cold and it’s not windy. 
∴ It’s not cold. 
∴ It’s not windy. 

(∼C • ∼W) 
––––––––– 
∼C, ∼W 

But from a NOT-BOTH statement (where “∼” is outside the parentheses), we 
can infer nothing about the truth or falsity of the parts: 

You’re not both in Paris and in Quebec. 
∴ No conclusion. 

∼(P • Q) 
––––––– 
nil 

From “∼(P • Q)” we can’t tell the truth value for “P” or for “Q”; we only know 
that not both are true (at least one is false). Use the AND rule only on AND 
forms, like these three: 

(A • B) 
(∼C • D) 

((E ≡ F) • (G ∨ H)) 

Never use the AND rule on a formula that starts with a NOT, like “∼(J • K)”; 
this formula has the NOT-BOTH form, not the AND form. ANDs always start 
with “(x” and then have a wff and “• ” and a wff and “)”; ANDs never start with 
a squiggle (“∼”). 

Our second S-rule operates on NOR (NOT-EITHER) statements and is itself 
called “NOR”: 

NOR 
∼(P ∨ Q) 
–––––––– 

∼P, ∼Q 

NOT-EITHER is true, so both parts are false. 



 

From a NOR, we can infer the opposite of each part: “It’s not either cold or 
windy, therefore it’s not cold, therefore it’s not windy.” Negative parts work 
the same way: infer the opposite of each part (the opposite of “∼A” being 
“A”): 

Not either not-A or not-B. 
∴ A 
∴ B 

∼(∼A ∨ ∼B) 
––––––––––– 
A, B 

∼(part-1 ∨ part-2) 
––––––––––––––––––––– 
op of part-1, op of part-2 

But a positive OR tells us nothing about the truth or falsity of each part: 

You’re in either Paris or Quebec. 
∴ No conclusion. 

(P ∨ Q) 
––––––– 
nil 

Here we can’t tell the truth or falsity of each part; we only know that at least 
one part is true. Use the NOR rule only on NOR forms, like these three below:  

∼(A ∨ B) 
∼(∼C ∨ D) 

∼((E ≡ F) ∨ (G • H)) 

0138 NORs always start with a squiggle. Never use the NOR rule on an OR, like 
“(J ∨ K).” 

Our final S-rule operates on NIF (FALSE IF-THEN) statements: 

NIF 
∼(P ⊃ Q) 
–––––––– 

P, ∼Q 

FALSE IF-THEN, so first part true, second part false. 

Since “(P ⊃ Q)” means “We don’t have P-true-and-Q-false,” so also “∼(P ⊃ Q)” 



 

 

means “We do have P-true-and-Q-false.” NIF isn’t very intuitive; memorize it 
instead of appealing to intuitions or examples. You’ll use this rule so much in 
doing proofs that it’ll become second nature. 

If a NIF has negative parts, again infer part-1 and the opposite of part-2: 

∼(∼A ⊃ B) 
–––––––––– 
∼A, ∼B 

∼(A ⊃ ∼B) 
–––––––––– 
A, B 

∼(∼A ⊃ ∼B) 
––––––––––– 
∼A, B 

∼(part-1 ⊃ part-2) 
–––––––––––––––– 
part-1, op of part-2 

A positive IF-THEN “(A ⊃ B)” says nothing about each part’s truth or falsity. 
Use the NIF rule only on NIF (FALSE IF-THEN) forms, like these: 

∼(A ⊃ B) 
∼(∼C ⊃ D) 

∼((E ≡ F) ⊃ (G • H)) 

NIFs always start with a squiggle. Never use the NIF rule on an IF-THEN, like 
“(J ⊃ K).” 

And so you can simplify AND, NOR, and NIF: 

AND 

  
(P • Q) 
–––––– 

P, Q 

NOR 

   
∼(P ∨ Q) 
––––––– 
∼P, ∼Q 

NIF 

   
∼(P ⊃ Q) 
––––––– 

P, ∼Q 

“AND statement, so both 
parts are true.” 

“NOT-EITHER is true, so both 
parts are false.” 

“FALSE IF-THEN, so first part 
true, second part false.” 

I suggest that, as you apply these rules, you mumble the little saying at the 
bottom – like “AND statement, so both parts are true.” To understand why 
our rules work, recall our basic truth tables: 

• A true AND must have both parts true. 



 

• A false OR must have both parts false. 
• A false IF-THEN must have the first part true and the second part false. 

Try to learn the inference rules so well that they become automatic. You’ll 
use these rules a lot when you do formal proofs; and learning formal proofs 
will be so much easier if you’ve already mastered the inference rules. 0139 

6.10a Exercise: LogiCola F (SE & SH) 
Draw any simple conclusions (a letter or its negation) that follow from these premis-
es. If nothing follows, leave blank. 

(C • ∼R) 
––––––– 

    

(C • ∼R) 
––––––– 

C, ∼R 

“AND statement, so both parts are true.” 

1. (P • U) 
1. –––––– 

2. (L ∨ C) 
2. –––––– 

3. (∼N ⊃ S) 
3. ––––––––– 

4. ∼(F ⊃ M) 
4. –––––––– 

5. ∼(R ∨ S) 
5. –––––––– 

6. ∼(J • ∼N) 
6. ––––––––– 

7. ∼(I ∨ ∼V) 
7. ––––––––– 

8. (F ⊃ ∼G) 
8. –––––––– 

9. (∼Q • B) 
9. –––––––– 



 

 

10. ∼(H ⊃ ∼I) 
10. ––––––––– 

11. (∼O ∨ ∼X) 
11. ––––––––– 

12. (∼T ⊃ ∼H) 
12. –––––––––– 

13. ∼(∼N ∨ ∼E) 
13.  –––––––––– 

14. ∼(Q • T) 
14. –––––––– 

15. (M ∨ ∼W) 
15. ––––––––– 

16. (∼D • ∼Z) 
16. ––––––––– 

17. ∼(∼Y ⊃ G) 
17. –––––––––– 

18. ∼(∼A • ∼J) 
18. –––––––––– 

19. ∼(∼U ⊃ ∼L) 
19. ––––––––––– 

20. (∼K ∨ B) 
20. –––––––– 

6.11 I-rules 

I-rules infer a conclusion from two premises. Our first I-rule is called “NOT-
BOTH,” since the larger wff has to have this form: 

NOT-BOTH 

∼(P • Q) 
P 

–––––– 
∼Q 

∼(P • Q) 
Q 

–––––– 
∼P 

affirm one part 

NOT-BOTH are true, this one is, so the other one isn’t. 



 

To infer with NOT-BOTH, we must affirm one part: 

You’re not both in Paris and also in Quebec. 
You’re in Paris. 
∴ You’re not in Quebec. 

You’re not both in Paris and also in Quebec. 
You’re in Quebec. 
∴ You’re not in Paris. 

Negative parts work the same way; if we affirm one, we can deny the other: 
0140 

∼(∼A • ∼B) 
∼A 
–––––––––– 
B 

∼(A • ∼B) 
A 
––––––––– 
B 

∼(A • ∼B) 
∼B 
––––––––– 
∼A 

In each case, the second premise affirms (says the same as) one part. And the 
conclusion denies (says the opposite of) the other part. 

If we deny one part, we can’t draw a conclusion about the other part: 

Not both are true. 
The first is false. 
––––––––––––––– 
No conclusion. 

∼(P • Q) 
∼P 
––––––– 
nil 

You’re not both in Paris and also in Quebec. 
You’re not in Paris. 
∴ No conclusion. 



 

 

You may want to conclude “Q”; but maybe “Q” is false too (maybe both parts 
are false, maybe you’re in neither place). To infer with NOT-BOTH, we must 
affirm one part. 

Our second I-rule is called “OR,” since the larger wff has to have this form: 

OR 

(P ∨ Q) 
∼P 

–––––– 
Q 

(P ∨ Q) 
∼Q 

–––––– 
P 

deny one part 

At least one is true, this one isn’t, so the other one is. 

To infer with OR, we must deny one part: 

At least one hand (left or right) has candy. 
The left hand doesn’t. 
∴ The right hand does. 

At least one hand (left or right) has candy. 
The right hand doesn’t. 
∴ The left hand does. 

Negative parts work the same; if we deny one part, we can affirm the other: 

(∼A ∨ ∼B) 
A 
––––––––– 
∼B 

(A ∨ ∼B) 
∼A 
–––––––– 
∼B 

(A ∨ ∼B) 
B 
–––––––– 
A 

In each case, the second premise denies (says the opposite of) one part. And 
the conclusion affirms (says the same as) the other part. 



 

If we affirm one part, we can’t draw a conclusion about the other part: 

At least one is true. 
The first is true. 
–––––––––––––––– 
No conclusion. 

(L ∨ R) 
L 
–––––– 
nil 

At least one hand (left or right) has candy. 
The left hand has candy. 
∴ No conclusion. 0141 

You may want to conclude “∼R”; but maybe “R” is true (maybe both parts are 
true, maybe both hands have candy). To infer with OR, we must deny one 
part. 

Our final I-rule is called “IF-THEN.” The first form here is modus ponens 
(Latin for “affirming mode”) and the second is modus tollens (“denying 
mode”): 

IF-THEN 

(P ⊃ Q) 
P 

–––––– 
Q 

(P ⊃ Q) 
∼Q 

–––––– 
∼P 

affirm 1st or deny 2nd 

“IF-THEN, affirm the first, so affirm the second.” 

“IF-THEN, deny the second, so deny the first.” 

To infer with IF-THEN, we must affirm the first part or deny the second part: 

If you’re a dog, then you’re an animal. 
You’re a dog. 
∴ You’re an animal. 

(D ⊃ A) 
D 
–––––– 



 

 

A 

If you’re a dog, then you’re an animal. 
You’re not an animal. 
∴ You’re not a dog. 

(D ⊃ A) 
∼A 
–––––– 
∼D 

Negative parts work the same. If we affirm the first, we can affirm the second: 

(∼A ⊃ ∼B) 
∼A 
––––––––– 
∼B 

(A ⊃ ∼B) 
A 
–––––––– 
∼B 

(∼A ⊃ B) 
∼A 
–––––––– 
B 

And if we deny the second, we can deny the first: 

(∼A ⊃ ∼B) 
B 
––––––––– 
A 

(A ⊃ ∼B) 
B 
–––––––– 
∼A 

(∼A ⊃ B) 
∼B 
–––––––– 
A 

If we deny the first part or affirm the second, we can’t conclude anything 



 

about the other part: 

If you’re a dog, then you’re an animal. 
You’re not a dog. 
∴ No conclusion. 

(D ⊃ A) 
∼D 
–––––– 
nil 

If you’re a dog, then you’re an animal. 
You’re an animal. 
∴ No conclusion. 

(D ⊃ A) 
A 
–––––– 
nil 

“You’re not an animal” doesn’t follow in the first case, since you could be a 
cat. “You’re a dog” doesn’t follow in the second case, since again you could be 
a cat. To infer with an if-then, we need the first part true or the second part 
false. 

In using I-rules, determine the larger wff’s form and apply its rule: 0142 

NOT-BOTH 

   

OR 

   

IF-THEN 

   

∼(P • Q) 
P 

–––––– 
∼Q 

   

(P ∨ Q) 
∼P 

–––––– 
Q 
   

(P ⊃ Q) 
P 

–––––– 
Q 
   

∼(P • Q) 
Q 

–––––– 
∼P 

(P ∨ Q) 
∼Q 

–––––– 
P 

(P ⊃ Q) 
∼Q 

–––––– 
∼P 

affirm one part deny one part affirm 1st or deny 2nd 

“NOT-BOTH are true, this one is, 
so the other one isn’t.” 

“At least one is true, this one 
isn’t, so the other one is.” 

“IF-THEN, affirm the first, so 
affirm the second.” 

“IF-THEN, deny the second, so 
deny the first.” 

Again, say the little slogan to yourself as you derive the conclusion. (This is 
much less confusing than saying the individual formulas.) 



 

 

6.11a Exercise: LogiCola F (IE & IH) 
Draw any simple conclusions (a letter or its negation) that follow from these premis-
es. If nothing follows, leave blank. 

(∼Q ∨ ∼M) 
Q 

––––––––– 
    

(∼Q ∨ ∼M) 
Q 

––––––––– 
∼M 

“At least one is true, this one isn’t, so the other one is.” (OR) 

1. ∼(W • T) 
1. W 1. –––––––– 

2. (S ∨ L) 
2. S 2. –––––– 

3. (H ⊃ ∼B) 
3. H 3. –––––––– 

4. (X ⊃ E) 
4. E 4. –––––– 

5. ∼(B • S) 
5. ∼S 5. ––––––– 

6. (∼Y ⊃ K) 
6. Y 6. –––––––– 

7. (K ∨ ∼R) 
7. R 7. –––––––– 

8. ∼(∼S • W) 
8. ∼W 8. ––––––––– 



 

9. (U ⊃ G) 
9. U 9. ––––––– 

10. (∼I ∨ K) 
10. K 10. ––––––– 

11. (C ⊃ ∼V) 
11. ∼C 11. –––––––– 

12. (∼N ∨ ∼A) 
12. A 12. –––––––––– 

13. ∼(V • H) 
13. ∼V 13. ––––––– 

14. (∼A ⊃ ∼E) 
14. ∼E 14. ––––––––– 

15. ∼(∼F • ∼O) 
15. ∼O 15. –––––––––– 

16. (Y ∨ ∼C) 
16. ∼C 16. –––––––– 

17. (∼L ⊃ M) 
17. ∼M 17. –––––––– 

18. (∼M ∨ ∼B) 
18. ∼M 18. –––––––––– 

19. ∼(∼F • ∼Q) 
19. F 19. –––––––––– 

20. ∼(A • ∼Y) 
20. A 20. ––––––––– 
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6.12 Mixing S- and I-rules 

Our next exercise mixes S- and I-rule inferences. Use S-rules (the first group 
below) to simplify one premise and I-rules (the second group) to infer from 
two premises: 

AND 
(P • Q) 
–––––– 

P, Q 

NOR 
∼(P ∨ Q) 
–––––––– 

∼P, ∼Q 

NIF 
∼(P ⊃ Q) 
–––––––– 

P, ∼Q 

 

NOT-BOTH 
 

∼(P • Q) 
P 

–––––– 
∼Q 

∼(P • Q) 
Q 

–––––– 
∼P 

affirm one part 

OR 
 

(P ∨ Q) 
∼P 

–––––– 
Q 

(P ∨ Q) 
∼Q 

–––––– 
P 

deny one part 

IF-THEN 
 

(P ⊃ Q) 
P 

–––––– 
Q 

(P ⊃ Q) 
∼Q 

–––––– 
∼P 

affirm 1st or deny 2nd 

In using these rules, focus on the (larger) wff’s form. Simplify AND, NOR, and 
NIF. Infer from NOT-BOTH (with one part true), OR (with one part false), or 
IF-THEN (with the first part true or the second part false). 



 

6.12a Exercise: LogiCola F (CE & CH) 
Draw any simple conclusions (a letter or its negation) that follow from these premis-
es. If nothing follows, leave blank. 

(A ⊃ ∼B) 
∼A 

–––––––– 
     

(no conclusion) 

“IF-THEN, need first part true or second part false.” 

1. ∼(U • T) 
1. T 1. ––––––– 

2. ∼(∼B ∨ C) 2. ––––––––– 

3. (X ⊃ F) 
3. ∼X 3. –––––– 

4. (∼S ∨ T) 4. –––––––– 

5. (P • ∼Q) 5. ––––––– 

6. (∼I ⊃ ∼N) 
6. N 6. ––––––––– 

7. (D ∨ ∼J) 
7. D 7. –––––––– 

8. ∼(L • M) 8. –––––––– 

9. ∼(∼C ⊃ D) 9. ––––––––– 

10. ∼(∼R • A) 
10. ∼R 10. ––––––––– 



 

 

11. ∼(M ∨ ∼I) 11. ––––––––– 

12. ∼(R • ∼G) 
12. ∼G 12. ––––––––– 

13. (∼L • S) 13. ––––––– 

14. (∼L ∨ ∼T) 
14. L 14. ––––––––– 

15. (A ⊃ ∼B) 15. –––––––– 

16. ∼(W • ∼X) 
16. ∼W 16. ––––––––– 
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6.13 Extended inferences 

S- and I-rules can work on larger formulas too. Suppose you meet a big AND, 
“((C ≡ D) • (E ⊃ F)).” Visualize it as having two parts – and derive both: 

((C ≡ D) • (E ⊃ F)) 
–––––––––––––––– 
(C ≡ D), (E ⊃ F) 

Say to yourself “AND statement, so both parts are true.” Or suppose you meet 
a big NOR, “∼(∼A ∨ (B • ∼C)).” Visualize it as having two parts – and derive 
the opposite of each: 

∼(∼A ∨ (B • ∼C)) 
–––––––––––––––– 
A, ∼(B • ∼C)) 

Say to yourself “NOT-EITHER is true, so both parts are false.” Or suppose you 
meet a big NIF, “∼((C • D) ⊃ (E ⊃ F)).” Again, visualize it as having two parts 
and say “FALSE IF-THEN, so first part true, second part false”: 

∼((C • D) ⊃ (E ⊃ F)) 
––––––––––––––––– 



 

(C • D), ∼(E ⊃ F) 

Focus on a complex wff’s FORM; we can simplify an AND, NOR, or NIF. 
I-rules require two wffs; the larger wff’s FORM tells us what further wff we 

need to complete the inference. Suppose you meet a big NOT-BOTH state-
ment, “∼((A ≡ B) • (C • (D ∨ F))).” You can infer with it if you have one part 
true: 

∼((A ≡ B) • (C • (D ∨ F))) 
(A ≡ B) 
––––––––––––––––––––– 
∼(C • (D ∨ F)) 

∼((A ≡ B) • (C • (D ∨ F))) 
(C • (D ∨ F)) 
––––––––––––––––––––– 
∼(A ≡ B) 

Say to yourself, “NOT-BOTH are true, this one is, so the other one isn’t.” Or 
suppose you meet a big OR, “(∼A ∨ (B • ∼C)).” You can infer with it if you 
have one part false: 

(∼A ∨ (B • ∼C)) 
A 
–––––––––––––– 
(B • ∼C) 

(∼A ∨ (B • ∼C)) 
∼(B • ∼C) 
–––––––––––––– 
∼A 

Say to yourself “At least one is true, this one isn’t, so the other one is.” Or 
suppose you meet a big IF-THEN, “((C • D) ⊃ (E ⊃ F)).” You can infer with it if 
you have the first part true or the second part false: 0145 

((C • D) ⊃ (E ⊃ F)) 
(C • D) 
–––––––––––––––– 
(E ⊃ F) 

((C • D) ⊃ (E ⊃ F)) 
∼(E ⊃ F) 
–––––––––––––––– 
∼(C • D) 



 

 

Say to yourself “IF-THEN, affirm the first, so affirm the second” or “IF-THEN, 
deny the second, so deny the first.” 

6.14 Logic and computers 

Digital computers were developed using ideas from propositional logic. The 
key insight is that electrical devices can simulate logic formulas. 

Computers represent “1” and “0” by different physical states; “1” might be 
a positive voltage and “0” a zero voltage. An and-gate would then be a physi-
cal device with two inputs and one output, where the output has a positive 
voltage if and only if both inputs have positive voltages: 

A → 

B → 
AND- 
GATE → (A • B) 

An or-gate would be similar, except that the output has a positive voltage if 
and only if at least one input has a positive voltage. For any formula, we can 
construct an input-output device (a logic gate) that mimics that formula. 

A computer basically converts input information into 1’s and 0’s, manipu-
lates these by logic gates and memory devices, and converts the resulting 1’s 
and 0’s back into a useful output. So propositional logic is central to comput-
ers. One of my logic teachers at the University of Michigan, Art Burks, was 
part of the team in the 1940s that produced the ENIAC, the first large-scale 
electronic computer. So propositional logic had a key role in moving us into 
the computer age. 

  



7 Propositional Proofs 

Formal proofs are a convenient and powerful way to test arguments. They 
also help develop our reasoning skills. From now on, formal proofs will be 
our main method of testing arguments. 

7.1 Easier proofs 

A formal proof breaks an argument into a series of small steps. We’ll use an 
indirect proof strategy, whereby we first assume the opposite of what we 
want to prove. You may remember such proofs from high-school geometry; 
to prove that two angles are equal, assume that they aren’t equal – and then 
show that this is impossible, because it leads to a contradiction. Similarly, to 
prove that the butler committed the murder, assume that he didn’t do it – and 
then show that this is impossible, because it leads to a contradiction. 

Here’s an English analog of a formal proof. Suppose we know premises 1 to 
4 and want to prove from them that the butler committed the murder: 

1   The only people in the mansion were the butler and the maid. 
2   If the only people in the mansion were the butler and the maid, then the butler 
or the maid did it. 
3   If the maid did it, then she had a motive. 
4   The maid didn’t have a motive. 
∴   The butler did it. 

1   T 
2   (T ⊃ (B ∨ M)) 
3   (M ⊃ H) 
4   ∼H 
∴   B  

First assume that the butler didn’t do it (∼B). From 1 and 2, conclude that the 
butler or the maid did it (B ∨ M). From 3 and 4, conclude that the maid didn’t 
do it (∼M). From these last two, conclude that the butler did it (B). This 
contradicts our assumption, that the butler didn’t do it, which is then shown 
to be false; so therefore, given premises 1 to 4, the butler did it. So the butler 
is guilty – throw him in jail! 

A formal proof is like this, but in symbols. For now, we’ll use a three-step 



 

 

strategy: (1) START (assume the conclusion’s opposite), (2) S&I (derive 
further lines using S- and I-rules until we get a contradiction), and (3) RAA 
(derive the original conclusion). We START this way with our butler argu-
ment: 0147 

1   T 
2   (T ⊃ (B ∨ M)) 
3   (M ⊃ H) 
4   ∼H 
[ ∴ B 
5   asm: ∼B 

In the START step here, we block off the conclusion “B” (which reminds us 
not to use it in deriving further lines) and add “asm:” (for “assume”) followed 
by its simpler contradictory, “∼B.” 

We begin the S&I step by glancing at the complex wffs (any wffs longer 
than a single letter or its negation) and noticing their forms; here the com-
plex wffs are 2 and 3, both IF-THENs. Recall that AND, NOR, and NIF simplify 
using S-rules, while NOT-BOTH, OR, and IF-THEN can infer using I-rules, if 
certain extra wffs are available. Since the complex lines here, 2 and 3, are IF-
THENs, we can infer with each if we have the first part true or the second 
part false – which we do have (2 has 1, and 3 has 4). So we derive further 
formulas: 

* 1   T 
* 2   (T ⊃ (B ∨ M)) 
* 3   (M ⊃ H) 
* 4   ∼H 
* [ ∴ B 
* 5   asm: ∼B 
* 6   ∴ (B ∨ M) {from 1 and 2} 
* 7   ∴ M {from 5 and 6} 
* 8   ∴ H {from 3 and 7} 

Lines 1 and 2 give us line 6 by an IF-THEN rule: “IF-THEN, affirm the first, so 
affirm the second.” Likewise, lines 5 and 6 give us line 7 by the OR rule: “At 
least one is true, this one isn’t, so the other one is.” Finally, lines 3 and 7 give 
us line 8 by an IF-THEN rule: “IF-THEN, affirm the first, so affirm the second.” 
And so we get a contradiction between line 4 and 8 (“∼H” and “H”). 

Here we starred lines 2, 3, and 6 when we used them to derive further 
formulas. Starring a line tells us that we’ve used it and so it can be somewhat 
ignored as we try to derive further steps. I’ll talk more about this later. 

Once we get a contradiction, as between lines 4 and 8 above, we finish the 
proof using RAA (reductio ad absurdum, reduction to absurdity), which 



 

roughly says that an assumption that leads to a contradiction is thereby 
wrong, and so we can conclude the opposite – which is our original conclu-
sion. At the same time, we block off the lines from the last assumption on 
down to show that they can’t be used in deriving further lines. This finishes 
our first formal proof: 0148 

* 1   T Valid 
* 2   (T ⊃ (B ∨ M)) 
* 3   (M ⊃ H) 
* 4   ∼H 
* [ ∴ B 
* 5 ┌ asm: ∼B 
* 6 │ ∴ (B ∨ M) {from 1 and 2} 
* 7 │ ∴ M {from 5 and 6} 
* 8 └ ∴ H {from 3 and 7} 
* 9 ∴ B {from 5; 4 contradicts 8} 

Now that we’ve seen a complete proof, we need to firm up the details. 
(1) START: Start a proof by blocking off the original conclusion (blocking 

off tells us to ignore a line for the rest of the proof) and assuming its simpler 
contradictory. Two wffs are contradictories if they are exactly alike except 
that one starts with an additional “∼.” So if our conclusion is “A,” then assume 
“∼A”; but if our conclusion is “∼A,” then assume “A.” And if our conclusion is 
“(A ⊃ B),” then assume “∼(A ⊃ B).” Always add or subtract an initial squiggle 
to the original conclusion. 

(2) S&I: Derive further lines using S- and I-rules until there’s a contradic-
tion. Focus on complex wffs that aren’t starred or blocked off. Note the forms 
of these wffs: AND, NOR, and NIF can be simplified, while NOT-BOTH, OR, and 
IF-THEN can infer if certain other wffs are available. In our sample proof, our 
first inference has to involve lines 2 or 3, both IF-THENs and the only com-
plex wffs. Often we can do a proof in various ways; so instead of deriving “H” 
in line 8, we could use 3 and 4 to get “∼M,” which would contradict 7. 

We starred lines 2, 3, and 6. Here are the starring rules – with examples: 

Star any wff simplified using an S-rule. 

* (A • B) 
–––––––– 

∴ A 
∴ B 

Star the longer wff used in an I-rule inference. 

* (A ⊃ B) 
A 

–––––––– 
∴ B 



 

 

Starred lines are redundant, since shorter lines have the same information. 
When you do a proof, focus on complex wffs that aren’t starred or blocked off 
and what can be derived from them.1 While starring is optional, it simplifies 
your work because it leads you to ignore lines that won’t help to derive 
further formulas. 0149 

In the S&I part, we’ll use these old S- and I-rules (these and the three new 
rules hold regardless of what pairs of contradictory wffs replace “P” / “∼P” 
and “Q” / “∼Q”): 

AND 
(P • Q) 
–––––– 

P, Q 

NOR 
∼(P ∨ Q) 
–––––––– 

∼P, ∼Q 

NIF 
∼(P ⊃ Q) 
–––––––– 

P, ∼Q 

 

NOT-BOTH 
 

∼(P • Q) 
P 

–––––– 
∼Q 

∼(P • Q) 
Q 

–––––– 
∼P 

OR 
 

(P ∨ Q) 
∼P 

–––––– 
Q 

(P ∨ Q) 
∼Q 

–––––– 
P 

IF-THEN 
 

(P ⊃ Q) 
P 

–––––– 
Q 

(P ⊃ Q) 
∼Q 

–––––– 
∼P 

 
1 Once you’ve starred a complex wff, it’s pointless to again use an S-rule on it or to again use it 
as the longer wff in an I-rule inference. So we can focus on complex wffs that aren’t starred or 
blocked off. But it may be useful to use a starred wff as the smaller wff in an I-rule inference. 
Suppose you starred “(A • B)” when you simplified it. If you have an unstarred “((A • B) ⊃ C),” 
feel free to combine it with the starred “(A • B)” to derive “C.” 



 

And we’ll add three new S-rules – NN, IFF, and NIFF – which we won’t use 
much: 

NN 
  

∼∼P 
–––– 

P 

NN (NOT-NOT, double negation) eliminates “∼∼” from the beginning of a wff. 

IFF 
  

(P ≡ Q) 
–––––––––––––– 
(P ⊃ Q), (Q ⊃ P) 

IFF breaks a biconditional into two conditionals. 

NIFF 
 

∼(P ≡ Q) 
–––––––––––––– 
(P ∨ Q), ∼(P • Q) 

NIFF1 breaks up the denial of a biconditional; since “(P ≡ Q)” says that P and 
Q have the same truth value, “∼(P ≡ Q)” says that P and Q have different 
truth values – so one or the other is true, but not both.2 

In applying S- and I-rules, look for lines of these forms to simplify: 

AND NOR NIF 
NN IFF NIFF 

 or a pair of lines to infer from: 

 
1 To avoid confusion, pronounce “NIFF” as “knife” and “IFF” with a long “i” to rhyme with this. 
2 The S-rules also work in the other direction (so “(A • B)” follows from “A” and “B”); but our 
proofs standardly use S-rules only to simplify. The LogiCola software lets you use two further 
rules: (1) Given “(A ≡ B)”: if you have one side true, you can get the other true – and if you 
have one side false, you can get the other false. (2) Given “∼(A ≡ B)”: if you have one side true, 
you can get the other false – and if you have one side false, you can get the other true. 



 

 

NOT-BOTH (with one part true) 
OR (with one part false) 

IF-THEN (with part-1 true or part-2 false) 

Note that there’s a rule for each of the nine possible complex wff forms. 
Here’s another summary of the S- and I-rules (here “→” means we can 

infer whole lines from left to right): 0150  

S-rules (Simplifying) 
AND, NOR, NIF, NN, IFF, NIFF 

(P • Q) → P, Q 
∼(P ∨ Q) → ∼P, ∼Q 
∼(P ⊃ Q) → P, ∼Q 

∼∼P → P 

(P ≡ Q) → (P ⊃ Q), (Q ⊃ P) 
∼(P ≡ Q) → (P ∨ Q), ∼(P • Q) 

I-rules (Inferring) 
NOT-BOTH, OR, IF-THEN 

∼(P • Q), P → ∼Q 
∼(P • Q), Q → ∼P 

(P ∨ Q), ∼P → Q 
(P ∨ Q), ∼Q → P 

(P ⊃ Q), P → Q 
(P ⊃ Q), ∼Q → ∼P 

Read “(P • Q) → P, Q” as “from ‘(P • Q)’ one may derive ‘P’ and also ‘Q.’” As 
you learn formal proofs, it’s good to practice the S- and I-rules. 

(3) RAA: Rule RAA says roughly that an assumption is false if it leads to 
contradictory wffs (a pair, like “H” and “∼H,” that’s identical except that one 
starts with an additional squiggle). The contradictory wffs may occur any-
where in the proof (as premises, assumptions, or derived lines), as long as 
neither is blocked off. Here’s a more precise formulation of RAA: 

RAA: Suppose some pair of not-blocked-off lines has contradictory wffs. Then 
block off all the lines from the last not-blocked-off assumption on down and 
infer a line consisting in “∴” followed by a contradictory of that assumption. 

Blocking off forbids deriving further lines using the assumption (which now 



 

is shown to be false). This is important later, with multiple-assumption 
proofs. 

Here are some key definitions about formal proofs: 

• A premise is a line consisting of a wff by itself (with no “asm:” or “∴”). 
• An assumption is a line consisting of “asm:” and then a wff. 
• A derived line is a line consisting of “∴” and then a wff. 
• A formal proof is a vertical sequence of zero or more premises followed by one 

or more assumptions or derived lines, where each derived line follows from 
previously not-blocked-off lines by one of the S- and I-rules listed above or by 
RAA, and each assumption is blocked off using RAA. 

By the last definition, the stars, line numbers, blocked off original conclusion, 
and justifications aren’t strictly part of the proof. Instead, these are unofficial 
helps – and some people skip them. On the other hand, some people like to 
mention the inference rule (like “AND” or “IF-THEN”) in the justifications; so 
then a justification might say “{from 1 and 2 using IF-THEN}.” If you’re taking 
a logic course, follow your teacher’s directives about such matters. 

A wff is a theorem if it’s provable from zero premises. Here’s a premiseless 
proof (it’s valid because the conclusion is a logically necessary truth): 0151 

* [ ∴ ((A • B) ⊃ A) Valid 
* 1 ┌ asm: ∼((A • B) ⊃ A) 
* 2 │ ∴ (A • B) {from 1} 
* 3 │ ∴ ∼A {from 1} 
* 4 └ ∴ A {from 2} 
* 5 ∴ ((A • B) ⊃ A) {from 1; 3 contradicts 4} 

Again, our proof strategy has three steps. (1) START: Block off the conclusion 
and assume its contradictory (line 1). (2) S&I: Derive lines 2 to 4 and get a 
contradiction. (3) RAA: Use RAA to finish the proof (line 5). Our proof 
strategy gets more complex later, with invalid arguments and multiple 
assumptions. 

A formal proof, as we defined it, must use the specified S- and I-rules or 
RAA to derive further lines. We can’t just use any intuitive inferences that we 
think will work (although advanced users sometimes take such shortcuts1). 
 
1 An example of a shortcut is to infer “C” immediately from previous lines “(A ⊃ (B ⊃ C))” and 
“A” and “B” in a single step. Don’t take such shortcuts unless your teacher allows them and 
you’re very sure that your formula validly follows, even though not licensed by our rules. I 
suggest that you thoroughly master our normal strategy before taking shortcuts; otherwise, 
your reliance on shortcuts may lead to steps that don’t validly follow and may prevent you 
from learning our proof procedure (which will always work if you do it right). LogiCola doesn’t 
allow shortcuts. 

Why not add further inference rules to our system, since this would shorten some proofs? 



 

 

There can be legitimate variations in how to do proofs. So one person might 
always simplify “(A • B)” into the two parts, “A” first and then “B.” Another 
might derive “B” first and then “A.” Yet another person might derive just the 
part needed to get a contradiction. All three approaches are fine and allowed 
by the LogiCola computer proof exercises. 

LogiCola proofs begin by giving you a randomly generated problem (there 
are many millions of possible problems). You keep giving the next line until 
the problem is done. You can vary the kind of problem: Easier / Harder / 
Mixed – and Valid / Invalid / Combined. As you begin, turn on training 
wheels; this gives you suggestions about what to do next – but these sugges-
tions disappear as you make progress in the exercise. You can also have the 
program automatically star lines that you’ve used, or you can choose to star 
yourself (but you don’t lose points for getting these wrong). You can click (or 
touch) an arrow at the top to give you the next line or to finish the problem 
(but without getting credit for the problem); some students use these arrows 
to step through sample proofs before starting them on their own. You can 
click (or touch) a previous line to copy it into the answer space, so you can 
then modify it to give your next line. If you’re new to proofs, I suggest you 
read the LogiCola help-section on proofs. 

7.1a Exercise: LogiCola F (TE & TH) and GEV 4. 
Prove each of these arguments to be valid (all are valid). 0152 

(A ∨ B) 
∴ (∼A ⊃ B) 

* 1   (A ∨ B) Valid 
* [ ∴ (∼A ⊃ B) 
* 2 ┌ asm: ∼(∼A ⊃ B) 
* 3 │ ∴ ∼A {from 2} 
* 4 │ ∴ ∼B {from 2} 
* 5 └ ∴ B {from 1 and 3} 
* 6 ∴ (∼A ⊃ B) {from 2; 4 contradicts 5} 

1. (A ⊃ B) 
∴ (∼B ⊃ ∼A) 

2. A 
∴ (A ∨ B) 

 
The downside is that this would also make our system harder to learn. Our proof system was 
designed in a practical way, to produce reasonably short proofs and yet be easy to learn and 
use. 



 

3. (A ⊃ B) 
(∼A ⊃ B) 
∴ B 

4. ((A ∨ B) ⊃ C) 
∴ (∼C ⊃ ∼B) 

5. (A ∨ B) 
(A ⊃ C) 
(B ⊃ D) 
∴ (C ∨ D) 

6. (A ⊃ B) 
(B ⊃ C) 
∴ (A ⊃ C) 

7. (A ≡ B) 
∴ (A ⊃ (A • B)) 

8. ∼(A ∨ B) 
(C ∨ B) 
∼(D • C) 
∴ ∼D 

9. (A ⊃ B) 
∼B 
∴ (A ≡ B) 

10. (A ⊃ (B ⊃ C)) 
∴ ((A • B) ⊃ C) 

7.1b Exercise: LogiCola F (TE & TH) and GEV 5. 
First appraise intuitively. Then translate into logic (using the letters given) and 
prove to be valid (all are valid). 

1. If Heather saw the butler putting the tablet into the drink and the tablet was 
poison, then the butler killed the deceased. 
Heather saw the butler putting the tablet into the drink. 
∴ If the tablet was poison, then the butler killed the deceased. [Use H, T, and B.] 



 

 

2. If we had an absolute proof of God’s existence, then our will would be irresisti-
bly attracted to do right. 
If our will were irresistibly attracted to do right, then we’d have no free will. 
∴ If we have free will, then we have no absolute proof of God’s existence. [Use P, 
I, and F; from Immanuel Kant and John Hick, who used it to explain why God 
doesn’t make his existence more evident.] 

3. If racism is clearly wrong, then either it’s factually clear that all races have 
equal abilities or it’s morally clear that similar interests of all beings ought to be 
given equal consideration. 
It’s not factually clear that all races have equal abilities. 
If it’s morally clear that similar interests of all beings ought to be given equal 
consideration, then similar interests of animals and humans ought to be given 
equal consideration. 
∴ If racism is clearly wrong, then similar interests of animals and humans ought to 
be given equal consideration. [Use W, F, M, and A. This argument is from Peter 
Singer, who fathered the animal liberation movement.] 0153 

4. The universe is orderly (like a watch that follows complex laws). 
Most orderly things we’ve examined have intelligent designers. 
We’ve examined a large and varied group of orderly things. 
If most orderly things we’ve examined have intelligent designers and we’ve 
examined a large and varied group of orderly things, then probably most orderly 
things have intelligent designers. 
If the universe is orderly and probably most orderly things have intelligent de-
signers, then the universe probably has an intelligent designer. 
∴ The universe probably has an intelligent designer. [Use U, M, W, P, and D. This 
is a form of the argument from design for the existence of God.] 

5. If God doesn’t want to prevent evil, then he isn’t all good. 
If God isn’t able to prevent evil, then he isn’t all powerful. 
Either God doesn’t want to prevent evil, or he isn’t able. 
∴ Either God isn’t all powerful, or he isn’t all good. [Use W, G, A, and P. This form 
of the problem-of-evil argument is from the ancient Greek Empiricus.] 

6. If Genesis gives the literal facts, then birds were created before humans. (Gene-
sis 1:20–26) 
If Genesis gives the literal facts, then birds weren’t created before humans. (2:5–
20) 
∴ Genesis doesn’t give the literal facts. [Use L and B. Origen, an early Christian 
thinker, gave similar textual arguments against taking Genesis literally.] 



 

7. The world had a beginning in time. 
If the world had a beginning in time, there was a cause for the world’s beginning. 
If there was a cause for the world’s beginning, a personal being caused the world. 
∴ A personal being caused the world. [Use B, C, and P. This “Kalam argument” 
for the existence of God is from William Craig and James Moreland; they defend 
premise 1 by various considerations, including the Big Bang theory, the law of 
entropy, and the impossibility of an actual infinite.] 

8. If the world had a beginning in time and it didn’t just pop into existence without 
any cause, then the world was caused by God. 
If the world was caused by God, then there is a God. 
There is no God. 
∴ Either the world had no beginning in time, or it just popped into existence with-
out any cause. [Use B, P, C, and G; from J. L. Mackie, who based his “There is no 
God” premise on the problem-of-evil argument.] 

9. Closed systems tend toward greater entropy (a more randomly uniform distri-
bution of energy). (This is the second law of thermodynamics.) 
If closed systems tend toward greater entropy and the world has existed through 
endless time, then the world would have achieved almost complete entropy (for 
example, everything would be about the same temperature). 
The world has not achieved almost complete entropy. 
If the world hasn’t existed through endless time, then the world had a beginning 
in time. 
∴ The world had a beginning in time. [Use G, E, C, and B; from William Craig and 
James Moreland.] 0154 

10. If time stretches back infinitely, then today wouldn’t have been reached. 
If today wouldn’t have been reached, then today wouldn’t exist. 
Today exists. 
If time doesn’t stretch back infinitely, then there was a first moment of time. 
∴ There was a first moment of time. [I, R, T, F] 

11. If there are already laws preventing discrimination against women, then if the 
Equal Rights Amendment (ERA) would rob women of many current privileges 
then it is the case both that passage of the ERA would be against women’s inter-
ests and that women ought to work for its defeat. 
The ERA would rob women of many current privileges (like draft exemption). 
∴ If there are already laws preventing discrimination against women, then wom-
en ought to work for the defeat of the ERA. [L, R, A, W] 



 

 

12. If women ought never to be discriminated against, then we should pass cur-
rent laws against discrimination and block future discriminatory laws against 
women. 
The only way to block future discriminatory laws against women is to pass an 
Equal Rights Amendment (ERA). 
If we should block future discriminatory laws against women and the only way to 
do this is to pass an ERA, then we ought to pass an ERA. 
∴ If women ought never to be discriminated against, then we ought to pass an 
ERA. [N, C, F, O, E] 

13. If the claim that knowledge-is-impossible is true, then we understand the 
word “know” but there are no cases of knowledge. 
If we understand the word “know,” then the meaning of “know” comes either 
from a verbal definition or from experienced examples of knowledge. 
If the meaning of “know” comes from a verbal definition, then there’s an agreed-
upon definition of “know.” 
There’s no agreed-upon definition of “know.” 
If the meaning of “know” comes from experienced examples of knowledge, then 
there are cases of knowledge. 
∴ The claim that knowledge-is-impossible is false. [Use I, U, C, D, E, and A. This is 
a form of the paradigm-case argument.] 

14. If p is the greatest prime, then n (we may stipulate) is one plus the product of 
all the primes less than p. 
If n is one plus the product of all the primes less than p, then either n is prime or 
else n isn’t prime but has prime factors greater than p. 
If n is prime, then p isn’t the greatest prime. 
If n has prime factors greater than p, then p isn’t the greatest prime. 
∴ p isn’t the greatest prime. [Use G, N, P, and F. This proof that there’s no great-
est prime number is from the ancient Greek mathematician Euclid.] 

7.2 Easier refutations 

This example shows how our proof strategy works with an invalid argument: 
0155 

The only people in the mansion were the butler and the maid. 
If the only people in the mansion were the butler and the maid, then the butler or 
the maid did it. 
If the maid did it, then she had a motive. 
∴ The butler did it. 

T 
(T ⊃ (B ∨ M)) 



 

(M ⊃ H) 
∴ B 

The butler’s lawyer could object: “Yes, the only people in the mansion were 
the butler and the maid, and so one of them did the killing. But maybe the 
maid had a motive and did it, instead of the butler. The known facts are 
consistent with this possibility and so don’t show that the butler did it.” This 
is a refutation – a set of possible truth conditions making the premises all true 
and conclusion false. A refutation shows that the argument is invalid. 

If we try to prove this invalid argument, we’ll assume the conclusion’s 
opposite and then use S- and I-rules to derive whatever we can: 

* 1   T 
* 2   (T ⊃ (B ∨ M))  
* 3   (M ⊃ H) 
* [ ∴ B 
* 4   asm: ∼B 
* 5   ∴ (B ∨ M) {from 1 and 2} 
* 6   ∴ M {from 4 and 5} 
* 7   ∴ H {from 3 and 6} 

We can derive no contradiction. So we instead construct a refutation box – 
which contains the simple wffs (letters or their negations) from not-blocked-
off lines (1, 4, 6, and 7) – and we plug its truth values into the original argu-
ment: 

1   T1 = 1 Invalid 
2   (T1 ⊃ (B0 ∨ M1))  = 1  
3   (M1 ⊃ H1)  = 1 
[ ∴ B0 = 0 

T, M, H, ∼B 

These truth conditions make the premises all true and conclusion false. This 
shows that the argument is invalid. 

With invalid arguments, we don’t get a contradiction; instead, we get a 
refutation. To construct the refutation box, take the simple wffs (letters or 
their negation) from not-blocked-off lines and put them in a box (their order 
doesn’t matter). Our box also could be written in either of these two ways: 

T = 1, M = 1, H = 1, B = 0 

T1, M1, H1, B0 



 

 

Then plug the truth values into the original argument. If the refutation box 
has a letter by itself (like “T” or “M”), then mark that letter true (“1”) in the 
0156 argument; if it has the negation of a letter (like “∼B”), then mark that 
letter false (“0”); any letters that don’t occur in the box are unknown (“?” – 
the refutation may still work). Then see if these values make the premises all 
true and conclusion false; if they do, then that shows that the argument is 
invalid. 

If we don’t get the premises all true and conclusion false, then we did 
something wrong. The faulty line (a premise that’s false or unknown, or a 
conclusion that’s true or unknown) is the problem’s source; maybe we 
derived something from it wrongly, or didn’t derive something we should 
have derived. So our strategy tells us if something goes wrong and where to 
look to fix the problem. 

Let me summarize. Suppose we want to show that, given certain premises, 
the butler must be guilty. We assume that he’s innocent and try to show that 
this leads to a contradiction. If we get a contradiction, then his innocence is 
impossible and so he must be guilty. But if we get no contradiction, then we 
may be able to show how the premises could be true while yet he is innocent, 
thus showing that the argument against him is invalid. 

Here’s another invalid argument and its refutation: 

* 1   (A0 ⊃ B1) = 1 Invalid 
* 2   (C0 ∨ B1) = 1 
* [ ∴ (C0 ∨ A0) = 0 
* 3   asm: ∼(C ∨ A) 
* 4   ∴ ∼C {from 3} 
* 5   ∴ ∼A {from 3} 
* 6   ∴ B {from 2 and 4} 

B, ∼A, ∼C 

We get nothing from “(A ⊃ B)” in line 1, since we’d need “A” true or “B” false. 
So we’ve derived all we can. Since we have no contradiction, we construct a 
refutation box. We plug the values into the argument and get the premises all 
true and conclusion false. This shows that the argument is invalid. 

Our proof strategy so far looks like this (we’ll add another step later): 

1. START: Block off the conclusion and add “asm:” followed by the conclusion’s 
simpler contradictory. 

2. S&I: Go through the complex wffs that aren’t starred or blocked off and use 
these to derive new wffs using S- and I-rules. Star any wff you simplify using an S-
rule, or the longer wff used in an I-rule inference. If you get a contradiction, then 
go to RAA (step 3). If you can’t derive anything further and yet have no contradic-



 

tion, then go to REFUTE (step 4). 

3. RAA: Apply the RAA rule. You’ve proved the argument valid. 

4. REFUTE: Construct a refutation box containing any simple wffs (letters or their 
negation) that aren’t blocked off. In the original argument, mark each letter “1” or 
“0” or “?” depending on whether the box has the letter or its negation or neither. If 
these truth conditions make the premises all true and conclusion false, then this 
shows the argument to be invalid. 0157 

7.2a Exercise: LogiCola GEI 6. 
Prove each of these arguments to be invalid (all are invalid). 

(A ⊃ B) 
∴ (B ⊃ A) 

* 1   (A0 ⊃ B1) = 1 Invalid 
* [ ∴ (B1 ⊃ A0) = 0 
* 2   asm: ∼(B ⊃ A) 
* 3   ∴ B {from 2} 
* 4   ∴ ∼A {from 2} 

B, ∼A 
 

1. (A ∨ B) 
∴ A 

2. (A ⊃ B) 
(C ⊃ B) 
∴ (A ⊃ C) 

3. ∼(A • ∼B) 
∴ ∼(B • ∼A) 

4. (A ⊃ (B • C)) 
(∼C ⊃ D) 
∴ ((B • ∼D) ⊃ A) 

5. ((A ⊃ B) ⊃ (C ⊃ D)) 
(B ⊃ D) 
(A ⊃ C) 
∴ (A ⊃ D) 



 

 

6. (A ≡ B) 
(C ⊃ B) 
∼(C • D) 
D 
∴ ∼A 

7. ((A • B) ⊃ C) 
∴ (B ⊃ C) 

8. ((A • B) ⊃ C) 
((C ∨ D) ⊃ ∼E) 
∴ ∼(A • E) 

9. ∼(A • B) 
(∼A ∨ C) 
∴ ∼(C • B) 

10. ∼(∼A • ∼B) 
∼C 
(D ∨ ∼A) 
((C • ∼E) ⊃ ∼B) 
∼D 
∴ ∼E 

7.2b Exercise: LogiCola GEC7. 
First appraise intuitively. Then translate into logic (using the letters given) and say 
whether valid (and give a proof) or invalid (and give a refutation). 

1. If the butler shot Jones, then he knew how to use a gun. 
If the butler was a former marine, then he knew how to use a gun. 
The butler was a former marine. 
∴ The butler shot Jones. [Use S, K, and M.] 

2. If virtue can be taught, then either there are professional virtue-teachers or 
there are amateur virtue-teachers. 
If there are professional virtue-teachers, then the Sophists can teach their stu-
dents to be virtuous. 
If there are amateur virtue-teachers, then the noblest Athenians can teach their 
children to be virtuous. 
The Sophists can’t teach their students to be virtuous and the noblest Athenians 
(such as the great leader Pericles) can’t teach their children to be virtuous. 
∴ Virtue can’t be taught. [Use V, P, A, S, and N; from Plato’s Meno.] 0158 



 

3. It would be equally wrong for a sadist (through drugs that would blind you but 
not hurt your mother) to have blinded you permanently before or after your 
birth. 
If it would be equally wrong for a sadist (through such drugs) to have blinded you 
permanently before or after your birth, then it’s false that one’s moral right to 
equal consideration begins at birth. 
If infanticide is wrong and abortion isn’t wrong, then one’s moral right to equal 
consideration begins at birth. 
Infanticide is wrong. 
∴ Abortion is wrong. [Use E, R, I, and A.] 

4. If you hold a moral belief and don’t act on it, then you’re inconsistent. 
If you’re inconsistent, then you’re doing wrong. 
∴ If you hold a moral belief and act on it, then you aren’t doing wrong. [Use M, A, 
I, and W. Is the conclusion plausible? What more plausible conclusion follows 
from these premises?] 

5. If Socrates escapes from jail, then he’s willing to obey the state only when it 
pleases him. 
If he’s willing to obey the state only when it pleases him, then he doesn’t really 
believe what he says and he’s inconsistent. 
∴ If Socrates really believes what he says, then he won’t escape from jail. [Use E, 
W, R, and I; from Plato’s Crito. Socrates had been jailed and sentenced to death for 
teaching philosophy. He discussed with his friends whether he ought to escape 
from jail instead of suffering the death penalty.] 

6. Either Socrates’s death will be perpetual sleep, or if the gods are good then his 
death will be an entry into a better life. 
If Socrates’s death will be perpetual sleep, then he shouldn’t fear death. 
If Socrates’s death will be an entry into a better life, then he shouldn’t fear death. 
∴ Socrates shouldn’t fear death. [Use P, G, B, and F; from Plato’s Crito – except 
for which dropped premise?] 

7. If predestination is true, then God causes us to sin. 
If God causes us to sin and yet damns sinners to eternal punishment, then God 
isn’t good. 
∴ If God is good, then either predestination isn’t true or else God doesn’t damn 
sinners to eternal punishment. [Use P, C, D, and G. This attacks the views of the 
American colonial thinker Jonathan Edwards.] 

8. If determinism is true, then we have no free will. 
If Heisenberg’s interpretation of quantum physics is correct, some events aren’t 
causally necessitated by prior events. 
If some events aren’t causally necessitated by prior events, determinism is false. 
∴ If Heisenberg’s interpretation of quantum physics is correct, then we have free 
will. [D, F, H, E] 0159 



 

 

9. Government’s function is to protect life, liberty, and the pursuit of happiness. 
The British colonial government doesn’t protect these. 
The only way to change it is by revolution. 
If government’s function is to protect life, liberty, and the pursuit of happiness 
and the British colonial government doesn’t protect these, then the British coloni-
al government ought to be changed. 
If the British colonial government ought to be changed and the only way to 
change it is by revolution, then we ought to have a revolution. 
∴ We ought to have a revolution. [Use G, B, O, C, and R. This summarizes the 
reasoning behind the American Declaration of Independence. Premise 1 was 
claimed to be self-evident, premises 2 and 3 were backed by historical data, and 
premises 4 and 5 were implicit conceptual bridge premises.] 

10. The apostles’ teaching either comes from God or is of human origin. 
If it comes from God and we kill the apostles, then we will be fighting God. 
If it’s of human origin, then it’ll collapse of its own accord. 
If it’ll collapse of its own accord and we kill the apostles, then our killings will be 
unnecessary. 
∴ If we kill the apostles, then either our killings will be unnecessary or we will be 
fighting God. [Use G, H, K, F, C, and U. This argument, from Rabbi Gamaliel in 
Acts 5:34–9, is perhaps the most complex reasoning in the Bible.] 

11. If materialism (the view that only matter exists) is true, then idealism is false. 
If idealism (the view that only minds exist) is true, then materialism is false. 
If mental events exist, then materialism is false. 
If materialists think their theory is true, then mental events exist. 
∴ If materialists think their theory is true, then idealism is true. [M, I, E, T] 

12. If determinism is true and cruelty is wrong, then the universe contains una-
voidable wrong actions. 
If the universe contains unavoidable wrong actions, then we ought to regret the 
universe as a whole. 
If determinism is true and regretting cruelty is wrong, then the universe contains 
unavoidable wrong actions. 
∴ If determinism is true, then either we ought to regret the universe as a whole 
(the pessimism option) or else cruelty isn’t wrong and regretting cruelty isn’t 
wrong (the “nothing matters” option). [Use D, C, U, O, and R. This sketches the 
reasoning in William James’s “The Dilemma of Determinism.” James thought that 
when we couldn’t prove one side or the other to be correct (as on the issue of 
determinism), it was more rational to pick our beliefs in accord with practical 
considerations. He argued that these weighed against determinism.] 



 

13. If a belief is proved, then it’s worthy of acceptance. 
If a belief isn’t disproved but is of practical value to our lives, then it’s worthy of 
acceptance. 
If a belief is proved, then it’s not disproved. 
∴ If a belief is proved or is of practical value to our lives, then it’s worthy of accep-
tance. [P, W, D, V] 0160 

14. If you’re consistent and think that stealing is normally permissible, then you’ll 
consent to the idea of others stealing from you in normal circumstances. 
You don’t consent to the idea of others stealing from you in normal circum-
stances. 
∴ If you’re consistent, then you won’t think that stealing is normally permissible. 
[C, N, Y] 

15. If the meaning of a term is always the object it refers to, then the meaning of 
“Fido” is Fido. 
If the meaning of “Fido” is Fido, then if Fido is dead then the meaning of “Fido” is 
dead. 
If the meaning of “Fido” is dead, then “Fido is dead” has no meaning. 
“Fido is dead” has meaning. 
∴ The meaning of a term isn’t always the object it refers to. [Use A, B, F, M, and 
H; from Ludwig Wittgenstein, except for which dropped premise?] 

16. God is all powerful. 
If God is all powerful, then he could have created the world in any logically pos-
sible way and the world has no necessity. 
If the world has no necessity, then we can’t know the way the world is by abstract 
speculation apart from experience. 
∴ We can’t know the way the world is by abstract speculation apart from exper-
ience. [Use A, C, N, and K; from the medieval William of Ockham.] 

17. If God changes, then he changes for the worse or for the better. 
If he’s perfect, then he doesn’t change for the worse. 
If he changes for the better, then he isn’t perfect. 
∴ If God is perfect, then he doesn’t change. [C, W, B, P] 

18. If belief in God has scientific backing, then it’s rational. 
No conceivable scientific experiment could decide whether there is a God. 
If belief in God has scientific backing, then some conceivable scientific experiment 
could decide whether there is a God. 
∴ Belief in God isn’t rational. [B, R, D] 



 

 

19. Every event with finite probability eventually takes place. 
If the nations of the world don’t get rid of their nuclear weapons, then there’s a 
finite probability that humanity will eventually destroy the world. 
If every event with finite probability eventually takes place and there’s a finite 
probability that humanity will eventually destroy the world, then humanity will 
eventually destroy the world. 
∴ Either nations of the world will get rid of their nuclear weapons, or humanity 
will eventually destroy the world. [E, R, F, H] 

20. If the world isn’t ultimately absurd, then conscious life will go on forever and 
the world process will culminate in an eternal personal goal. 
If there is no God, then conscious life won’t go on forever. 
∴ If the world isn’t ultimately absurd, then there is a God. [Use A, F, C, and G; 
from the Jesuit scientist, Pierre Teilhard de Chardin.] 0161 

21. If it rained here on this date 500 years ago and there’s no way to know wheth-
er it rained here on this date 500 years ago, then there are objective truths that 
we cannot know. 
If it didn’t rain here on this date 500 years ago and there’s no way to know 
whether it rained here on this date 500 years ago, then there are objective truths 
that we cannot know. 
There’s no way to know whether it rained here on this date 500 years ago. 
∴ There are objective truths that we cannot know. [R, K, O] 

22. If you know that you don’t exist, then you don’t exist. 
If you know that you don’t exist, then you know some things. 
If you know some things, then you exist. 
∴ You exist. [K, E, S] 

23. We have an idea of a perfect being. 
If we have an idea of a perfect being, then this idea is either from the world or 
from a perfect being. 
If this idea is from a perfect being, then there is a God. 
∴ There is a God. [Use I, W, P, and G; from René Descartes, except for which 
dropped premise?] 

24. The distance from A to B can be divided into an infinity of spatial points. 
One can cross only one spatial point at a time. 
If one can cross only one spatial point at a time, then one can’t cross an infinity of 
spatial points in a finite time. 
If the distance from A to B can be divided into an infinity of spatial points and one 
can’t cross an infinity of spatial points in a finite time, then one can’t move from A 
to B in a finite time. 
If motion is real, then one can move from A to B in a finite time. 
∴ Motion isn’t real. [Use D, O, C, M, and R; from the ancient Greek Zeno of Elea, 
who denied the reality of motion.] 



 

25. If the square root of 2 equals some fraction of positive whole numbers, then 
(we stipulate) the square root of 2 equals x/y and x/y is simplified as far as it can 
be. 
If the square root of 2 equals x/y, then 2 = x2/y2. 
If 2 = x2/y2, then 2y2 = x2. 
If 2y2 = x2, then x is even. 
If x is even and 2y2 = x2, then y is even. 
If x is even and y is even, then x/y isn’t simplified as far as it can be. 
∴ The square root of 2 doesn’t equal some fraction of positive whole numbers. 
[F, E, S, T, T´, X, Y] 

7.3 Harder proofs 

Our present proof strategy has four steps: START, S&I, RAA, and REFUTE. 
Some arguments require a further multiple-assumption ASSUME step. Here’s 
an example: 0162 

If the butler was at the party, then he fixed the drinks and poisoned the deceased. 
If the butler wasn’t at the party, then the detective would have seen him leave the 
mansion and would have reported this. 
The detective didn’t report this. 
∴ The butler poisoned the deceased. 

(A ⊃ (F • P)) 
(∼A ⊃ (S • R)) 
∼R 
∴ P 

START by assuming “∼P”: 

1   (A ⊃ (F • P)) 
2   (∼A ⊃ (S • R))  
3   ∼R 
[ ∴ P 
4   asm: ∼P 

Then we’re stuck. We can’t apply the S- or I-rules or RAA; and we don’t have 
enough simple wffs for a refutation. What can we do? On our newly expanded 
strategy, when we get stuck we’ll make another assumption. We pick a 
complex wff we haven’t used yet (1 or 2), pick left or right side, and assume it 
or its negation. Here we decide to assume the negation of the left side of line 
1: 



 

 

1   (A ⊃ (F • P)) 
2   (∼A ⊃ (S • R)) 
3   ∼R 
[ ∴  P 
4   asm: ∼P 
5      asm: ∼A {break 1} 

We use S- and I-rules to derive further lines; but now we use two stars (one 
for each assumption). Lines 3 and 8 contradict: 

** 1   (A ⊃ (F • P)) 
** 2   (∼A ⊃ (S • R)) 
** 3   ∼R 
** [ ∴ P 
** 4   asm: ∼P 
** 5      asm: ∼A {break 1} 
** 6      ∴ (S • R) {from 2 and 5} 
** 7      ∴ S {from 6} 
** 8      ∴ R {from 6} 

Since we have a contradiction, we (1) block off the lines from the last as-
sumption on down (this tells us not to use these lines, here 5 to 8, as we 
derive further lines and look for a contradiction), (2) derive the opposite of 
this last assumption, and (3) erase star strings with more stars than the 
number of remaining assumptions: 0163 

1   (A ⊃ (F • P)) 
2   (∼A ⊃ (S • R)) 
3   ∼R 
[ ∴ P 
4   asm: ∼P 
5    ┌ asm: ∼A {break 1} 
6    │ ∴ (S • R) {from 2 and 5} 
7    │ ∴ S {from 6} 
8    └ ∴ R {from 6} 
9 ∴ A {from 5; 3 contradicts 8} 

Then we use S- and I-rules to derive further lines, and thus we get a second 
contradiction (lines 4 and 12): 

* 11   (A ⊃ (F • P)) 
1* 2   (∼A ⊃ (S • R)) 
* 13   ∼R 
* 1 [ ∴ P 



 

* 14 ┌ asm: ∼P 
* 15 │ ┌  asm: ∼A {break 1} 
* 16 │ │  ∴ (S • R) {from 2 and 5} 
* 17 │ │  ∴ S {from 6} 
* 18 │ └  ∴ R {from 6} 
* 19 │ ∴ A {from 5; 3 contradicts 8} 
* 10 │ ∴ (F • P) {from 1 and 9} 
* 11 │ ∴ F {from 10} 
* 12 └ ∴ P {from 10} 
 

Finally, we apply RAA again, this time on our original assumption: 

* 11   (A ⊃ (F • P)) Valid 
1* 2   (∼A ⊃ (S • R)) 
* 13   ∼R 
* 1 [ ∴ P 
* 14 ┌ asm: ∼P 
* 15 │ ┌  asm: ∼A {break 1} 
* 16 │ │  ∴ (S • R) {from 2 and 5} 
* 17 │ │  ∴ S {from 6} 
* 18 │ └  ∴ R {from 6} 
* 19 │ ∴ A {from 5; 3 contradicts 8} 
* 10 │ ∴ (F • P) {from 1 and 9} 
* 11 │ ∴ F {from 10} 
* 12 └ ∴ P {from 10} 
* 13 ∴ P {from 4; 4 contradicts 12} 

To prove the argument valid, we need to get a contradiction for each assump-
tion. We’ve accomplished this, and our proof is done. 0164 

The most difficult part of multiple-assumption proofs is knowing when to 
make another assumption and what to assume. 

(1) Make another assumption when you’re stuck. You may get that deep 
sense of confusion in your gut. More technically, being stuck means that you 
can’t apply S- or I-rules further – and yet you can’t prove the argument VALID 
(since you have no contradiction) or INVALID (since you don’t have enough 
simple wffs for a refutation). Don’t make additional assumptions too soon; 
it’s too soon if you can still apply S- or I-rules or RAA. Always use S- and I-
rules and RAA to their limit before resorting to further assumptions. 

(2) When you’re stuck, make an assumption that breaks a complex wff. 
Look for a complex wff that isn’t starred, blocked off, or broken (a wff is 
broken if we already have one side or its negation but not what we need to 
conclude anything new). This wff will have a NOT-BOTH, OR, or IF-THEN 
form: 



 

 

∼(A • B) 
(A ∨ B) 
(A ⊃ B) 

Assume either side or its negation. Here we could use any of these: 

asm: A 
asm: ∼A 
asm: B 

asm: ∼B 

While any of the four works, our proof will go differently depending on which 
we use. Suppose we want to break “(A ⊃ B)”; compare what happens if we 
assume “A” or assume “∼A”: 

(immediate gratification) 

(A ⊃ B) 
asm: A 
∴ B 

(delayed gratification) 

(A ⊃ B) 
asm: ∼A 
… 

In the first case, we assume “A” and use an I-rule on “(A ⊃ B)” to get “B.” In 
the second case, we assume “∼A” and get nothing; but we may be able to use 
an I-rule on “(A ⊃ B)” later, after the “∼A” assumption dies (if it does) and we 
derive “A.” Delayed gratification tends to produce shorter proofs; it saves an 
average of one line, with the gain coming on invalid arguments. So sometimes 
a proof is simpler if you assume one thing rather than another. 

Do the same with longer wffs. To break “((A • B) ⊃ (C • D)),” make any of 
these four assumptions: 

asm: (A • B) 
asm: ∼(A • B) 
asm: (C • D) 

asm: ∼(C • D) 

Assume one side or its negation. Never assume the denial of a whole line. 
Never make an assumption to break a wff that’s already broken. A wff is 

broken if we already have one side or its negation but not what we need to 



 

conclude anything new. So a “(A ⊃ B)” line, for example, is broken if we 
already have a not-blocked-off line with “∼A” or with “B.” In such a case, it 
won’t help us to make an assumption to break “(A ⊃ B).” 0165 

After making our second assumption, we star the same things as before, 
but now we use more stars: 

Use one star for each live assumption. 

Star any wff simplified using an S-rule. 

** (A • B) 
–––––––– 

∴ A 
∴ B 

Star the longer wff used in an I-rule inference. 

** (A ⊃ B) 
A 

–––––––– 
∴ B 

A live assumption is one that isn’t blocked off. So if we have two live assump-
tions, then we use two stars. And if we have three live assumptions, then we 
use three stars. As before, starred lines are redundant; when doing a proof, 
focus on complex wffs that aren’t starred or blocked off and what can be 
derived from them. Multiple stars mean “You can ignore this line for now, but 
you may have to use it later.” 

When we have multiple live assumptions and find a contradiction: 

• block off the lines from the last live assumption on down (these lines are no 
longer to be used in the proof – since they depend on an assumption that 
we’ve concluded to be false); 

• derive the opposite of this last assumption; and 
• erase star strings with more stars than the number of remaining live assump-

tions (since the blocked-off lines that make these starred lines redundant are 
no longer available). 

Note the part about erasing star strings with more stars than the number of 
remaining live assumptions. So if our second assumption dies, leaving us with 
just one live assumption, then we erase double-stars (“**”). 

When our last live assumption leads to a contradiction, we’ve proved the 
argument to be valid. Valid arguments seldom require more than two as-
sumptions. But if we get stuck again after making a second assumption, then 
we’ll need to make a third assumption. 



 

 

Our final proof strategy can prove or refute any propositional argument 
(as we’ll show in §15.4): 

1. START: Block off the conclusion and add “asm:” followed by the conclusion’s 
simpler contradictory. 

2. S&I: Go through the complex wffs that aren’t starred or blocked off and use 
these to derive new wffs using S- and I-rules. Star (with one star for each live 
assumption) any wff you simplify using an S-rule, or the longer wff used in an I-
rule inference. If you get a contradiction, then go to RAA (step 3). If you can’t 
derive anything further but there is a complex wff that isn’t starred or blocked off 
or broken, then go to ASSUME (step 4). If you can’t derive anything further and 
every complex wff is starred or blocked off or broken, then go to REFUTE (step 5). 
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3. RAA: Apply the RAA rule. If all assumptions are now blocked off, you’ve proved 
the argument valid. Otherwise, erase star strings having more stars than the 
number of live assumptions and return to step 2. 

4. ASSUME: Pick a complex wff that isn’t starred or blocked off or broken. This wff 
will have one of these forms: “∼(A • B),” “(A ∨ B),” or “(A ⊃ B).” Assume one side 
or its negation and return to step 2. 

5. REFUTE: Construct a refutation box containing any simple wffs (letters or their 
negation) that aren’t blocked off. In the original argument, mark each letter “1” or 
“0” or “?” depending on whether the box has the letter or its negation or neither. 
These truth conditions should make the premises all true and conclusion false – 
thus showing the argument to be invalid. 

Let’s do another valid one (we’ll do invalid later). Here, after deriving a 
few lines, we get stuck and can’t go further. So we need to make another 
assumption. We could assume the left or right sides (or their denials) of lines 
1, 2, or 4. 

* 1   (A ⊃ (B • C)) 
* 2   (B ⊃ (A • C)) 
* [ ∴ ((A ∨ B) ⊃ C) 
* 3   asm: ∼((A ∨ B) ⊃ C) 
* 4   ∴ (A ∨ B) {from 3} 
* 5   ∴ ∼C {from 3} 

We decide to assume the left side of line 1. Then we derive further lines to get 
a contradiction (5 and 9). We add double stars, since we have two live 
assumptions. 



 

** 1   (A ⊃ (B • C)) 
** 2   (B ⊃ (A • C)) 
** [ ∴ ((A ∨ B) ⊃ C) 
** 3   asm: ∼((A ∨ B) ⊃ C) 
** 4   ∴ (A ∨ B) {from 3} 
** 5   ∴ ∼C {from 3} 
** 6      asm: A {break 1} 
** 7      ∴ (B • C) {from 1 and 6} 
** 8      ∴ B {from 7} 
** 9      ∴ C {from 7} 

We then block off from assumption 6 down, conclude its opposite in line 10, 
and (since we now have only one live assumption) erase double stars. As we 
continue the proof, we ignore blocked-off lines (the original conclusion and 6 
to 9). 0167 

* 11   (A ⊃ (B • C)) 
* 12   (B ⊃ (A • C)) 
* 1[ ∴ ((A ∨ B) ⊃ C) 
* 13   asm: ∼((A ∨ B) ⊃ C) 
* 14   ∴ (A ∨ B) {from 3} 
* 15   ∴ ∼C {from 3} 
* 16    ┌ asm: A {break 1} 
* 17    │ ∴ (B • C) {from 1 and 6} 
* 18    │ ∴ B {from 7} 
* 19    └ ∴ C {from 7} 
* 10   ∴ ∼A {from 6; 5 contradicts 9} 

We then derive further lines and get our second contradiction (lines 10 and 
13). We apply RAA again, this time on our original assumption. 

1* 1   (A ⊃ (B • C)) Valid 
1* 2   (B ⊃ (A • C)) 
1* [ ∴ ((A ∨ B) ⊃ C) 
1* 3  ┌ asm: ∼((A ∨ B) ⊃ C) 
1* 4  │ ∴ (A ∨ B) {from 3} 
1* 5  │ ∴ ∼C {from 3} 
1* 6  │┌ asm: A {break 1} 
1* 7  ││ ∴ (B • C) {from 1 and 6} 
1* 8  ││ ∴ B {from 7} 
1* 9  │└ ∴ C {from 7} 
* 10  │ ∴ ∼A {from 6; 5 contradicts 9} 
* 11  │ ∴ B {from 4 and 10} 
* 12  │ ∴ (A • C) {from 2 and 11} 
* 13  └ ∴ A {from 12} 
* 14   ∴ ((A ∨ B) ⊃ C) {from 3; 10 contradicts 13} 



 

 

Since every assumption has led to a contradiction, our proof is done. 

7.3a Exercise: LogiCola GHV 8. 
Prove each of these arguments to be valid (all are valid). 0168 

(B ∨ A) 
(B ⊃ A) 
∴ ∼(A ⊃ ∼A) 

* 11   (B ∨ A) Valid 
1* 2   (B ⊃ A) 
* 1 [ ∴ ∼(A ⊃ ∼A) 
* 13 ┌ asm: (A ⊃ ∼A) 
* 14 │┌ asm: B {break 1} 
* 15 ││ ∴ A {from 2 and 4} 
* 16 │└ ∴ ∼A {from 3 and 5} 
* 17 │ ∴ ∼B {from 4; 5 contradicts 6} 
* 18 │ ∴ A {from 1 and 7} 
* 19 └ ∴ ∼A {from 3 and 8} 
* 10 ∴ ∼(A ⊃ ∼A) {from 3; 8 contradicts 9} 

1. (A ⊃ B) 
(A ∨ (A • C)) 
∴ (A • B) 

2. (((A • B) ⊃ C) ⊃ (D ⊃ E)) 
D 
∴ (C ⊃ E) 

3. (B ⊃ A) 
∼(A • C) 
(B ∨ C) 
∴ (A ≡ B) 

4. (A ∨ (D • E)) 
(A ⊃ (B • C)) 
∴ (D ∨ C) 

5. ((A ⊃ B) ⊃ C) 
(C ⊃ (D • E)) 
∴ (B ⊃ D) 



 

6. (∼(A ∨ B) ⊃ (C ⊃ D)) 
(∼A • ∼D) 
∴ (∼B ⊃ ∼C) 

7. (∼A ≡ B) 
∴ ∼(A ≡ B) 

8. (A ⊃ (B • ∼C)) 
C 
((D • ∼E) ∨ A) 
∴ D 

7.3b Exercise: LogiCola GHV 9. 
First appraise intuitively. Then translate into logic (using the letters given) and 
prove to be valid (all are valid). 

1. Either the butler fixed the drink and poisoned the deceased, or the butler added 
poison later and poisoned the deceased. 
If the butler poisoned the deceased, then the butler is guilty. 
∴ The butler poisoned the deceased and is guilty. [Use F, P, A, and G.] 

2. If I’m coming down with a cold and I exercise, then I’ll get worse and feel awful. 
If I don’t exercise, then I’ll suffer exercise deprivation and I’ll feel awful. 
∴ If I’m coming down with a cold, then I’ll feel awful. [Use C, E, W, A, and D. This 
one is easier if you break premise 1 (not premise 2) to make your assumption.] 

3. You’ll get an A if and only if you either get a hundred on the final exam or else 
bribe the teacher. 
You won’t get a hundred on the final exam. 
∴ You’ll get an A if and only if you bribe the teacher. [Use A, H, and B.] 0169 

4. If President Nixon knew about the massive Watergate cover-up, then he lied to 
the American people on national television and he should resign. 
If President Nixon didn’t know about the massive Watergate cover-up, then he 
was incompetently ignorant and he should resign. 
∴ Nixon should resign. [K, L, R, I] 

5. If you don’t compromise your principles, then you won’t get campaign money. 
If you won’t get campaign money, then you won’t be elected. 
If you compromise your principles, then you’ll appeal to more voters. 
If you appeal to more voters, then you’ll be elected. 
∴ You’ll be elected if and only if you compromise your principles. [C, M, E, A] 



 

 

6. Moral judgments express either truth claims or feelings. 
If moral judgments express truth claims, then “ought” expresses either a concept 
from sense experience or an objective concept that isn’t from sense experience. 
“Ought” doesn’t express a concept from sense experience. 
“Ought” doesn’t express an objective concept that isn’t from sense experience. 
∴ Moral judgments express feelings and not truth claims. [T, F, S, O] 

7. If Michigan either won or tied, then Michigan is going to the Rose Bowl and 
Gensler is happy. 
∴ If Gensler isn’t happy, then Michigan didn’t tie. [W, T, R, H] 

8. There are moral obligations. 
If there are moral obligations and moral obligations are explainable, then either 
there’s an explanation besides God’s existence or else God’s existence would 
explain moral obligations. 
God’s existence wouldn’t explain moral obligation. 
∴ Either moral obligations aren’t explainable, or else there’s an explanation 
besides God’s existence. [M, E, B, G] 

9. If determinism is true and Dr Freudlov correctly predicts (using deterministic 
laws) what I’ll do, then if she tells me her prediction I’ll do something else. 
If Dr Freudlov tells me her prediction and yet I’ll do something else, then Dr 
Freudlov doesn’t correctly predict (using deterministic laws) what I’ll do. 
∴ If determinism is true, then Dr Freudlov doesn’t correctly predict (using deter-
ministic laws) what I’ll do or else she won’t tell me her prediction. [D, P, T, E] 

10. If you make this demand on your son [that he leave Suzy or else not have his 
graduate schooling financed] and he leaves Suzy, then he’ll regret being forced to 
leave her and he’ll always resent you. 
If you make this demand on your son and he doesn’t leave Suzy, then he’ll regret 
not going to graduate school and he’ll always resent you. 
∴ If you make this demand on your son, then he’ll always resent you. [Use D, L, 
F, A, and G; this one is difficult.] 0170 

7.4 Harder refutations 

With multiple-assumption invalid arguments, we keep making assumptions 
until we get our refutation. Here’s an example: 

If the butler was at the party, he fixed the drinks and poisoned the de-
ceased. 
If the butler wasn’t at the party, he was at a neighbor’s house. 



 

∴ The butler poisoned the deceased. 

** 1   (A0 ⊃ (F? • P0)) = 1 Invalid 
** 2   (∼A0 ⊃ N1) = 1 
** [ ∴ P0 = 0 
** 3   asm: ∼P 
** 4      asm: ∼A {break 1} 
** 5      ∴ N {from 2 and 4} 

N, ∼A, ∼P 

We derive all we can and make additional assumptions when needed. We 
reach a refutation in which the butler was at a neighbor’s house, wasn’t at the 
party, and didn’t poison the deceased. This makes the premises all true and 
conclusion false. 

Follow the five-step proof strategy of the previous section until you get a 
proof or a refutation. If every assumption leads to a contradiction, then you 
get a proof. But when do you know that the argument is invalid? When do 
you stop making further assumptions and instead construct a refutation box? 
Stop and refute when you can’t derive anything further (using S- or I-rules or 
RAA) and every complex wff is starred or blocked off or broken. (A complex 
wff is “broken” if we have one side or its negation but not what we need to 
conclude anything new.) 

This invalid argument requires three assumptions: 

* 1   (A0 ⊃ B?) = 1 Invalid 
* 2   (C0 ⊃ D?) = 1 
* 3   (F0 ⊃ (C0 • D?)) = 1 
* [ ∴ (E1 ⊃ C0) = 0 
* 4   asm: ∼(E ⊃ C) 
* 5   ∴ E {from 4} 
* 6   ∴ ∼C {from 4} 
* 7      asm: ∼A {break 1} 
* 8         asm: ∼F {break 3} 

E, ∼A, ∼C, ∼F 

Here we can derive nothing further and all complex wffs are either starred 
(line 4), blocked off (original conclusion), or broken (lines 1–3). Our refuta-
tion, even without values for “B” or “D,” makes the premises all true and 
conclusion false. 

Our proof strategy, if applied correctly, will always give a proof or refuta-
tion. How these go may depend on which lines we do first and what we 
decide to assume; proofs and refutations may differ but still be correct. 0171 



 

 

7.4a Exercise: LogiCola GHI 10. 
Prove each of these arguments to be invalid (all are invalid). 

(A ∨ ∼(B ⊃ C)) 
(D ⊃ (A ⊃ B)) 
∴ (C ⊃ ∼(D ∨ A)) 

* 1   (A1 ∨ ∼(B? ⊃ C1)) = 1 Invalid 
* 2   (D0 ⊃ (A1 ⊃ B?)) = 1 
* [ ∴ (C1 ⊃ ∼(D0 ∨ A1)) = 0 
* 3   asm: ∼(C ⊃ ∼(D ∨ A)) 
* 4   ∴ C {from 3} 
* 5   ∴ (D ∨ A) {from 3} 
* 6      asm: A {break 1} 
* 7         asm: ∼D {break 2} 

A, C, ∼D 
 

1. ∼(A • B) 
∴ (∼A • ∼B) 

2. (A ⊃ ∼B) 
∴ ∼(A ⊃ B) 

3. (A ⊃ B) 
(C ⊃ (∼D • E)) 
∴ (D ∨ F) 

4. ∼(A • B) 
∴ ∼(A ≡ B) 

5. (A ⊃ (B • C)) 
((D ⊃ E) ⊃ A) 
∴ (E ∨ C) 

6. (∼A ∨ ∼B) 
∴ ∼(A ∨ B) 

7. ((A • B) ⊃ ∼(C • D)) 
C 
(E ⊃ B) 
∴ ∼E 



 

8. (A ⊃ (B ⊃ C)) 
(B ∨ ∼(C ⊃ D)) 
∴ (D ⊃ ∼(A ∨ B)) 

7.4b Exercise: LogiCola G (HC & MC) 11. 
First appraise intuitively. Then translate into logic (using the letters given) and say 
whether valid (and give a proof) or invalid (and give a refutation). 

1. If the maid prepared the drink, then the butler didn’t prepare it. 
The maid didn’t prepare the drink. 
If the butler prepared the drink, then he poisoned the drink and is guilty. 
∴ The butler is guilty. [Use M, B, P, and G.] 

2. If you tell your teacher that you like logic, then your teacher will think that 
you’re insincere and you’ll be in trouble. 
If you don’t tell your teacher that you like logic, then your teacher will think that 
you dislike logic and you’ll be in trouble. 
∴ You’ll be in trouble. [Use L, I, T, and D.] 

3. If we don’t get reinforcements, then the enemy will overwhelm us and we won’t 
survive. 
∴ If we do get reinforcements, then we’ll conquer the enemy and we’ll survive. 
[Use R, O, S, and C.] 0172 

4. If Socrates didn’t approve of the laws of Athens, then he would have left Athens 
or would have tried to change the laws. 
If Socrates didn’t leave Athens and didn’t try to change the laws, then he agreed to 
obey the laws. 
Socrates didn’t leave Athens. 
∴ If Socrates didn’t try to change the laws, then he approved of the laws and 
agreed to obey them. [Use A, L, C, and O; from Plato’s Crito, which argued that 
Socrates shouldn’t disobey the law by escaping from jail.] 

5. If I hike the Appalachian Trail and go during late spring, then I’ll get maximum 
daylight and maximum mosquitoes. 
If I get maximum mosquitoes, then I won’t be comfortable. 
If I go right after school, then I’ll go during late spring. 
∴ If I hike the Appalachian Trail and don’t go right after school, then I’ll be com-
fortable. [A, L, D, M, C, S] 



 

 

6. [Logical positivism says “Every genuine truth claim is either experimentally 
testable or true by definition.” This view, while once popular, is self-refuting and 
hence not very popular today.] 
If LP (logical positivism) is true and is a genuine truth claim, then it’s either 
experimentally testable or true by definition. 
LP isn’t experimentally testable. 
LP isn’t true by definition. 
If LP isn’t a genuine truth claim, then it’s not true. 
∴ LP isn’t true. [T, G, E, D] 

7. If you give a test, then students either do well or do poorly. 
If students do well, then you think you made the test too easy and you’re frustrat-
ed. 
If students do poorly, then you think they didn’t learn any logic and you’re frus-
trated. 
∴ If you give a test, then you’re frustrated. [Use T, W, P, E, F, and L; from a class 
who tried to talk me out of giving a test.] 

8. If the world contains moral goodness, then the world contains free creatures 
and the free creatures sometimes do wrong. 
If the free creatures sometimes do wrong, then the world is imperfect and the 
creator is imperfect. 
∴ If the world doesn’t contain moral goodness, then the creator is imperfect. [M, 
F, S, W, C] 

9. We’ll find your action’s cause, if and only if your action has a cause and we look 
hard enough. 
If all events have causes, then your action has a cause. 
All events have causes. 
∴ We’ll find your action’s cause, if and only if we look hard enough. [F, H, L, A] 
0173 

10. Herman sees that the piece of chalk is white. 
The piece of chalk is the smallest thing on the desk. 
Herman doesn’t see that the smallest thing on the desk is white. (He can’t see the 
whole desk and so can’t tell that the piece of chalk is the smallest thing on it.) 
If Herman sees a material thing, then if he sees that the piece of chalk is white and 
the piece of chalk is the smallest thing on the desk, then he sees that the smallest 
thing on the desk is white. 
If Herman doesn’t see a material thing, then he sees a sense datum. 
∴ Herman doesn’t see a material thing, but he does see a sense datum. [Use H, P, 
H´, M, and S. This argument attacks direct realism: that we directly perceive 
material objects and not just sensations.] 



 

11. If the final capacitor in the transmitter is arcing, then the SWR (standing wave 
ratio) is too high and the efficiency is lowered. 
If you hear a cracking sound, then the final capacitor in the transmitter is arcing. 
∴ If you don’t hear a cracking sound, then the SWR isn’t too high. [A, H, L, C] 

12. If we can know that God exists, then we can know God by experience or we 
can know God by logical inference from experience. 
If we can’t know God empirically, then we can’t know God by experience and we 
can’t know God by logical inference from experience. 
If we can know God empirically, then “God exists” is a scientific hypothesis and is 
empirically falsifiable. 
“God exists” isn’t empirically falsifiable. 
∴ We can’t know that God exists. [K, E, L, M, S, F] 

13. If I perceive, then my perception is either delusive or veridical. 
If my perception is delusive, then I don’t directly perceive a material object. 
If my perception is veridical and I directly perceive a material object, then my 
experience in veridical perception would always differ qualitatively from my 
experience in delusive perception. 
My experience in veridical perception doesn’t always differ qualitatively from my 
experience in delusive perception. 
If I perceive and I don’t directly perceive a material object, then I directly perceive 
a sensation. 
∴ If I perceive, then I directly perceive a sensation and I don’t directly perceive a 
material object. [Use P, D, V, M, Q, and S. This argument from illusion attacks 
direct realism: that we directly perceive material objects and not just sensations.] 

14. If you’re romantic and you’re Italian, then Juliet will fall in love with you and 
will want to marry you. 
If you’re Italian, then you’re romantic. 
∴ If you’re Italian, then Juliet will want to marry you. [R, I, F, M] 

15. If emotions can rest on factual errors and factual errors can be criticized, then 
we can criticize emotions. 
If we can criticize emotions and moral judgments are based on emotions, then 
beliefs about morality can be criticized and morality isn’t entirely non-rational. 
∴ If morality is entirely non-rational, then emotions can’t rest on factual errors. 
[E, F, W, M, B, N] 0174 

7.5 Copi proofs 

There are many proof methods for propositional logic. Copi proofs are based 
on an early and still popular method. Copi proofs use a somewhat standard 



 

 

set of inference and replacement rules.1 These eight inference rules, like our 
S- and I-rules, let us infer whole lines from previous whole lines (here each 
capital letter may be uniformly replaced by any wff): 

AD Addition 
  

P 
–––––– 
(P ∨ Q) 

CJ Conjunction 
  

P 
Q 

––––––– 
(P • Q) 

DI Dilemma 
 

((P ⊃ Q) • (R ⊃ S)) 
(P ∨ R) 

––––––––––––––– 
(Q ∨ S) 

DS Disjunctive Syllogism 
  

(P ∨ Q) 
∼P 

––––––– 
Q 

HS Hypothetical Syllogism 
 

(P ⊃ Q) 
(Q ⊃ R) 
––––––– 
(P ⊃ R) 

MP Modus Ponens 
 

(P ⊃ Q) 
P 

––––––– 
Q 

 
1 This proof method goes back to Irving Copi’s Introduction to Logic (New York: Macmillan, 
1953) and has appeared with variations in many books. Copi’s original list (his p. 259) also 
had Destructive Dilemma (“((P ⊃ Q) • (R ⊃ S)), (∼Q ∨ ∼S) ∴ (∼P ∨ ∼R)”) but omitted 
Repetition’s second part. Absorption (“(P ⊃ Q) ∴ (P ⊃ (P • Q))” and “(P ⊃ (P • Q)) ∴ (P ⊃ Q)”) 
was sometimes added later. I simplified some names and gave each rule a two-letter abbrevia-
tion. 



 

MT Modus Tollens 
 

(P ⊃ Q) 
∼Q 

––––––– 
∼P 

SP Simplification 
 

(P • Q) 
––––––– 

P 

To explore how these work, we’ll compare them to our S- and I-rules. 
Our first three S-rules are AND, NOR, and NIF: 

AND 
 

(P • Q) 
–––––– 

P, Q 

NOR 
 

∼(P ∨ Q) 
––––––– 
∼P, ∼Q 

NIF 
 

∼(P ⊃ Q) 
––––––– 

P, ∼Q 

Copi can derive the AND rule. We can get the left side of “(P • Q)” by using SP 
(Simplification)  directly on line 1, as indicated by the “{SP 1}” justification: 

1 (P • Q) 
2 P {SP 1} 

To get the right side, we first switch sides to get “(Q • P),” using replacement 
rule CM (Commutation), which we’ll present later. Then we use SP: 

1 (P • Q) 
2 (Q • P) {CM 1) 
3 Q (SP 2} 0175 

Copi can also derive the NOR conclusions. To get the left side, we first apply 
the DM (De Morgan) replacement rule, which we’ll present later, to go from 
“∼(P ∨ Q)” to “(∼P • ∼Q).” Then we use SP to derive “∼P”: 



 

 

1 ∼(P ∨ Q) 
2 (∼P • ∼Q) {DM 1} 
3 ∼P {SP 2} 

To get the right side, we use similar reasoning, but we have to again switch 
sides using CM: 

1 ∼(P ∨ Q) 
2 (∼P • ∼Q) {DM 1} 
3 (∼Q • ∼P) {CM 2} 
4 ∼Q {SP 3} 

Deriving NIF is more involved. To get the left side, we first reshape the IF-
THEN into an OR (using Implication replacement rule IM) and then an AND 
(using De Morgan replacement rule DM). We apply SP to get “∼∼P,” and then 
the double-negation replacement rule DN to get “P”: 

1 ∼(P ⊃ Q) 
2 ∼(∼P ∨ Q) {IM 1} 
3 (∼∼P • ∼Q) {DM 2} 
4 ∼∼P {SP 3} 
5 P {DN 4} 

Getting the right side is similar, but we switch sides using CM before using SP 
to get “∼Q”: 

1 ∼(P ⊃ Q) 
2 ∼(∼P ∨ Q) {IM 1} 
3 (∼∼P • ∼Q) {DM 2} 
4 (∼Q • ∼∼P) {CM 3} 
5 ∼Q {SP 4} 

These examples show how difficult the Copi method can be to use. But that’s 
the challenge – it makes us think hard about how to derive a conclusion, and 
maybe think out various possible approaches first; some teachers like Copi 
proofs for exactly this reason. 

Replacement rules are important in Copi proofs. These ten replacement 
rules let you switch one occurrence of identical formulas anywhere in a wff: 



 

AS Association 
 

(P ∨ (Q ∨ R)) = ((P ∨ Q) ∨ R) 
(P • (Q • R)) = ((P • Q) • R) 

CM Commutation 
 

(P ∨ Q) = (Q ∨ P) 
(P • Q) = (Q • P) 

DB Distribution 
 

(P • (Q ∨ R)) = ((P • Q) ∨ (P • R)) 
(P ∨ (Q • R)) = ((P ∨ Q) • (P ∨ R)) 

DM De Morgan 
 

∼(P • Q) = (∼P ∨ ∼Q)) 
∼(P ∨ Q) = (∼P • ∼Q) 

DN Double Negation 
 

P = ∼∼P 

EQ Equivalence 
 

(P ≡ Q) = ((P ⊃ Q) • (Q ⊃ P)) 
(P ≡ Q) = ((P • Q) ∨ (∼P • ∼Q)) 

EX Exportation 
 

((P • Q) ⊃ R) = (P ⊃ (Q ⊃ R)) 

IM Implication 
 

(P ⊃ Q) = (∼P ∨ Q) 

0176 

RP Repetition 
 

P = (P ∨ P) 
P = (P • P) 

TR Transposition 
 

(P ⊃ Q) = (∼Q ⊃ ∼P) 

These reshape formulas to fit the inference rules. 
Let’s consider how the Copi method can mirror our I-rules: 



 

 

NOT-BOTH OR IF-THEN 

∼(P • Q) 
P 

–––––– ∼Q 

∼(P • Q) 
Q 

–––––– ∼P 

(P ∨ Q) 
∼P 

–––––– Q 

(P ∨ Q) 
∼Q 

–––––– P 

(P ⊃ Q) 
P 

–––––– Q 

(P ⊃ Q) 
∼Q 

–––––– ∼P 

OR conclusions are easy to derive using DS (Disjunctive Syllogism); for the 
second version, we also switch sides using CM: 

1 (P ∨ Q) 
2 ∼P 
3 Q {DS 1+2} 

1 (P ∨ Q) 
2 ∼Q 
3 (Q ∨ P) {CM 1} 
4 P {DS 2+3} 

NOT-BOTH uses DS with DM (De Morgan): 

1 ∼(P • Q) 
2 P 
3 (∼P ∨ ∼Q) {DM 1} 
4 ∼∼P {DN 2} 
5 ∼Q {DS 3+4} 

1 ∼(P • Q) 
2 Q 
3 (∼P ∨ ∼Q) {DM 1} 
4 (∼Q ∨ ∼P) {CM 3} 
5 ∼∼Q {DN 2} 
6 P {DS 4+5} 

Since Copi rules take “not” very strictly, we can’t on the left go directly from 
“P” and “(∼P ∨ ∼Q)” to get “∼Q”; instead, we have to double negate “P” to get 
“∼∼P,” which is like the first part but starts with an additional squiggle. MP 
(Modus Ponens) and MT (Modus Tollens) parallel our IF-THEN forms. 

Here’s a Copi proof for the butler example in §7.1: 

Conclusion: B 

1 T 
2 (T ⊃ (B ∨ M)) 
3 (M ⊃ H) 
4 ∼H 



 

5 (B ∨ M) {MP 1+2} 
6 ∼M {MT 3+4} 
7 (M ∨ B) {CM 5} 
8 B {DS 6+7} 0177 

If we try to prove the invalid butler example in §7.2, we won’t derive the 
conclusion; but this may just be due to our lack of ingenuity. The Copi method 
won’t show invalid arguments to be invalid; so it’s normally used only on 
arguments already known to be valid, which limits the method’s usefulness. 

 
Conclusion: B 

1 T 
2 (T ⊃ (B ∨ M)) 
3 (M ⊃ H) 
4 (B ∨ M) {MP 1+2} 
? ? ? 

Here’s a Copi proof for the multiple-assumption butler example in §7.3: 

Conclusion: P 

01 (A ⊃ (F • P)) 
02 (∼A ⊃ (S • R)) 
03 ∼R 
04 (∼R ∨ ∼S) {AD 3} 
05 ∼(R • S) {DM 4} 
06 ∼(S • R) {CM 5} 
07 ∼∼A {MT 2+6} 
08 A {DN 7} 
09 (F • P) {MP 1+8} 
10 (P • F) {CM 9} 
11 P {SP 10} 

Lines 4 to 6 use a common strategy: think of what wff we need – here we 
need “∼(S • R)” to use with line 2 and MT – and how to get it from what we 
have – here “∼R” can provide “(∼R ∨ ∼S),” which we reshape into “∼(S • R).” 

So far, we’ve used Copi direct proofs, where the conclusion is derived from 
the premises without making any assumptions. Copi also provides for 
conditional proofs and indirect proofs [reductio ad absurdum] (using CP and 
RA): 



 

 

CP Conditional Proof 
 

If you assume P and later derive Q, then you can star all the lines from P to Q 
[showing that you aren’t to use them to derive further steps] and then derive 
(P ⊃ Q). 

 

RA Reductio ad Absurdum 
 

If you assume P and later derive (Q • ∼Q), then you can star all the lines from 
P to (Q • ∼Q) [showing that you aren’t to use them to derive further steps] 
and then derive ∼P. 

The proof isn’t done until all assumptions are starred. Here are examples 
(add “*” when applying RA or CP; ignore starred lines in deriving further 
steps): 

Conclusion: ((A • B) ⊃ A) 

1 (A • B) {Assume} * 
2 A {SP 1} * 
3 ((A • B) ⊃ A) {CP 1+2} 

Conclusion: (A ∨ ∼A) 

1 ∼(A ∨ ∼A) {Assume} * 
2 (∼A • ∼∼A) {DM 1} * 
3 ∼∼(A ∨ ∼A) {RA 1+2} 
4 (A ∨ ∼A) {DN 3} 0178 

CP and RA are useful in proving logical truths from zero premises. CP is 
convenient for proving conditional conclusions. And if you’re really confused 
on how to do a problem, I suggest that you start by assuming the conclusion’s 
opposite; try to derive a contradiction and then apply RA. 

Comparing our method to Copi’s, all the same arguments are provable. Our 
method is easier to learn (with a smaller and more systematic set of rules), 
easier to use (with a proof procedure that doesn’t require guesswork or 
intuition), and more powerful (since it can refute invalid arguments). But you 
might want to learn the Copi method too; Copi proofs are good mental 
exercise and can be fun (especially on LogiCola) – and Copi rules are some-
times assumed in philosophical discussions. 

On LogiCola, you do Copi proofs by picking “Copi Proofs” and the level of 
difficulty (Easier / Harder / Mixed); you get the same randomly generated 
problems (but only valid ones) as with our usual proofs. You repeatedly type 



 

the next wff, click (or touch) the inference rule, and then click (or touch) the 
previous wffs from which your step follows. There are no arrows to get the 
next line or finish the problem; but you can quit the problem (which costs 
you points) or paste your own problems (or ones from your teacher). You 
can also copy previous lines or the conclusion into the answer space, so you 
can modify them to give your next line. While Copi proofs are difficult, you’ll 
soon get the hang of it. 

7.5a and 7.5b Exercise: LogiCola GEO 12. 
Do Copi proofs for problems in §§7.1a and 7.1b (all are valid). These are easier 
problems. 

7.5c and 7.5d Exercise: LogiCola GHO and GMO 13. 
Do Copi proofs for problems in §§7.3a and 7.3b (all are valid). These are harder 
problems. 

7.6 Truth trees 

Also common are truth trees, which break formulas into the cases that make 
them true. Here’s a truth tree for “(A • ∼B), (B ∨ C) ∴ C” – which comes out as 
valid, because every branch closes: 

 

0179 First write the premises and the conclusion’s contradictory. Then break 
the complex formulas into the cases that make them true, to see if there’s 
some way to get premises all true and conclusion false. Simplify “(A • ∼B)” 
into “A” and “∼B” and then star it (as broken). Branch “(B ∨ C)” into the two 
cases that make it true and then star it (as broken); so one branch has “B” 
and another has “C.” Both branches are self-contradictory, since the first has 
“B” on the branch and “∼B” on the trunk – and the second has “C” on the 
branch and “∼C” on the trunk; close both branches by adding “*” to the 



 

 

bottom. The argument is VALID, since having premises all true and conclu-
sion false is impossible. 

Truth trees use simplifying and branching rules (both apply only to whole 
lines). These simplifying rules simplify a formula into smaller parts: 

(P • Q) 
–––––– 

P, Q 
∼(P ∨ Q) 
––––––– 
∼P, ∼Q 

 
∼(P ⊃ Q) 
––––––– 

P, ∼Q 
∼∼P 

–––––– 
P 

When you use these, put a star after the original formula to show that it’s 
broken (this means that its truth is assured by the truth of some smaller 
parts below). Use simplifying rules before branching rules (this is more 
efficient). 

These branching rules branch a formula into the two sub-cases that would 
make it true (so “∼(P • Q)” is true just if “∼P” is true or “∼Q” is true): 

∼(P • Q) (P ∨ Q) (P ⊃ Q) 

   
∼P ∼Q P Q ∼P Q 

 
 (P ≡ Q)  ∼(P ≡ Q)  
 

 
 

 
 

 P 
Q 

∼P 
∼Q 

 P 
∼Q 

∼P 
Q 

 

When you use these, put a star after the original formula to show that it’s 
broken; add the sub-branches to the bottom of any bottom branch further 
down that isn’t yet marked as closed (self-contradictory). 

To test an argument, write the premises and the conclusion’s contradicto-
ry. Keep applying the simplifying and branching rules to complex unstarred 
formulas. Close a branch when it has contradictory formulas; a closed branch 
is a failed attempt to make the premises all true and conclusion false. If all 
branches close, then the argument is valid. If some branch doesn’t close and 
yet all its complex wffs are starred (broken), then there’s a possible way to 
get premises all true and conclusion false, and so the argument is invalid. 0180 



 

To show further how this works, I’ll do truth trees for the butler examples 
in §§7.1–7.4. The argument in §7.1 comes out valid, since every branch 
closes: 

 

Here we branch line 2 into “∼T” and “(B ∨ M),” branch the latter into “B” and 
“M,” and branch “(M ⊃ H)” into “∼M” and “H”; every branch closes, and so it’s 
valid. The butler argument in §7.2 is invalid, since without “∼H” the branch 
ending in “H” doesn’t close (the refutation has: T, M, H, and ∼B): 

 

The butler argument in §7.3 comes out valid, since every branch closes: 



 

 

 

0181 The butler argument in §7.4 comes out invalid, since the branch ending 
in “N” doesn’t close (the refutation has: N, ∼A, and ∼P): 

 

As compared with Copi proofs, truth trees are easier to do (since they use 
an easily learned strategy) and can test for validity or invalidity. But truth 
trees don’t mirror ordinary reasoning as well; they give a mechanical way to 
test validity instead of a way to help develop reasoning skills. Our proof 
method tries to combine the strengths of both methods. Like truth trees, our 
proofs have an easily learned strategy, keep breaking formulas into simpler 
parts, and can test for validity or invalidity. But like Copi proofs, our proofs 
give a linear derivation of formulas that somewhat mirrors ordinary reason-
ing. Our proofs use similar simplification rules as truth trees, but replace 
branching with inference rules and assumptions. 

On LogiCola, you do truth trees by picking “Treez” and the level of difficul-
ty (Easier / Harder / Mixed); you get the same randomly generated problems 
(valid and invalid) as with regular proofs. You do this exercise entirely by 



 

clicking or touching (no typing); follow the directions at the bottom. The 
“program closes branches” option automatically closes self-contradictory 
branches, while “you close branches” has you close these yourself (but 
without losing points for errors). The “automatic double-negation” option 
simplifies double negations automatically (so “∼(A ∨ ∼B)” simplifies into 
“∼A” and “B” – instead of “∼A” and “∼∼B”). You can click (or touch) arrows at 
the top to give you the next line or finish the problem (but without getting 
credit for the problem); and you can use these arrows to step through sample 
proofs before doing them on your own. 

7.6a Exercise: LogiCola GEZ14. 
Do truth trees for problems in §§7.1a, 7.1b, 7.2a, and 7.2b. These are easier problems. 

7.6b Exercise: LogiCola GHZ and GMZ 15. 
Do truth trees for problems in §§7.3a, 7.3b, 7.4a, and 7.4b. These are harder prob-
lems. 

  



 

8 Basic Quantificational Logic 

Quantificational logic, which builds on propositional logic, studies arguments 
whose validity depends on notions like “all,” “no,” and “some.” This system is 
stronger than syllogistic logic (Chapter 2), since it can express complex ideas 
like “If some are A, then all that are B or C are then D but not E.” This chapter 
covers the basics and the next adds relations and identity. 

8.1 Easier translations 

To help us evaluate arguments, we’ll construct a quantificational language. 
This will include propositional logic’s vocabulary, wffs, inference rules, and 
proofs. It adds two new vocabulary items: small letters and “∃.” Here are 
sample wffs: 

Ir = Romeo is Italian. 
Ix = x is Italian. 

(x)Ix = For all x, x is Italian (all are Italian). 
(∃x)Ix = For some x, x is Italian (some are Italian). 

Learn to express “All are Italian” as “For all x, x is Italian.” This uses Loglish, a 
mix of logic and English. Loglish helps us to translate from English to logic. 

“Romeo is Italian” is “Ir”; the capital letter goes first. “I” is for the general 
category “Italian” and “r” is for the specific individual “Romeo”: 

Use capital letters for general terms, which describe or put in a category: 

I = an Italian 
C = charming 

F = drives a Ford 

Use capitals for “a so and so,” adjectives, and verbs. 



 

Use small letters for singular terms, which pick out a specific person or thing: 

i = the richest Italian 
t = this child 
r = Romeo 

Use small letters for “the so and so,” “this so and so,” and proper names. 

Letters here have various uses. Capitals can represent statements, general 
0183 terms, or relations (which we take in the next chapter): 

A capital letter alone (not followed by small letters) represents a statement. 

S = It’s snowing. 

A capital letter followed by a single small letter represents a general term. 

Ir = Romeo is Italian. 

A capital letter followed by two or more small letters represents a relation. 

Lrj = Romeo loves Juliet. 

Small letters can be constants or variables: 

A small letter from “a” to “w” is a constant (it refers to a specific person or 
thing). 

Ir = Romeo is Italian. 

A small letter from “x” to “z” is a variable (its reference isn’t directly speci-
fied). 

Ix = x is Italian. 

“Ix” (“x is Italian”) is incomplete, and so not true or false, since we haven’t 
said whom we’re talking about. Quantifiers can complete the claim. A quanti-
fier is a sequence of the form “(x)” or “(∃x)” – where any variable may 
replace “x”: 



 

 

“(x)” is a universal quantifier. It says that the next formula is true for all 
values of x. 

(x)Ix = For all x, x is Italian (all are Italian). 

“(∃x)” is an existential quantifier. It says that the next formula is true for at 
least one value of x. 

(∃x)Ix = For some x, x is Italian (some are Italian). 

Quantifiers express “all” and “some” by saying in how many cases the follow-
ing formula is true. 

As before, grammatical formulas are wffs (well-formed formulas). Wffs 
now are strings we can construct using the propositional rules plus two new 
rules: 

1. The result of writing a capital letter and then a small letter is a wff. 
2. The result of writing a quantifier and then a wff is a wff. 

These rules let us build wffs that we’ve already mentioned: “Ir,” “Ix,” “(x)Ix,” 
and “(∃x)Ix.” Don’t use additional parentheses; these forms are incorrect: 
“(Ir),” “(Ix),” “(x)(Ix),” “(∃x)(Ix),” “((x)Ix),” “((∃x)Ix).” Use a pair of parenthe-
ses for each quantifier and each instance of “•,” “∨,” “⊃,” and “≡”; use no other 
parentheses. Here are some further wffs: 0184 

∼(x)Ix = Not all are Italian 
It’s false that, for all x, x is Italian 

∼(∃x)Ix = No one is Italian 
It’s false that, for some x, x is Italian 

(Ix ⊃ Lx) = If x is Italian then x is a lover 

(Ix • Lx) = x is Italian and x is a lover 

Translating from English to wffs can be difficult. We’ll begin with sentences 
that translate into wffs starting with a quantifier, or with “∼” and then a 
quantifier. This rule tells where to put what quantifier: 



 

If the English begins with “all” or “every,” then begin the wff with “(x).” 

If the English begins with “not all” or “not every,” then begin the wff with 
“∼(x).” 

If the English begins with “some,” then begin the wff with “(∃x).” 

If the English begins with “no,” then begin the wff with “∼(∃x).” 

All are Italian = (x)Ix 
Not all are Italian = ∼(x)Ix 
Some are Italian = (∃x)Ix 
No one is Italian = ∼(∃x)Ix 

Here are harder examples: 

All are rich or Italian 
= (x)(Rx ∨ Ix) 

Not everyone is non-Italian 
= ∼(x)∼Ix 

Some aren’t rich 
= (∃x)∼Rx 

No one is rich and non-Italian 
= ∼(∃x)(Rx • ∼Ix) 

When the English begins with “all,” “not all,” “some,” or “no,” put the quantifi-
er outside all parentheses. So “All are rich or Italian” is “(x)(Rx ∨ Ix).” Don’t 
translate it as “((x)Rx ∨ Ix),” which means “Either everyone is rich, or x is 
Italian.” 

If the English sentence uses a word like “or,” “and,” or “if-then,” then use 
the corresponding logical symbol. Otherwise, follow these rules: 

With “all … is …,” use “⊃” for the middle connective. 

Otherwise use “•” for the connective. 

All Italians are lovers 
= (x)(Ix ⊃ Lx) 
For all x, if x is Italian then x is a lover 0185 

Some Italians are lovers 
= (∃x)(Ix • Lx) 



 

 

For some x, x is Italian and x is a lover 

No Italians are lovers 
= ∼(∃x)(Ix • Lx) 
It’s false that, for some x, x is Italian and x is a lover 

With “All Italians …,” think “For all x, if x is Italian then ….” With “Some 
Italians …,” think “For some x, x is Italian and ….” This example is harder: 

All rich Italians are lovers 
= (x)((Rx • Ix) ⊃ Lx) 
For all x, if x is rich and Italian, then x is a lover 

Here use “⊃” as the middle connective (“If rich Italian, then lover”) and “•” in 
the other place (“If rich and Italian, then lover”). Here are further examples: 

Not all Italians are lovers 
= ∼(x)(Ix ⊃ Lx) 
It’s false that, for all x, if x is Italian then x is a lover 

All are rich Italians 
= (x)(Rx • Ix) 
For all x, x is rich and Italian 

Sometimes we must rephrase to make “is” (or “are”) the main verb: 

All dogs hate cats 
= All dogs are cat-haters 
= (x)(Dx ⊃ Hx) 
For all x, if x is a dog then x is a cat-hater 

In case of doubt, say the formula in Loglish and see if it means the same as 
the English sentence. Our translation rules are rough and don’t always work. 

The universe of discourse is the set of entities that words like “all” “some,” 
and “no” range over in a given context. Restricting the universe of discourse 
to one kind of entity (such as persons or statements) can simplify how we 
translate some arguments. We’ll often restrict the universe of discourse to 
persons. We did this implicitly when we translated “All are Italian” as “(x)Ix” 
instead of “(x)(Px ⊃ Ix)” (“All persons are Italian”). 

Since quantificational translations are so difficult, LogiCola gives you the 
option to start off by having Loglish hints for these problems. 



 

8.1a Exercise: LogiCola H (EM & ET) 
Translate these English sentences into wffs. 

Not all logicians run. 

∼(x)(Lx ⊃ Rx) 

1. x isn’t a cat. 

2. Something is a cat. 

3. Something isn’t a cat. 0186 

4. It’s false that there is something that isn’t a cat. 

5. Everything is a cat. 

6. If x is a dog, then x is an animal. 

7. All dogs are animals. 

8. No one is evil. 

9. Some logicians are evil. 

10. No logician is evil. 

11. All black cats are unlucky. 

12. Some dogs are large and hungry. 

13. Not all hungry dogs bark. 

14. Some animals aren’t barking dogs. 

15. Some animals are non-barking dogs. 

16. All dogs who bark are frightening. 

17. Not all non-dogs are cats. 

18. Some cats who aren’t black are unlucky. 

19. Some cats don’t purr. 

20. Not every cat purrs. 

21. Not all animals are dogs or cats. 

22. All who are either dogs or cats are animals. 

23. All who are both dogs and cats are animals. 

24. All dogs and cats are animals. 

25. Everyone is a crazy logician. 



 

 

8.2 Easier proofs 

We need quantifier inference rules. The reverse-squiggle rules hold regard-
less of what variable replaces “x” and what pair of contradictory wffs replaces 
“Fx” / “∼Fx”; here “→” means that we can infer whole lines from left to right: 

Reverse squiggle RS 
 

∼(x)Fx → (∃x)∼Fx 

∼(∃x)Fx → (x)∼Fx 

“Not everyone is funny” entails “Someone isn’t funny.” And “It’s false that 
someone is funny” (“No one is funny”) entails “Everyone is non-funny.” Our 
rules cover reversing squiggles on longer formulas, if the whole formula 
begins with “∼” and then a quantifier. Here are two examples: 

∼(∃x)∼Gx ––––––––– 
∴ (x)∼∼Gx 

∼(x)(Lx • ∼Mx) –––––––––––––––– 
∴ (∃x)∼(Lx • ∼Mx) 

In the first example, we also could conclude “(x)Gx” (dropping “∼∼”). This 
next example is illegal in our system, since it fits poorly into our proof 
strategy, even though it’s logically correct: 

Don’t do this: 

(Ir ⊃ ∼(x)Gx) –––––––––––––– 
∴ (Ir ⊃ (∃x)∼Gx) 

0187 Reverse squiggles whenever you have a wff that begins with “∼” and 
then a quantifier; this moves a quantifier to the beginning of the formula, so 
we can drop it later. 

Drop quantifiers using the next two rules (which hold regardless of what 
variable replaces “x” and what wffs replace “Fx” / “Fa” – provided that the 
two wffs are identical except that wherever the variable occurs freely1 in the 
 
1 An instance of a variable occurs freely if it’s not part of a wff that begins with a quantifier 
using that variable; just the first instance of “x” in “(Fx • (x)Gx)” occurs freely. So we’d go from 
“(∃x)(Fx • (x)Gx)” to “(Fa • (x)Gx).” 



 

former the same constant occurs in the latter). Here’s the drop-existential 
rule: 

Drop existential DE 
 

(∃x)Fx → Fa, 
use a new constant 

Suppose someone robbed the bank; we can give this person an arbitrary 
name that we make up (like “Al”). Likewise, when we drop an existential, 
we’ll name this “someone” with a new constant – one that hasn’t yet occurred 
in earlier lines of the proof.1 In proofs, we’ll use the next unused constant in 
alphabetical order – starting with “a,” then “b,” and so on. So if we drop two 
existentials, then we introduce two new constants: 

(∃x)Mx 
(∃x)Fx ––––––– 
∴ Ma 
∴ Fb 

Someone is male, someone is female; let’s call the male “a” and the female “b.” 
It’s OK to use “a” in the first inference, since it occurs in no earlier line. But 
the second inference must use “b,” since “a” has now already occurred. 

We can drop existentials from complicated formulas if the quantifier be-
gins the wff and we replace the variable with the same new constant 
throughout. So this first inference is fine: 

(∃x)(Fx • Gx) ––––––––––– 
∴ (Fa • Ga) 

This next example is wrong (because it drops the quantifier using two 
different constants): 

(∃x)(Fx • Gx) ––––––––––– 
∴ (Fa • Gb) 

 
1 If more than one person robbed the bank; then our name (or constant) will refer to a random 
one of the robbers. Using a new name is consistent with the robber being mentioned earlier in 
the argument; different names (like “Al” and “Smith”) might refer to the same individual. DE 
should be used only when there’s at least one not-blocked-off assumption; otherwise, the 
symbolic version of “Someone is a thief, so Gensler is a thief” would be a two-line proof. 



 

 

This next example is also wrong (since the formula doesn’t begin with a 
quantifier – instead it begins with a left-hand parenthesis): 

((∃x)Fx ⊃ P) ––––––––––– 
∴ (Fa ⊃ P) 

Drop only initial quantifiers. 
Here’s the drop-universal rule: 

Drop universal DU 
 

(x)Fx → Fa, 
use any constant 

0188 If everyone is funny, then Al is funny, Bob is funny, and so on. From 
“(x)Fx” we can derive “Fa,” “Fb,” and so on – using any constant. However, it’s 
bad strategy to use a new constant unless we really have to; normally use old 
constants when dropping universals.1 As before, the quantifier must begin 
the wff and we must replace the variable with the same constant throughout. 
So this next inference is fine: 

(x)(Fx ⊃ Gx) ––––––––––– 
∴ (Fa ⊃ Ga) 

This next example is wrong (because it drops the quantifier using two 
different constants): 

(x)(Fx ⊃ Gx) ––––––––––– 
∴ (Fa ⊃ Gb) 

This next example is also wrong (since the formula doesn’t begin with a 
quantifier – instead it begins with a left-hand parenthesis – drop only initial 
quantifiers): 

((x)Fx ⊃ (x)Gx) ––––––––––––– 
∴ (Fa ⊃ Ga) 

 
1 Dropping a universal quantifier with a new letter assumes that something exists (or that our 
restricted universe of discourse is nonempty). Some systems (see §13.7) disallow this.  



 

“((x)Fx ⊃ (x)Gx)” is an if-then and follows the if-then rules: if we have the 
first part “(x)Fx” true, we can get the second true; if we have the second part 
“(x)Gx” false, we can get the first false; if we get stuck, we make an assump-
tion. 

Here’s an example of a proof: 

All logicians are funny. 
Someone is a logician. 
∴ Someone is funny. 

* 1   (x)(Lx ⊃ Fx) Valid 
* 2   (∃x)Lx 
* [ ∴ (∃x)Fx 
* 3 ┌ asm: ∼(∃x)Fx 
* 4 │ ∴ (x)∼Fx {from 3} 
* 5 │ ∴ La {from 2} 
* 6 │ ∴ (La ⊃ Fa) {from 1} 
* 7 │ ∴ Fa {from 5 and 6} 
* 8 └ ∴ ∼Fa {from 4} 
* 9 ∴ (∃x)Fx {from 3; 7 contradicts 8} 

For now, use the quantificational rules in this order: 

• First reverse squiggles. We did this to get “(x)∼Fx” in line 4. 
• Then drop initial existentials, using a new constant each time. We did this to 

get “La” in line 5. 
• Lastly, drop each initial universal once for each old constant. We did this to get 

“(La ⊃ Fa)” in line 6 and “∼Fa” in line 8. 

We starred lines 2, 3, and 6; starred lines largely can be ignored in deriving 
further lines. Star any wff on which you reverse squiggles or drop an existen-
tial: 

* ∼(x)Fx 
––––––––– 
∴ (∃x)∼Fx 

* (∃x)Fx 
–––––––– 

∴ Fa 

Here the new line has the same information. Don’t star when dropping a 0189 
universal; we can never exhaust an “all” by deriving instances, and we may 
have to derive further things from it later. 



 

 

Here’s a simpler quantificational proof: 

* 1   (x)(Fx • Gx) Valid 
* [ ∴ (x)Fx 
* 2 ┌ asm: ∼(x)Fx 
* 3 │ ∴ (∃x)∼Fx {from 2} 
* 4 │ ∴ ∼Fa {from 3} 
* 5 │ ∴ (Fa • Ga) {from 1} 
* 6 └ ∴ Fa {from 5} 
* 7∴(x)Fx {from 2; 4 contradicts 6} 

Reverse squiggles to get “(∃x)∼Fx” in line 3. Drop an existential to get “∼Fa” 
in line 4. Then drop a universal to get “(Fa • Ga)” in line 5. Switching lines 4 
and 5 would be wrong: if we drop the universal first using “a,” then we can’t 
drop the existential later using “a” (since then “a” would be old). 

In doing proofs, first assume the conclusion’s opposite; then use quantifi-
cational rules plus S- and I-rules to derive all you can. If you find a contradic-
tion, apply RAA. If you’re stuck and need to break a NOT-BOTH, OR, or IF-
THEN, then make another assumption. If you get no contradiction and yet 
can’t do anything further, then try to refute the argument. Here’s a fuller 
statement of our strategy’s quantificational steps: 

1. FIRST REVERSE SQUIGGLES: For each unstarred, not-blocked-off line that 
begins with “∼” and then a quantifier, derive a line using the reverse-squiggle 
rules. Star the original line. 

2. THEN DROP EXISTENTIALS: For each unstarred, not-blocked-off line that 
begins with an existential quantifier, derive an instance using the next available 
new constant (but don’t drop an existential if you already have a not-blocked-off 
instance in previous lines – so don’t drop “(∃x)Fx” if you already have “Fc”). Star 
the original line. 

3. LASTLY DROP UNIVERSALS: For each not-blocked-off line that begins with a 
universal quantifier, derive instances using each old constant. Don’t star the 
original line; you may have to use it again. (Drop a universal using a new constant 
only if you’ve done everything else possible, making further assumptions if need-
ed, and still have no old constants.) 

Drop existentials before universals. Introduce a new constant each time you 
drop an existential, and use the same old constants when you drop a univer-
sal. And drop only initial quantifiers. 

8.2a Exercise: LogiCola IEV 16. 
Prove each of these arguments to be valid (all are valid). 0190 



 

∼(∃x)Fx 
∴ (x)∼(Fx • Gx) 

* 1   ∼(∃x)Fx Valid 
* [ ∴ (x)∼(Fx • Gx) 
* 2 ┌ asm: ∼(x)∼(Fx • Gx) 
* 3 │ ∴ (∃x)(Fx • Gx) {from 2} 
* 4 │ ∴ (x)∼Fx {from 1} 
* 5 │ ∴ (Fa • Ga) {from 3} 
* 6 │ ∴ ∼Fa {from 4} 
* 7 └ ∴ Fa {from 5} 
* 8 ∴ (x)∼(Fx • Gx) {from 2; 6 contradicts 7} 

1. (x)Fx 
∴ (x)(Gx ∨ Fx) 

2. ∼(∃x)(Fx • ∼Gx) 
∴ (x)(Fx ⊃ Gx) 

3. ∼(∃x)(Fx • Gx) 
(∃x)Fx 
∴ (∃x)∼Gx 

4. (x)((Fx ∨ Gx) ⊃ Hx) 
∴ (x)(∼Hx ⊃ ∼Fx) 

5. (x)(Fx ⊃ Gx) 
(∃x)Fx 
∴ (∃x)(Fx • Gx) 

6. (x)(Fx ∨ Gx) 
∼(x)Fx 
∴ (∃x)Gx 

7. (x)∼(Fx ∨ Gx) 
∴ (x)∼Fx 

8. (x)(Fx ⊃ Gx) 
(x)(Fx ⊃ ∼Gx) 
∴ (x)∼Fx 



 

 

9. (x)(Fx ⊃ Gx) 
(x)(∼Fx ⊃ Hx) 
∴ (x)(Gx ∨ Hx) 

10. (x)(Fx ≡ Gx) 
(∃x)∼Gx 
∴ (∃x)∼Fx 

8.2b Exercise: LogiCola IEV 17. 
First appraise intuitively. Then translate into logic (using the letters given) and 
prove to be valid (all are valid). 

1. All who deliberate about alternatives believe in free will (at least implicitly). 
All deliberate about alternatives. 
∴ All believe in free will. [Use Dx and Bx; from William James.] 

2. Everyone makes mistakes. 
∴ Every logic teacher makes mistakes. [Use Mx and Lx.] 

3. No feeling of pain is publicly observable. 
All chemical processes are publicly observable. 
∴ No feeling of pain is a chemical process. [Use Fx, Ox, and Cx. This attacks a 
form of materialism that identifies mental events with material events. We also 
could test this argument using syllogistic logic (Chapter 2).] 

4. All (in the electoral college) who do their jobs are useless. 
All (in the electoral college) who don’t do their jobs are dangerous. 
∴ All (in the electoral college) are useless or dangerous. [Use Jx for “x does their 
job,” Ux for “x is useless,” and Dx for “x is dangerous.” Use the universe of dis-
course of electoral college members: take “(x)” to mean “for every electoral 
college member x” and don’t translate “in the electoral college.”] 0191 

5. All that’s known is experienced through the senses. 
Nothing that’s experienced through the senses is known. 
∴ Nothing is known. [Use Kx and Ex. Empiricism (premise 1) plus skepticism 
about the senses (premise 2) yields general skepticism.] 

6. No pure water is burnable. 
Some Cuyahoga River water is burnable. 
∴ Some Cuyahoga River water isn’t pure water. [Use Px, Bx, and Cx. The Cuya-
hoga is a river in Cleveland that used to catch fire.] 



 

7. Everyone who isn’t with me is against me. 
∴ Everyone who isn’t against me is with me. [Use Wx and Ax. These claims from 
the Gospels are sometimes thought to be incompatible.] 

8. All basic laws depend on God’s will. 
∴ All basic laws about morality depend on God’s will. [Bx, Dx, Mx] 

9. Some lies in unusual circumstances aren’t wrong. 
∴ Not all lies are wrong. [Lx, Ux, Wx] 

10. Nothing based on sense experience is certain. 
Some logical inferences are certain. 
All certain things are truths of reason. 
∴ Some truths of reason are certain and aren’t based on sense experience. [Bx, 
Cx, Lx, Rx] 

11. No truth by itself motivates us to action. 
Every categorical imperative would by itself motivate us to action. 
Every categorical imperative would be a truth. 
∴ There are no categorical imperatives. [Use Tx, Mx, and Cx. Immanuel Kant 
claimed that commonsense morality accepts categorical imperatives (objectively 
true moral judgments that command us to act and that we must follow if we are to 
be rational); but some thinkers argue against the idea.] 

12. Every genuine truth claim is either experimentally testable or true by defini-
tion. 
No moral judgments are experimentally testable. 
No moral judgments are true by definition. 
∴ No moral judgments are genuine truth claims. [Use Gx, Ex, Dx, and Mx. This is 
logical positivism’s argument against moral truths.] 

13. Everyone who can think clearly would do well in logic. 
Everyone who would do well in logic ought to study logic. 
Everyone who can’t think clearly ought to study logic. 
∴ Everyone ought to study logic. [Tx, Wx, Ox] 

8.3 Easier refutations 

Applying our proof strategy to an invalid argument leads to a refutation: 0192 



 

 

Someone is short. 
Someone is tall. 
∴ Someone is both short and tall. 

* 11   (∃x)Sx Invalid 
* 12   (∃x)Tx 
* 1 [ ∴ (∃x)(Sx • Tx) 
* 13   asm: ∼(∃x)(Sx • Tx) 
* 14   ∴ (x)∼(Sx • Tx) {from 3} 
* 15   ∴ Sa {from 1} 
* 16   ∴ Tb {from 2} 
* 17   ∴ ∼(Sa • Ta) {from 4} 
* 18   ∴ ∼(Sb • Tb) {from 4} 
1* 9   ∴ ∼Ta {from 5 and 7} 
* 10   ∴ ∼Sb {from 6 and 8} 

a, b 

Sa, ∼Ta 
Tb, ∼Sb 

Reverse a squiggle (line 4). Drop two existentials, using a new constant each 
time (lines 5 and 6). Drop the universal twice, using “a” and “b” (lines 7 and 
8). Getting no contradiction, we gather simple wffs for a refutation (here a 
“simple wff” is one containing only capital letters, zero or more constants, 
and zero or one squiggles). We get a little possible world with two people, a 
and b, where a is short and not tall, but b is tall and not short. The argument 
is invalid, since this possible world makes the premises all true (someone is 
short and someone is tall) but the conclusion false (no one is both short and 
tall). 

If we try to prove an invalid argument, we’ll instead be led to a refutation – 
a little possible world with various individuals (like a and b) and simple 
truths about them (like Sa and ∼Sb) that make the premises all true and 
conclusion false. In evaluating premises and conclusion, use these rules to 
evaluate each formula or subformula that starts with a quantifier: 

An existential wff is true if and only if at least one case is true. 

A universal wff is true if and only if all cases are true. 

Premise “(∃x)Sx” is true because at least one case (“Sa”) is true, and premise 
“(∃x)Tx” is true because at least one case (“Tb”) is true.1 But conclusion 
 
1 SOME is like OR: something holds in this case OR that case OR that case … – so a single true 



 

“(∃x)(Sx • Tx)” is false because both cases are false: 

(Sa • Ta) = (1 • 0) = 0 

(Sb • Tb) = (0 • 1) = 0 

Always check that your refutation works. If you don’t get premises all 1 and 
conclusion 0, then you did something wrong; look at what you did with the 
wff that came out wrong (a premise that’s 0 or ?, or a conclusion that’s 1 or 
?). 

These two rules are crucial for working out proofs and refutations: 0193 

• For each initial existential quantifier, introduce a new constant. 
• For each initial universal quantifier, derive an instance for each old constant. 

If you have two existentials, don’t drop both using the same constant – and 
don’t drop just one existential. And if you have two constants, then drop any 
universals using both constants; if in our example we dropped the universal 
in “(x)∼(Sx • Tx)” using “a” but not “b,” then our refutation would fail: 

a, b 

Sa, ∼Ta, Tb 

a is short and not tall, b is tall 

Since “Sb” is unknown, our conclusion “(∃x)(Sx • Tx)” would also be un-
known (because the second case with “b” is unknown): 

(Sa • Ta) = (1 • 0) = 0 

(Sb • Tb) = (? • 1) = ? 

The “Someone is both short and tall” conclusion is unknown, since our world 
doesn’t exclude b being short (besides being tall). We avoid such problems if 
we drop each initial universal quantifier using each old constant; here we’d 
go from “(x)∼(Sx • Tx)” to “∼(Sb • Tb),” which would lead to “∼Sb.” 

As we refute arguments, we’ll often have to evaluate premises or conclu-
sions that don’t start with quantifiers, such as these wffs: 

 
case makes a SOME true. ALL is like AND: something holds in this case AND that case AND that 
case … – so a single false case makes an ALL false. 



 

 

∼(x)Sx 
∼(x)Sx 

∼(x)(Sx ∨ Tx) 
∼(x)(Sx ∨ Tx) 

∼(∃x)(Sx • Tx) 
∼(∃x)(Sx • Tx) 

Identify any subformulas that start with quantifiers (as highlighted here). 
Evaluate each subformula to be 1 or 0, and then apply “∼” to reverse the 
result. On our short-tall refutation, “(x)Sx” = 0 and so “∼(x)Sx” = 1. Likewise, 
“(x)(Sx ∨ Tx)” = 1, and so “∼(x)(Sx ∨ Tx)” = 0; and “(∃x)(Sx • Tx)” = 0, and 
so “∼(∃x)(Sx • Tx)” = 1. In evaluating a wff that starts with a squiggle and 
then a quantifier, evaluate the wff without the squiggle and then give the 
original wff the opposite value. Divide and conquer! 

Possible worlds for refutations must contain at least one entity. We seldom 
need more than two entities. 

8.3a Exercise: LogiCola IEI18. 
Prove each of these arguments to be invalid (all are invalid). 0194 

∼(x)(Fx ∨ Gx) 
∴ ∼(∃x)Gx 

* 1   ∼(x)(Fx ∨ Gx)  Invalid 
* [ ∴ ∼(∃x)Gx 
* 2   asm: (∃x)Gx 
* 3   ∴ (∃x)∼(Fx ∨ Gx) {from 1} 
* 4   ∴ ∼(Fa ∨ Ga) {from 3} 
* 5   ∴ ∼Fa {from 4} 
* 6   ∴ ∼Ga {from 4} 
* 7   ∴ Gb {from 2} 

a, b 

∼Fa, ∼Ga, Gb 
 

1. (∃x)Fx 
∴ (x)Fx 

2. (∃x)Fx 
(∃x)Gx 
∴ (∃x)(Fx • Gx) 



 

3. (∃x)(Fx ∨ Gx) 
∼(x)Fx 
∴ (∃x)Gx 

4. (∃x)Fx 
∴ (∃x)∼Fx 

5. ∼(∃x)(Fx • Gx) 
(x)∼Fx 
∴ (x)Gx 

6. (x)(Fx ⊃ Gx) 
∼(x)Gx 
∴ (x)∼(Fx • Gx) 

7. (x)((Fx • Gx) ⊃ Hx) 
(∃x)Fx 
(∃x)Gx 
∴ (∃x)Hx 

8. (∃x)(Fx ∨ ∼Gx) 
(x)(∼Gx ⊃ Hx) 
(∃x)(Fx ⊃ Hx) 
∴ (∃x)Hx 

9. (∃x)∼(Fx ∨ Gx) 
(∃x)Hx 
∼(∃x)Fx 
∴ ∼(x)(Hx ⊃ Gx) 

10. (∃x)∼Fx 
(∃x)∼Gx 
∴ (∃x)(Fx ≡ Gx) 

8.3b Exercise: LogiCola IEC19. 
First appraise intuitively. Then translate into logic (using the letters given) and say 
whether valid (and give a proof) or invalid (and give a refutation). 

1. Some butlers are guilty. 
∴ All butlers are guilty. [Use Bx and Gx.] 



 

 

2. No material thing is infinite. 
Not everything is material. 
∴ Something is infinite. [Use Mx and Ix.] 

3. Some smoke. 
Not all have clean lungs. 
∴ Some who smoke don’t have clean lungs. [Use Sx and Cx.] 

4. Some Marxists plot violent revolution. 
Some faculty members are Marxists. 
∴ Some faculty members plot violent revolution. [Mx, Px, Fx] 0195 

5. All valid arguments that have “ought” in the conclusion also have “ought” in the 
premises. 
All arguments that seek to deduce an “ought” from an “is” have “ought” in the 
conclusion but don’t have “ought” in the premises. 
∴ No argument that seeks to deduce an “ought” from an “is” is valid. [Use Vx for 
“x is valid,” Cx for “x has ‘ought’ in the conclusion,” Px for “x has ‘ought’ in the 
premises,” Dx for “x seeks to deduce an ‘ought’ from an ‘is,’” and the universe of 
discourse of arguments. This one is difficult to translate.] 

6. Every kick returner who is successful is fast. 
∴ Every kick returner who is fast is successful. [Kx, Sx, Fx] 

7. All exceptionless duties are based on the categorical imperative. 
All non-exceptionless duties are based on the categorical imperative. 
∴ All duties are based on the categorical imperative. [Use Ex, Bx, and the uni-
verse of discourse of duties; from Kant, who based all duties on his supreme 
moral principle, called “the categorical imperative.”] 

8. All who aren’t crazy agree with me. 
∴ No one who is crazy agrees with me. [Cx, Ax] 

9. Everything can be conceived. 
Everything that can be conceived is mental. 
∴ Everything is mental. [Use Cx and Mx; from George Berkeley, who attacked 
materialism by arguing that everything is mental and that matter doesn’t exist 
apart from mental sensations; so a chair is just a collection of experiences. Ber-
trand Russell thought premise 2 was confused.] 

10. All sound arguments are valid. 
∴ All invalid arguments are unsound. [Use Sx and Vx and the universe of dis-
course of arguments.] 



 

11. All trespassers are eaten. 
∴ Some trespassers are eaten. [Use Tx and Ex. The premise is from a sign on the 
Appalachian Trail in northern Virginia. Traditional logic (§2.8) takes “all A is B” to 
entail “some A is B”; modern logic takes “all A is B” to mean “whatever is A also is 
B” – which can be true even if there are no A’s.] 

12. Some necessary being exists. 
All necessary beings are perfect beings. 
∴ Some perfect being exists. [Use Nx and Px. Kant claimed that the cosmological 
argument for God’s existence at most proves premise 1; it doesn’t prove the 
existence of a perfect God unless we add premise 2. But premise 2, by the next 
argument, presupposes the central claim of the ontological argument – that some 
perfect being is a necessary being. So, Kant claimed, the cosmological argument 
presupposes the ontological argument.] 

13. All necessary beings are perfect beings. 
∴ Some perfect being is a necessary being. [Use Nx and Px. Kant followed tradi-
tional logic (see problem 11) in taking “all A is B” to entail “some A is B.”] 0196 

14. No one who isn’t a logical positivist holds the verifiability criterion of mean-
ing. 
∴ All who hold the verifiability criterion of meaning are logical positivists. [Use 
Lx and Hx. The verifiability criterion of meaning says that every genuine truth 
claim is either experimentally testable or true by definition.] 

15. No pure water is burnable. 
Some Cuyahoga River water isn’t burnable. 
∴ Some Cuyahoga River water is pure water. [Use Px, Bx, and Cx.] 

8.4 Harder translations 

We’ll now start using statement letters (like “S” for “It’s snowing”) and 
individual constants (like “r” for “Romeo”); here’s an example: 

If it’s snowing, then Romeo is cold = (S ⊃ Cr) 

Here “S,” since it’s a capital letter not followed by a small letter, represents a 
whole statement. And “r,” since it’s a small letter between “a” and “w,” is a 
constant that stands for a specific person or thing. 

We’ll also start using multiple and non-initial quantifiers. From now on, 
use this expanded rule about what quantifier to use and where to put it: 



 

 

Where the English has “all” or “every,” put this in the wff: “(x).” 

Where the English has “not all” or “not every,” put this in the wff: “∼(x).” 

Where the English has “some,” put this in the wff: “(∃x).” 

Where the English has “no,” put this in the wff: “∼(∃x).” 

If all are Italian, then Romeo is Italian = ((x)Ix ⊃ Ir) 

Since “if” translates as “(,” likewise “if all” translates as “((x).” As you trans-
late, mimic the English word order: 

all not = (x)∼ 
not all = ∼(x) 

all either = (x)( 
either all = ((x) 

if all either = ((x)( 
if either all = (((x) 

Use a separate quantifier for each “all,” “some,” and “no”: 

If all are Italian, then all are lovers 
= ((x)Ix ⊃ (x)Lx) 

If not everyone is Italian, then some aren’t lovers 
= (∼(x)Ix ⊃ (∃x)∼Lx) 

If no Italians are lovers, then some Italians are not lovers 
=  (∼(∃x)(Ix • Lx) ⊃ (∃x)(Ix • ∼Lx)) 0197 

“Any” differs in subtle ways from “all” (which translates into a “(x)” that 
mirrors where “all” occurs in the English sentence). “Any” has two different 
but equivalent translation rules; here’s the easier rule, with examples: 

To translate “any,” first rephrase the sentence so it means the same thing but 
doesn’t use “any”; then translate the second sentence. 

“Not any …” =  “No ….” 
“If any …” =  “If some ….” 

“Any …” =  “All ….” 



 

Not anyone is rich = No one is rich 
= ∼(∃x)Rx 

Not any Italian is a lover = No Italian is a lover 
= ∼(∃x)(Ix • Lx) 

If anyone is just, there will be peace = If someone is just, there will be peace 
= ((∃x)Jx ⊃ P) 

Our second rule usually gives a formula that’s different but equivalent: 

To translate “any,” put a “(x)” at the beginning of the wff, regardless of where 
the “any” occurs in the sentence. 

Not anyone is rich = For all x, x isn’t rich 
= (x)∼Rx 

Not any Italian is a lover = For all x, x isn’t both Italian and a lover 
= (x)∼(Ix • Lx) ⇐ Note “•” here! 

If anyone is just, there will be peace = For all x, if x is just there will be peace 
= (x)(Jx ⊃ P) 

“Any” at the beginning of a sentence usually just means “all.” So “Any Italian 
is a lover” means “All Italians are lovers.” 

8.4a Exercise: LogiCola H (HM & HT)20. 
Translate these English sentences into wffs. Recall that our translation rules are 
rough guides and sometimes don’t work; so read your formula carefully to make sure 
it reflects what the English means. 

If everyone is evil, then Gensler is evil. 

((x)Ex ⊃ Eg) 

1. Gensler is either crazy or evil. 

2. If Gensler is a logician, then some logicians are evil. 

3. If everyone is a logician, then everyone is evil. 

4. If all logicians are evil, then some logicians are evil. 

5. If someone is evil, it will rain. 



 

 

6. If everyone is evil, it will rain. 

7. If anyone is evil, it will rain. 0198 

8. If Gensler is a logician, then someone is a logician. 

9. If no one is evil, then no one is an evil logician. 

10. If all are evil, then all logicians are evil. 

11. If some are logicians, then some are evil. 

12. All crazy logicians are evil. 

13. Everyone who isn’t a logician is evil. 

14. Not everyone is evil. 

15. Not anyone is evil. 

16. If Gensler is a logician, then he’s evil. 

17. If anyone is a logician, then Gensler is a logician. 

18. If someone is a logician, then he or she is evil. 

19. Everyone is an evil logician. 

20. Not any logician is evil. 

8.5 Harder proofs 

Now we come to proofs using formulas with multiple or non-initial quantifi-
ers. Such proofs, while needing no new inference rules, are often tricky and 
require multiple assumptions. As before, drop only initial quantifiers: 

Both of these are wrong: 

((x)Fx ⊃ (x)Gx) ––––––––––––– 
∴ (Fa ⊃ (x)Gx) 

((x)Fx ⊃ (x)Gx) ––––––––––––– 
∴ (Fa ⊃ Ga) 

“((x)Fx ⊃ (x)Gx)” is an if-then; to infer with it, we need the first part true or 
the second part false – as in these examples: 

Both of these are right: 

((x)Fx ⊃ (x)Gx) 
(x)Fx ––––––––––––– 



 

∴ (x)Gx 

((x)Fx ⊃ (x)Gx) 
∼(x)Gx ––––––––––––– 
∴ ∼(x)Fx 

If we get stuck, we may need to assume one side or its negation. 
Here’s a proof using a formula with multiple quantifiers: 0199 

If some are enslaved, then all have their freedom threatened. 
∴ If this person is enslaved, then I have my freedom threatened. 

*  11   ((∃x)Sx ⊃ (x)Tx) Valid 
* 1 [ ∴ (St ⊃ Ti) 
* 12 ┌ asm: ∼(St ⊃ Ti) 
* 13 │ ∴ St {from 2} 
* 14 │ ∴ ∼Ti {from 2} 
* 15 │ ┌ asm: ∼(∃x)Sx {break 1} 
* 16 │ │ ∴ (x)∼Sx {from 5} 
* 17 │ └ ∴ ∼St {from 6} 
* 18 │ ∴ (∃x)Sx {from 5; 3 contradicts 7} 
* 19 │ ∴ (x)Tx {from 1 and 8} 
* 10 └ ∴ Ti {from 9} 
* 11 ∴ (St ⊃ Ti) {from 2; 4 contradicts 10} 

After the assumption, we apply an S-rule to get lines 3 and 4. Then we’re 
stuck, since we can’t drop the non-initial quantifiers in 1. So we make a 
second assumption in line 5, get a contradiction, and derive 8. We soon get a 
second contradiction to complete the proof. 

Here’s an invalid argument: 

If all are enslaved, then all have their freedom threatened. 
∴ If this person is enslaved, then I have my freedom threatened. 

** 1   ((x)Sx ⊃ (x)Tx)  Invalid 
** [ ∴ (St ⊃ Ti) 
* *2   asm: ∼(St ⊃ Ti) 
** 3   ∴ St {from 2} 
** 4   ∴ ∼Ti {from 2} 
** 5      asm: ∼(x)Sx {break 1} 
** 6      ∴ (∃x)∼Sx {from 5} 
** 7      ∴ ∼Sa {from 6} 

t, i, a 



 

 

St, ∼Ti, ∼Sa 

In evaluating the premise, first identity and evaluate subformulas that start 
with quantifiers (these are highlighted here), and then plug in 1 or 0 for 
these: 

For “((x)Sx ⊃ (x)Tx),” we first evaluate “(x)Sx” and “(x)Tx”: 
“(x)Sx” is false because “Sa” is false. 
“(x)Tx” is false because “Ti” is false. 
Replace both with “0.” 

We get “(0 ⊃ 0),” which simplifies to “1.” 
So “((x)Sx ⊃ (x)Tx)” is true. 

So the premise is true. Since the conclusion is false, the argument is invalid. 
As we refute invalid arguments, we’ll often have complex premises or con-

clusions to evaluate, such as these wffs: 

((x)Sx ⊃ (x)Tx) 
((x)Sx ⊃ (x)Tx) 

((x)(Fx ∨ Gx) ⊃ (∼(∃x)Gx • (∃x)∼Hx)) 
((x)(Fx ∨ Gx) ⊃ (∼(∃x)Gx • (∃x)∼Hx)) 

(∼(x)(Fx ⊃ Gx) ≡ ∼(∃x)Hx) 
(∼(x)(Fx ⊃ Gx) ≡ ∼(∃x)Hx) 

Identity any subformulas that start with quantifiers (as highlighted 0200 
here). Evaluate each such subformula to be 1 or 0, replace it with 1 or 0, and 
figure out whether the whole formula is 1 or 0. Divide and conquer! 

8.5a Exercise: LogiCola I (HC & MC)21. 
Say whether each is valid (and give a proof) or invalid (and give a refutation). 



 

(x)(Mx ∨ Fx) 
∴ ((x)Mx ∨ (x)Fx) 

(This is like arguing that, since everyone is male or female, thus either 
everyone is male or everyone is female.) 

* 11   (x)(Mx ∨ Fx)  Invalid 
* 1 [ ∴ ((x)Mx ∨ (x)Fx) 
* 12   asm: ∼((x)Mx ∨ (x)Fx) 
* 13   ∴ ∼(x)Mx {from 2} 
* 14   ∴ ∼(x)Fx {from 2} 
* 15   ∴ (∃x)∼Mx {from 3} 
* 16   ∴ (∃x)∼Fx {from 4} 
* 17   ∴ ∼Ma {from 5} 
* 18   ∴ ∼Fb {from 6} 
* 19   ∴ (Ma ∨ Fa) {from 1} 
* 10   ∴ (Mb ∨ Fb) {from 1} 
* 11   ∴ Fa {from 7 and 9} 
* 12   ∴ Mb {from 8 and 10} 

a, b 

Fa, ∼Ma 
Mb, ∼Fb 

 

1. (x)(Fx ∨ Gx) 
∼Fa 
∴ (∃x)Gx 

2. (x)(Ex ⊃ R) 
∴ ((∃x)Ex ⊃ R) 

3. ((x)Ex ⊃ R) 
∴ (x)(Ex ⊃ R) 

4. ((∃x)Fx ∨ (∃x)Gx) 
∴ (∃x)(Fx ∨ Gx) 

5. ((∃x)Fx ⊃ (∃x)Gx) 
∴ (x)(Fx ⊃ Gx) 

6. (x)((Fx ∨ Gx) ⊃ Hx) 
Fm 
∴ Hm 



 

 

7. Fj 
(∃x)Gx 
(x)((Fx • Gx) ⊃ Hx) 
∴ (∃x)Hx 

8. ((∃x)Fx ⊃ (x)Gx) 
∼Gp 
∴ ∼Fp 

9. (∃x)(Fx ∨ Gx) 
∴ ((x)∼Gx ⊃ (∃x)Fx) 

10. ∼(∃x)(Fx • Gx) 
∼Fd 
∴ Gd 

11. (x)(Ex ⊃ R) 
∴ ((x)Ex ⊃ R) 

12. (x)(Fx • Gx) 
∴ ((x)Fx • (x)Gx) 

13. (R ⊃ (x)Ex) 
∴ (x)(R ⊃ Ex) 

14. ((x)Fx ∨ (x)Gx) 
∴ (x)(Fx ∨ Gx) 

15. ((∃x)Ex ⊃ R) 
∴ (x)(Ex ⊃ R) 

8.5b Exercise: LogiCola I (HC & MC)22. 
First appraise intuitively. Then translate into logic (using the letters given) and say 
whether valid (and give a proof) or invalid (and give a refutation). 

1. Everything has a cause. 
If the world has a cause, then there is a God. 
∴ There is a God. [Use Cx for “x has a cause,” w for “the world,” and G for “There 
is a God” (which we needn’t here break down into “(∃x)Gx” – “For some x, x is a 
God”). A student of mine suggested this argument; but the next example shows 
that premise 1 can as easily lead to the opposite conclusion.] 0201 



 

2. Everything has a cause. 
If there is a God, then something doesn’t have a cause (namely, God). 
∴ There is no God. [Use Cx and G. The next example qualifies “Everything has a 
cause” to avoid the problem; some prefer an argument based on “Every contin-
gent being or set of such beings has a cause.”] 

3. Everything that began to exist has a cause. 
The world began to exist. 
If the world has a cause, then there is a God. 
∴ There is a God. [Use Bx, Cx, w, and G. This “Kalam argument” is from William 
Craig and James Moreland; they defend premise 2 by appealing to the Big Bang 
theory, the law of entropy, and the impossibility of an actual infinite.] 

4. If everyone litters, then the world will be dirty. 
∴ If you litter, then the world will be dirty. [Lx, D, u] 

5. Anything enjoyable is either immoral or fattening. 
∴ If nothing is immoral, then everything that isn’t fattening isn’t enjoyable. [Ex, 
Ix, Fx] 

6. Anything that can be explained either can be explained as caused by scientific 
laws or can be explained as resulting from a free choice of a rational being. 
The totality of basic scientific laws can’t be explained as caused by scientific laws 
(since this would be circular). 
∴ Either the totality of basic scientific laws can’t be explained or else it can be 
explained as resulting from a free choice of a rational being (God). [Use Ex for “x 
can be explained,” Sx for “x can be explained as caused by scientific laws,” Fx for 
“x can be explained as resulting from a free choice of a rational being,” and t for 
“the totality of scientific laws.” This one is from R. G. Swinburne.] 

7. If someone knows the future, then no one has free will. 
∴ No one who knows the future has free will. [Kx, Fx] 

8. If everyone teaches philosophy, then everyone will starve. 
∴ Everyone who teaches philosophy will starve. [Tx, Sx] 

9. No proposition based on sense experience is logically necessary. 
∴ Either no mathematical proposition is based on sense experience, or no mathe-
matical proposition is logically necessary. [Use Sx, Nx, and Mx, and the universe 
of propositions; from the logical positivist A. J. Ayer.] 



 

 

10. Any basic social rule that people would agree to if they were free and rational 
but ignorant of their place in society (whether rich or poor, white or black, male 
or female) is a principle of justice. 
The equal-liberty principle and difference principle are basic social rules that 
people would agree to if they were free and rational but ignorant of their place in 
society. 
∴ The equal-liberty principle and difference principle are principles of justice. 
[Use Ax, Px, e, and d; from John Rawls. Equal-liberty says that everyone is entitled 
to the greatest liberty compatible with an equal liberty for all others; difference 
says that wealth is to be distributed equally, except for inequalities that provide 
incentives that ultimately benefit everyone and are equally open to all.] 0202 

11. If there are no necessary beings, then there are no contingent beings. 
∴ All contingent beings are necessary beings. [Use Nx and Cx. Aquinas accepted 
the premise but not the conclusion.] 

12. Anything not disproved that’s of practical value to one’s life to believe ought 
to be believed. 
Free will isn’t disproved. 
∴ If free will is of practical value to one’s life to believe, then it ought to be be-
lieved. [Use Dx, Vx, Ox, f (for “free will”), and the universe of discourse of beliefs; 
from William James.] 

13. If the world had no temporal beginning, then some series of moments before 
the present moment is a completed infinite series. 
There’s no completed infinite series. 
∴ The world had a temporal beginning. [Use Tx for “x had a temporal begin-
ning,” w for “the world,” Mx for “x is a series of moments before the present 
moment,” and Ix for “x is a completed infinite series.” This one and the next are 
from Immanuel Kant, who thought our intuitive metaphysical principles lead to 
conflicting conclusions and thus can’t be trusted.] 

14. Everything that had a temporal beginning was caused to exist by something 
previously in existence. 
If the world was caused to exist by something previously in existence, then there 
was time before the world began. 
If the world had a temporal beginning, then there was no time before the world 
began. 
∴ The world didn’t have a temporal beginning. [Use Tx for “x had a temporal 
beginning,” Cx for “x was caused to exist by something previously in existence,” w 
for “the world,” and B for “There was time before the world began.”] 



 

15. If emotivism is true, then “X is good” means “Hurrah for X!” and all moral 
judgments are exclamations. 
All exclamations are inherently emotional. 
“This dishonest income tax exemption is wrong” is a moral judgment. 
“This dishonest income tax exemption is wrong” isn’t inherently emotional. 
∴ Emotivism isn’t true. [T, H, Mx, Ex, Ix, t] 

16. If everything is material, then all prime numbers are composed of physical 
particles. 
Seven is a prime number. 
Seven isn’t composed of physical particles. 
∴ Not everything is material. [Mx, Px, Cx, s] 

17. If everyone lies, the results will be disastrous. 
∴ If anyone lies, the results will be disastrous. [Lx, D] 0203 

18. Everyone makes moral judgments. 
Moral judgments logically presuppose beliefs about God. 
If moral judgments logically presuppose beliefs about God, then everyone who 
makes moral judgments believes (at least implicitly) that there is a God. 
∴ Everyone believes (at least implicitly) that there is a God. [Use Mx for “x 
makes moral judgments,” L for “Moral judgments logically presuppose beliefs 
about God,” and Bx for “x believes (at least implicitly) that there is a God.” This is 
from the Jesuit theologian Karl Rahner.] 

19. “x = x” is a basic law. 
“x = x” is true in itself, and not true because someone made it true. 
If “x = x” depends on God’s will, then “x = x” is true because someone made it 
true. 
∴ Some basic laws don’t depend on God’s will. [Use e (for “x = x”), Bx, Tx, Mx, 
and Dx.] 

20. Nothing that isn’t caused can be integrated into the unity of our experience. 
Everything that we could experientially know can be integrated into the unity of 
our experience. 
∴ Everything that we could experientially know is caused. [Use Cx, Ix, and Ex; 
from Immanuel Kant. The conclusion is limited to objects of possible experience – 
since it says “Everything that we could experientially know is caused”; Kant 
thought the unqualified “Everything is caused” leads to contradictions (see # 1 
and 2).] 

21. If everyone deliberates about alternatives, then everyone believes (implicitly) 
in free will. 
∴ All who deliberate about alternatives believe (implicitly) in free will. [Dx, Bx] 



 

 

22. All who are consistent and think that abortion is normally permissible will 
consent to the idea of their having been aborted in normal circumstances. 
You don’t consent to the idea of your having been aborted in normal circum-
stances. 
∴ If you’re consistent, then you won’t think that abortion is normally permissible. 
[Use Cx, Px, Ix, and u. See my article in January 1986 Philosophical Studies or the 
synthesis chapter of my Ethics: A Contemporary Introduction, 3rd ed. (New York: 
Routledge, 2018).] 

8.6 Copi proofs 

We earlier discussed the traditional Copi proof method for propositional 
logic (§7.5). This method can also be used for quantificational logic. 

For each quantifier (universal and existential), Copi has instantiation rules 
(to drop a quantifier) and generalization rules (to add a quantifier). Existen-
tial instantiation (EI) is the same as our drop-existential rule (DE). It holds 
regardless of what variable replaces “x,” what constant replaces “a,” and what 
wffs replace “Fx” / “Fa” – provided that the two wffs are identical except that 
wherever the 0204 variable occurs freely1 in the former the same constant 
occurs in the latter: 

EI Existential instantiation 
 

(∃x)Fx → Fa, 
use a new constant 

Here the constant must not have occurred in any previous step of the proof 
or in the original conclusion. As before, “→” in all these rules means that we 
can infer whole lines from left to right. Existential generalization works the 
opposite way, and isn’t subject to the restriction that the constant has to be 
new: 

EG Existential generalization 
 

Fa → (∃x)Fx 

Another form of the rule uses a variable in place of “a”: 

 
1 An instance of a variable occurs freely in a formula if it’s not part of a wff that begins with a 
quantifier using that variable; just the first instance of “x” in “(Fx • (x)Gx)” occurs freely. 



 

EG Existential generalization 
 

Fy → (∃x)Fx 

This form holds regardless of what variables replace “x” and “y” and what 
wffs replace “Fx” / “Fy” – provided that the two wffs are identical except that 
wherever the variable that replaces “x” occurs freely in the former the 
variable that replaces “y” occurs freely in the latter. 

Universal instantiation (UI) is like our drop-universal rule (DE), except 
that it also has two forms. The first form holds regardless of what variable 
replaces “x,” what constant replaces “a,” and what wffs replace “Fx” / “Fa” – 
provided that the two wffs are identical except that wherever the variable 
occurs freely in the former the same constant occurs in the latter: 

UI Universal instantiation 
 

(x)Fx → Fa 

Here the constant needn’t be new, and so it could have occurred earlier in the 
proof or in the original conclusion. And again a second form uses a variable in 
place of “a.” This form holds regardless of what variables replace “x” and “y” 
and what wffs replace “Fx” / “Fy” – provided that the two wffs are identical 
except that wherever the variable that replaces “x” occurs freely in the 
former the variable that replaces “y” occurs freely in the latter: 

UI Universal instantiation 
 

(x)Fx → Fy 

0205 Universal generalization works the opposite way: 

UG Universal generalization 
 

Fy → (x)Fx, 
“y” can’t occur in an assumption 

Here the variable that replaces “y” can’t occur in an assumption. 
Copi has a replacement rule much like our reverse-squiggle rules (any 



 

 

variable can uniformly replace “x” and any wff can uniformly replace “P”): 

QN Quantifier negation 
 

(x)P = ∼(∃x)∼P 
(∃x)P = ∼(x)∼P 

This lets us switch, for example, one instance of “(x)Fx” and “∼(∃x)∼Fx” 
anywhere in a wff. I’ll take the Copi proof system for quantificational logic to 
include these five rules: EI, EG, UI, UG, and QN. 

To see how these work, I’ll now prove the valid arguments in this chapter’s 
explanation sections. Here’s a Copi proof for the first example in §8.2: 

Conclusion: (∃x)Fx 

1 (x)(Lx ⊃ Fx) 
2 (∃x)Lx 
3 La {EI 2} 
4 (La ⊃ Fa) {UI 1} 
5 Fa {MP 3+4} 
6 (∃x)Fx {EG 5} 

And here’s a Copi proof for the second example in §8.2: 

Conclusion: (x)Fx 

1 (x)(Fx • Gx) 
2 (Fy • Gy) {UI 1} 
3 Fy {SM 2} 
4 (x)Fx {UG 3} 

And here’s a Copi proof for the valid example in §8.5: 

Conclusion: (St ⊃ Ti) 

1 ((∃x)Sx ⊃ (x)Tx) 
2 St {Assume} * 
3 (∃x)Sx {EG 2} * 
4 (x)Tx {MP 1+3} * 
5 Ti {UI 4} * 
6 (St ⊃ Ti) {CP 2+5} 0206 

If you’ve mastered Copi propositional proofs, the quantificational proofs 



 

won’t be too difficult. If you’re really confused on how to start, try assuming 
the opposite of the conclusion and deriving a contradiction. Again, use Copi 
proofs only on valid arguments; if you try the Copi procedure on an invalid 
argument, you won’t derive the conclusion and you won’t reach a natural 
“stopping point” that gives you a refutation of the argument’s validity. 

8.5a and 8.5b Exercise: LogiCola IEO 23. 
Do Copi proofs for problems in §§8.2a and 8.2b (all are valid). These are easier 
problems. 

8.5c and 8.5d Exercise: LogiCola IHO and IMO 24. 
Do Copi proofs for problems in §8.5a (just the valid ones, namely 1, 2, 4, 6, 8, 9, 11, 
12, 13, 14, and 15) and §8.5b (just the valid ones, namely 1, 2, 3, 5, 6, 7, 10, 12, 13, 14, 
15, 16, 18, 19, 20, and 22). These are harder problems. 

  



 

9 Relations and Identity 

We now bring quantificational logic up to full power by adding identity and 
relational statements, like “a=b” and “Lrj” (“Romeo loves Juliet”). 

9.1 Identity translations 

Our third rule for forming quantificational wffs introduces “=a” (“equals”): 

The result of writing a small letter and then “=a” and then a small letter is a wff. 

This lets us construct wffs like these: 

x=y = x equals y. 
r=l = Romeo is the lover of Juliet. 
∼p=l = Paris isn’t the lover of Juliet. 

We negate an identity wff by writing “∼” in front. Neither “r=l” nor “∼p=l” 
use parentheses, since these aren’t needed to avoid ambiguity. 

The simplest use of “=a” translates an “is” that goes between singular 
terms. Recall the difference between general and singular terms: 

Use capital letters for general terms, which describe or put in a category: 

I = an Italian 
C = charming 

F = drives a Ford 

Use capitals for “a so and so,” adjectives, and verbs. 

Use small letters for singular terms, which pick out a specific person or thing: 

i = the richest Italian 
t = this child 
r = Romeo 

Use small letters for “the so and so,” “this so and so,” and proper names. 



 

Compare these two forms: 0208 

Predication 
Lr 

Romeo is a lover 

Identity 
r=l 

Romeo is the lover of Juliet 

Use “=a” for “is” if both sides are singular terms (represented by small let-
ters). The “is” of identity can be replaced with “is identical to” or “is the same 
entity as,” and can be reversed (so if x=y then y=x). 

We can translate “other than,” “besides,” and “alone” using identity: 

Someone other than (besides) Romeo is rich 
= (∃x)(∼x=r • Rx) 
For some x, x ≠ Romeo and x is rich 

Romeo alone is rich 
= (Rr • ∼(∃x)(∼x=r • Rx)) 
Romeo is rich and it’s false that, for some x, x ≠ Romeo and x is rich 

These translations also work if we switch conjuncts (“∼x=r” and “Rx”) or 
switch the order of letters in an identity (“∼r=x” works in place of “∼x=r”). 
We also can translate some numerical notions, for example: 

At least two are rich 
= (∃x)(∃y)(∼x=y • (Rx • Ry)) 
For some x and some y: x≠y, x is rich, and y is rich 

The pair of quantifiers “(∃x)(∃y)” (“for some x and some y”) doesn’t say 
whether x and y are identical; so we need “∼x=y” to say they aren’t. Hence-
forth we’ll often need more variable letters than just “x” to keep references 
straight. In general, it doesn’t matter which variable letters we use; we can 
translate “At least one is rich” as “(∃x)Rx” or “(∃y)Ry” or “(∃z)Rz.” 

We can express “exactly one” and “exactly two” (and “exactly n,” for any 
specific whole number n): 

 
Exactly one is dark 



 

 

= (∃x)(Dx • ∼(∃y)(∼y=x • Dy)) 
For some x, x is dark and there’s no y such that y≠x and y is dark 

 
Exactly two are dark 
= (∃x)(∃y)(((Dx • Dy) • ∼x=y) • ∼(∃z)((∼z=x • ∼z=y) • Dz)) 
For some x and some y, x is dark and y is dark and x≠y and there’s no z such that 
z≠x and z≠y and z is dark 

We also can express addition. Here’s a Loglish paraphrase of “1 + 1 = 2” and 
the corresponding formula: 0209 

If exactly one being is F and exactly one being is G and nothing is F-and-G, then 
exactly two beings are F-or-G. 

((((∃x)(Fx • ∼(∃y)(∼y=x • Fy)) • (∃x)(Gx • ∼(∃y)(∼y=x • Gy))) • ∼(∃x)(Fx • 
Gx)) ⊃ (∃x)(∃y)(((Fx ∨ Gx) • (Fy ∨ Gy)) • (∼x=y • ∼(∃z)((∼z=x • ∼z=y) • (Fz ∨ 
Gz))))) 

We could prove our “1 + 1 = 2” formula by assuming its denial and deriving a 
contradiction. While this would be tedious, it’s interesting that it could be 
done. In principle, we could prove “2 + 2 = 4” and “5 + 7 = 12” – and the 
additions on your income tax form. Some mean teachers assign such home-
work problems. 

9.1a Exercise: LogiCola H (IM & IT) 
Translate these English sentences into wffs. 

Jim is the goalie and is a student. 

(j=g • Sj) 

1. Aristotle is a logician. 

2. Aristotle is the greatest logician. 

3. Aristotle isn’t Plato. 

4. Someone besides Aristotle is a logician. 

5. There are at least two logicians. 

6. Aristotle alone is a logician. 

7. All logicians other than Aristotle are evil. 



 

8. No one besides Aristotle is evil. 

9. The philosopher is Aristotle. 

10. There’s exactly one logician. 

11. There’s exactly one evil logician. 

12. Everyone besides Aristotle and Plato is evil. 

13. If the thief is intelligent, then you aren’t the thief. 

14. Carol is my only sister. 

15. Alice runs but isn’t the fastest runner. 

16. There’s at most one king. 

17. The king is bald. 

18. There’s exactly one king and he is bald. 

9.2 Identity proofs 

We need two new inference rules for identity. This self-identity rule holds 
regardless of what constant replaces “a”: 

Self-identity SI 
 

a=a 

0210 This is an axiom – a basic unproved assertion that can be used to prove 
other things. This rule says that we may assert a self-identity as a “derived 
line” anywhere in a proof, regardless of earlier lines. Adding “a=a” can be 
useful if we already have “∼a=a” (since then we get a contradiction) or 
already have a line like “(a=a ⊃ Gb)” (since then we can apply an I-rule). Our 
self-identity line will mention this previous line; it might say “∴ b=b {self-
identity, to contradict 3}.” 

This substitute-equals rule is based on interchangeability of identicals: if 
a=b, then whatever is true of a is true of b, and vice versa. This rule holds 
regardless of what constants replace “a” and “b” and what wffs replace “Fa” 
and “Fb” – provided that the two wffs are alike except that the constants are 
interchanged in one or more occurrences: 



 

 

Substitute Equals SE 
 

a=b, Fa → Fb 

Here’s an easy identity proof: 

I weigh 180 pounds. 
My mind doesn’t weigh 180 pounds. 
∴ I’m not identical to my mind. 

1   Wi Valid 
2   ∼Wm 
[ ∴ ∼i=m 
3 ┌ asm: i=m 
4 └ ∴ Wm {from 1 and 3} 
5 ∴ ∼i=m {from 3; 2 contradicts 4} 

Line 4 follows by substituting equals; if i and m are identical, then whatever 
is true of one is true of the other. 

Here’s an easy invalid argument and its refutation: 

The bankrobber wears size-twelve shoes. 
You wear size-twelve shoes. 
∴ You’re the bankrobber. 

1   Wb Invalid 
2   Wu 
[ ∴ u=b 
3   asm: ∼u=b 

b, u 

Wb, Wu, ∼u=b 

Since we can’t infer anything here (we can’t do much with “∼u=b”), we set 
up a possible world to refute the argument. This world contains two distinct 
persons, the bankrobber and you, each wearing size-twelve shoes. Since the 
premises are all true and conclusion false in this world, our argument is 
invalid. 

Our next example involves pluralism and monism: 

• Pluralism (there’s more than one being): (∃x)(∃y)∼x=y For some x and some 



 

y: x≠y 

• Monism (there’s exactly one being): (∃x)(y)y=x For some x, every y is identi-
cal to x 

Here’s a proof that pluralism entails the falsity of monism: 0211 

There’s more than one being. 
∴ It’s false that there’s exactly one being. 

* 1   (∃x)(∃y)∼x=y Valid 
[ ∴ ∼(∃x)(y)y=x 
* 2 ┌ asm: (∃x)(y)y=x 
* 3 │ ∴ (∃y)∼a=y {from 1} 
* 4 │ ∴ ∼a=b {from 3} 
* 5 │ ∴ (y)y=c {from 2} 
* 6 │ ∴ a=c {from 5} 
* 7 │ ∴ b=c {from 5} 
* 8 └ ∴ a=b {from 6 and 7} 
* 9 ∴ ∼(∃x)(y)y=x {from 2; 4 contradicts 8} 

Lines 1 and 2 have back-to-back quantifiers. We can drop only quantifiers 
that are initial and hence outermost; so we drop quantifiers one at a time, 
starting from the outside. After dropping quantifiers, we substitute equals to 
get line 8: our “b=c” line lets us take “a=c” and replace “c” with “b,” getting 
“a=b.” 

We didn’t bother to derive “c=c” from “(y)y=c” in line 5. From now on, it’ll 
often be too tedious to drop universal quantifiers using every old constant. So 
we’ll just derive instances likely to be useful for our proof or refutation. 

Our substitute-equals rule seems to hold universally in arguments about 
matter or math. But it can fail with mental phenomena. Consider this argu-
ment (where “Bx” stands for “Jones believes that x is on the penny”):1 

Jones believes that Lincoln is on the penny. 
Lincoln is the first Republican president. 
∴ Jones believes that the first Republican president is on the penny. 

Bl 
l=r 
∴ Br 

 
1 We could make the same point using relational logic (“Bjl, l=r ∴ Bjr” – where “Bxy” means “x 
believes that y is on the penny”) or Chapter 13’s belief logic (“j:Pl, l=r ∴ j:Pr”). Our belief logic 
explicitly restricts the use of the substitute-equals rule with belief formulas (§13.2). 



 

 

If Jones is unaware that Lincoln was the first Republican president, the 
premises could be true while the conclusion is false. So the argument is 
invalid. But yet we can derive the conclusion from the premises using our 
substitute-equals rule. So something is wrong here. 

To avoid this problem, we’ll disallow translating into quantificational logic 
any predicates or relations that violate the substitute-equals rule. So we 
won’t let “Bx” stand for “Jones believes that x is on the penny.” Statements 
about beliefs and other mental phenomena often violate this rule; so we have 
to be careful translating such statements into quantificational logic. 

So the mental seems to follow different logical patterns from the physical. 
Does this refute the materialist project of reducing the mental to the physi-
cal? Philosophers dispute this question. 0212 

9.2a Exercise: LogiCola IDC 25. 
Say whether each is valid (and give a proof) or invalid (and give a refutation). 

a=b 
∴ b=a 

1   a=b Valid 
[ ∴ b=a 
2 ┌ asm: ∼b=a 
3 │ ∴ ∼b=b—{from 1 and 2} 
4 └ ∴ b=b {self-identity, to contradict 3} 
5 ∴ b=a {from 2; 3 contradicts 4} 

1. Fa 
∴ ∼(∃x)(Fx • ∼x=a) 

2. (a=b ⊃ ∼(∃x)Fx) 
∴ (Fa ⊃ ∼Fb) 

3. a=b 
b=c 
∴ a=c 

4. ∼a=b 
c=b 
∴ ∼a=c 



 

5. ∼a=b 
∼c=b 
∴ a=c 

6. a=b 
∴ (Fa ≡ Fb) 

7. a=b 
(x)(Fx ⊃ Gx) 
∼Ga 
∴ ∼Fb 

8. Fa 
∴ (x)(x=a ⊃ Fx) 

9. ∴ (∃x)(y)y=x 

10. ∴ (∃x)(∃y)∼y=x 

9.2b Exercise: LogiCola IDC 26. 
First appraise intuitively. Then translate into logic and say whether valid (and give a 
proof) or invalid (and give a refutation). You’ll have to figure out what letters to use; 
be careful about deciding between small and capital letters. 

1. Keith is my only nephew. 
My only nephew knows more about BASIC than I do. 
Keith is a ten-year-old. 
∴ Some ten-year-olds know more about BASIC than I do. 

2. Some are logicians. 
Some aren’t logicians. 
∴ There’s more than one being. 

3. This chemical process is publicly observable. 
This pain isn’t publicly observable. 
∴ This pain isn’t identical to this chemical process. [This attacks the identity 
theory of the mind, which identifies mental events with chemical processes.] 

4. The person who left a lighter is the murderer. 
The person who left a lighter is a smoker. 
No smokers are backpackers. 
∴ The murderer isn’t a backpacker. 



 

 

5. The murderer isn’t a backpacker. 
You aren’t a backpacker. 
∴ You’re the murderer. 0213 

6. If Speedy Jones looks back to the quarterback just before the hike, then Speedy 
Jones is the primary receiver. 
The primary receiver is the receiver you should try to cover. 
∴ If Speedy Jones looks back to the quarterback just before the hike, then Speedy 
Jones is the receiver you should try to cover. 

7. Judy isn’t the world’s best cook. 
The world’s best cook lives in Detroit. 
∴ Judy doesn’t live in Detroit. 

8. Patricia lives in North Dakota. 
Blondie lives in North Dakota. 
∴ At least two people live in North Dakota. 

9. Your grade is the average of your tests. 
The average of your tests is B. 
∴ Your grade is B. 

10. Either you knew where the money was, or the thief knew where it was. 
You didn’t know where the money was. 
∴ You aren’t the thief. 

11. The man of Suzy’s dreams is either rich or handsome. 
You aren’t rich. 
∴ If you’re handsome, then you’re the man of Suzy’s dreams. 

12. If someone confesses, then someone goes to jail. 
I confess. 
I don’t go to jail. 
∴ Someone besides me goes to jail. 

13. David stole money. 
The nastiest person at the party stole money. 
David isn’t the nastiest person at the party. 
∴ At least two people stole money. [See problem 4 of §2.3b.] 

14. No one besides Carol and the detective had a key. 
Someone who had a key stole money. 
∴ Either Carol or the detective stole money. 



 

15. Exactly one person lives in North Dakota. 
Paul lives in North Dakota. 
Paul is a farmer. 
∴ Everyone who lives in North Dakota is a farmer. 

16. The wildcard team with the best record goes to the playoffs. 
Cleveland isn’t the wildcard team with the best record. 
∴ Cleveland doesn’t go to the playoffs. 

17. If the thief is intelligent, then you aren’t the thief. 
∴ You aren’t intelligent. 0214 

18. You aren’t intelligent. 
∴ If the thief is intelligent, then you aren’t the thief. 

9.3 Easier relations 

Our final rule for forming quantificational wffs introduces relations: 

The result of writing a capital letter and then two or more small letters is a wff. 

Here are two examples: 

Lrj = Romeo loves Juliet 
Gxyz = x gave y to z 

Translating relational sentences into logic can be difficult. We have to study 
examples and catch patterns; paraphrasing into Loglish is helpful too. We’ll 
start with easier translations and put off multiple-quantifier relations until 
the next section. 

Here are further examples without quantifiers: 

Juliet loves Romeo = Ljr 
Juliet loves herself = Ljj 
Juliet loves Romeo but not Paris = (Ljr • ∼Ljp) 

Here are some easy examples with quantifiers: 

Everyone loves him/herself = (x)Lxx 
Someone loves him/herself = (∃x)Lxx 



 

 

No one loves him/herself = ∼(∃x)Lxx 

Normally put quantifiers before relations: 

Someone (everyone, no one) loves Romeo 
= 

For some (all, no) x, x loves Romeo. 

Romeo loves someone (everyone, no one) 
= 

For some (all, no) x, Romeo loves x. 

In the second box, English puts the quantifier last – but logic puts it first. Here 
are fuller translations: 0215 

Someone loves Romeo 
= (∃x)Lxr 

For some x, x loves Romeo 

Everyone loves Romeo 
= (x)Lxr 

For all x, x loves Romeo 

No one loves Romeo 
= ∼(∃x)Lxr 

It’s false that, for some x, x loves Romeo 

Romeo loves someone 
= (∃x)Lrx 

For some x, Romeo loves x 

Romeo loves everyone 
= (x)Lrx 

For all x, Romeo loves x 

Romeo loves no one 
= ∼(∃x)Lrx 

It’s false that, for some x, Romeo loves x 

These examples are more complicated: 



 

Some Montague loves Juliet 
= (∃x)(Mx • Lxj) 
For some x, x is a Montague and x loves Juliet 

All Montagues love Juliet 
= (x)(Mx ⊃ Lxj) 
For all x, if x is a Montague then x loves Juliet 

Romeo loves some Capulet 
= (∃x)(Cx • Lrx) 
For some x, x is a Capulet and Romeo loves x 

Romeo loves all Capulets 
= (x)(Cx ⊃ Lrx) 
For all x, if x is a Capulet then Romeo loves x 

Here are further examples: 

Some Montague besides Romeo loves Juliet 
= (∃x)((Mx • ∼x=r) • Lxj) 
For some x, x is a Montague and x ≠ Romeo and x loves Juliet 

Romeo loves all Capulets besides Juliet 
= (x)((Cx • ∼x=j) ⊃ Lrx) 
For all x, if x is a Capulet and x ≠ Juliet then Romeo loves x 

Romeo loves all Capulets who love themselves 
= (x)((Cx • Lxx) ⊃ Lrx) 
For all x, if x is a Capulet and x loves x then Romeo loves x 

Finally, these examples have two different relations: 

All who know Juliet love Juliet 
= (x)(Kxj ⊃ Lxj) 
For all x, if x knows Juliet then x loves Juliet 

All who know themselves love themselves 
= (x)(Kxx ⊃ Lxx) 
For all x, if x knows x then x loves x 

Try to master these before starting into the harder relational translations. 

9.3a Exercise: LogiCola H (RM & RT) 
Using these equivalences, translate these English sentences into wffs. 0216 



 

 

Lxy = x loves y 
Cxy = x caused y 

Gxy = x is greater than y 

Ix = x is Italian 
Rx = x is Russian 

Ex = x is evil 

t = Tony 
o = Olga 
g = God 

God caused nothing that is evil. 

∼(∃x)(Ex • Cgx) 

1. Tony loves Olga and Olga loves Tony. 

2. Not every Russian loves Olga. 

3. Tony loves everyone who is Russian. 

4. Olga loves someone who isn’t Italian. 

5. Everyone loves Olga but not everyone is loved by Olga. 

6. All Italians love themselves. 

7. Olga loves every Italian besides Tony. 

8. Tony loves everyone who loves Olga. 

9. No Russian besides Olga loves Tony. 

10. Olga loves all who love themselves. 

11. Tony loves no Russians who love themselves. 

12. Olga is loved. 

13. God caused everything besides himself. 

14. Nothing caused God. 

15. Everything that God caused is loved by God. 

16. Nothing caused itself. 

17. God loves himself. 

18. If God did not cause himself, then there is something that God did not cause. 

19. Nothing is greater than God. 

20. God is greater than anything that he caused. 



 

9.4 Harder relations 

Now we get into multiple-quantifier translations. Here’s a simple example: 

Someone loves someone 
= (∃x)(∃y)Lxy 
For some x and for some y, x loves y 

This could be true because some love themselves (“(∃x)Lxx”) or because 
some love another (“(∃x)(∃y)(∼x=y • Lxy)”). Here are more examples: 

Everyone loves everyone 
= (x)(y)Lxy 
For all x and for all y, x loves y 

Some Montague hates some Capulet 
= (∃x)(∃y)((Mx • Cy) • Hxy) 
For some x and for some y, x is a Montague and y is a Capulet and x hates y 

Every Montague hates every Capulet 
= (x)(y)((Mx • Cy) ⊃ Hxy) 
For all x and for all y, if x is a Montague and y is a Capulet then x hates y 0217 

Study carefully this next pair – which differs only in the quantifier order: 

Everyone loves someone. 

For all x there’s some y, such that x loves y. 

(x)(∃y)Lxy 

There’s someone whom everyone loves. 

There’s some y such that, for all x, x loves y. 

(∃y)(x)Lxy 

In the first case, we might love different people. In the second, we love the 
same person; perhaps we all love God. Notice the difference in the con-
trasting pairs: 

Everyone loves someone ≠ There’s someone whom everyone loves 

Everyone lives in some house ≠ There’s some house where everyone lives 



 

 

Everyone has some job ≠ There’s some job that everyone has 

Everyone makes some error ≠ There’s some error that everyone makes 

The sentences on the right make a stronger claim: some-every entails every-
some, but not the other way around. 

Back-to-back quantifiers of the same type can be switched: “(x)(y)” = 
“(y)(x)” and “(∃x)(∃y)” = “(∃y)(∃x).” But the order matters if the quantifiers 
are of different types: “(∃x)(y)” is stronger than “(y)(∃x).” It doesn’t matter 
what variable letters we use, so long as the reference pattern is the same. So 
in “(x)(∃y)Lxy” we could use other variables in place of “x” and “y” – as long 
our wff consists in a universal and then an existential (using different varia-
bles), “L,” the variable used in the universal, and finally the variable used in 
the existential. 

Here’s a difficult every-some translation, which we’ll do step by step: 

Every Capulet loves some Montague 
For all x, if x is a Capulet then x loves some Montague 
(x)(Cx ⊃ x loves some Montague) 
(x)(Cx ⊃ for some y, y is a Montague and x loves y) 
(x)(Cx ⊃ (∃y)(My • Lxy)) 

Until you master these, go by “baby steps” from English to Loglish to symbols. 
First go from “Every Capulet loves some Montague” to “For all x, if x is a 
Capulet then x loves some Montague”; so the formula after “(x)” is an IF-
THEN. Later go from “x loves some Montague” to “for some y, y is a Montague 
and x loves y”; this part is an AND. So “every Capulet” gives “if Capulet then 
...,” and “some Montague” gives “some are Montague and ...” 

As usual, we could switch conjuncts (“My” and “Lxy”). We also could put 
the existential further out, so the wff starts “(x)(∃y).” But the order of the 
quantifiers has to follow the English – so if “every” comes before “some” then 
“(x)” has to come before “(∃y).” This example is difficult; study it carefully. 

Here are analogous but easier every-some translations: 0218 

Every Capulet loves someone 
For all x, if x is a Capulet then x loves someone 
(x)(Cx ⊃ x loves someone) 
(x)(Cx ⊃ for some y, x loves y) 
(x)(Cx ⊃ (∃y)Lxy) 



 

Everyone loves some Montague 
For all x, x loves some Montague 
(x) x loves some Montague 
(x) for some y, y is a Montague and x loves y 
(x)(∃y)(My • Lxy) 

The first uses IF-THEN, because “Every Capulet loves someone” goes into 
“For all x, if x is a Capulet then x loves someone.” The second uses AND, 
because “x loves some Montague” goes into “for some y, y is a Montague and x 
loves y.” 

Here’s a difficult some-every translation: 

Some Capulet loves every Montague 
For some x, x is a Capulet and x loves every Montague 
(∃x)(Cx • x loves every Montague) 
(∃x)(Cx • for all y, if y is a Montague then x loves y) 
(∃x)(Cx • (y)(My ⊃ Lxy)) 

“Some Capulet loves every Montague” becomes “For some x, x is a Capulet 
and x loves every Montague”; “(∃x)” is followed by AND. Then “x loves every 
Montague” becomes “for all y, if y is a Montague then x loves y”; “(x)” is 
followed by IF-THEN. As before, we could switch conjuncts “Cx” and “(y)(My 
⊃ Lxy).” And we could start the wff with “(∃x)(y)”; here “(∃x)” has to come 
before “(y),” since “some” comes before “every” in the English. 

Here are analogous but easier some-every translations: 

Some Capulet loves everyone 
For some x, x is a Capulet and x loves everyone 
(∃x)(Cx • x loves everyone) 
(∃x)(Cx • for all y, x loves y) 
(∃x)(Cx • (y)Lxy) 

Someone loves every Montague 
For some x, x loves every Montague 
(∃x) x loves every Montague 
(∃x) for all y, if y is a Montague then x loves y 
(∃x)(y)(My ⊃ Lxy) 

The first uses AND, because “Some Capulet loves everyone” becomes “For 
some x, x is a Capulet and x loves everyone.” The second uses IF-THEN, 
because “x loves every Montague” becomes “for all y, if y is a Montague then x 
loves y.” 0219 

Since these translations are difficult, you might want to reread a couple of 
times from the beginning of this section to here, until you get it. 



 

 

Here are some miscellaneous translations: 

There’s an unloved lover 
= (∃x)(∼(∃y)Lyx • (∃y)Lxy) 
For some x, x is unloved (no one loves x) and x is a lover (x loves someone) 

Everyone loves a lover 
= (x)((∃y)Lxy ⊃ (y)Lyx) 
For all x, if x is a lover (x loves someone) then everyone loves x 

Romeo loves all and only those who don’t love themselves 
= (x)(Lrx ≡ ∼Lxx) 
For all x, Romeo loves x if and only if x doesn’t love x 

All who know any person love that person 
= (x)(y)(Kxy ⊃ Lxy) 
For all x and all y, if x knows y then x loves y 

Relations have properties like reflexivity, symmetry, and transitivity: 

“Having the same age as” is reflexive 
= (x)Axx 
Everything has the same age as itself 

“Being taller than” is irreflexive 
= ∼(∃x)Txx 
Nothing is taller than itself 

“Being a relative of” is symmetrical 
=  (x)(y)(Rxy ⊃ Ryx) 
In all cases, if x is a relative of y, then y is a relative of x 

“Being a father of” is asymmetrical 
=  (x)(y)(Fxy ⊃ ∼Fyx) 
In all cases, if x is a father of y then y isn’t a father of x 

“Being taller than” is transitive 
=  (x)(y)(z)((Txy • Tyz) ⊃ Txz) 
In all cases, if x is taller than y and y is taller than z, then x is taller than z 

“Being a father of” is intransitive 
=  (x)(y)(z)((Fxy • Fyz) ⊃ ∼Fxz) 
In all cases, if x is a father of y and y is a father of z, then x isn’t a father of z 

Love fits none of these six categories. Love is neither reflexive nor irreflexive: 
sometimes people love themselves and sometimes they don’t. Love is neither 



 

symmetrical nor asymmetrical: if x loves y, then sometimes y loves x in 
return and sometimes not. And love is neither transitive nor intransitive: if x 
loves y and y loves z, then sometimes x loves z and sometimes not. 

9.4a Exercise: LogiCola H (RM & RT) 
Using these equivalences, translate these English sentences into wffs. 0220 

Lxy = x loves y 
Cxy = x caused y 

Gxy = x is greater than y 

Ix = x is Italian 
Rx = x is Russian 

Ex = x is evil 

t = Tony 
o = Olga 

Every Russian loves everyone. 

(x)(Rx ⊃ (y)Lxy) 

or 

(x)(y)(Rx ⊃ Lxy) 

1. Everyone loves every Russian. 

2. Some Russians love someone. 

3. Someone loves some Russians. 

4. Some Russians love every Italian. 

5. Every Russian loves some Italian. 

6. There is some Italian that every Russian loves. 

7. Everyone loves everyone else. 

8. Every Italian loves every other Italian. 

9. Some Italians love no one. 

10. No Italians love everyone. 

11. No one loves all Italians. 

12. Someone loves no Italians. 

13. No Russians love all Italians. 

14. If everyone loves Olga, then there is some Russian that everyone loves. 

15. If Tony loves everyone, then there is some Italian who loves everyone. 



 

 

16. It is not always true that if a first thing caused a second, then the first is great-
er than the second. 

17. In all cases, if a first thing is greater than a second, then the second isn’t 
greater than the first. 

18. Everything is greater than something. 

19. There’s something than which nothing is greater. 

20. Everything is caused by something. 

21. There’s something that caused everything. 

22. Something evil caused all evil things. 

23. In all cases, if a first thing caused a second and the second caused a third, then 
the first caused the third. 

24. There’s a first cause (there’s some x that caused something but nothing 
caused x). 

25. Anyone who caused anything loves that thing. 

9.5 Relational proofs 

In relational proofs, as before, we’ll reverse squiggles, then drop existentials, 
and lastly drop universals. Drop only initial (outermost) quantifiers. So with 
back-to-back quantifiers “(x)(y)” (in line 3 below), drop “(x)” first and then 
“(y)”: 0221 

Paris loves Juliet. 
Juliet doesn’t love Paris. 
∴ It’s not always true that if a first person loves a second then the second loves 
the first. 

* 1   Lpj Valid 
* 2   ∼Ljp 
* [ ∴ ∼(x)(y)(Lxy ⊃ Lyx) 
* 3 ┌ asm: (x)(y)(Lxy ⊃ Lyx) 
* 4 │ ∴ (y)(Lpy ⊃ Lyp) {from 3} 
* 5 │ ∴ (Lpj ⊃ Ljp) {from 4} 
* 6 └ ∴ Ljp {from 1 and 5} 
* 7 ∴ ∼(x)(y)(Lxy ⊃ Lyx) {from 3; 2 contradicts 6} 

Our older proof strategy would have us drop each initial universal quantifier 
twice, once using “p” and once using “j.” But now this would be tedious; so 
henceforth we’ll derive only what will be useful for our proof or refutation. 

Here’s another relational proof: 



 

There’s someone that everyone loves. 
∴ Everyone loves someone. 

* 1   (∃y)(x)Lxy Valid 
* [ ∴ (x)(∃y)Lxy 
* 2 ┌ asm: ∼(x)(∃y)Lxy 
* 3 │ ∴ (∃x)∼(∃y)Lxy {from 2} 
* 4 │ ∴ ∼(∃y)Lay {from 3} 
* 5 │ ∴ (y)∼Lay {from 4} 
* 6 │ ∴ (x)Lxb {from 1} 
* 7 │ ∴ Lab {from 6} 
* 8 └ ∴ ∼Lab {from 5} 
* 9∴(x)(∃y)Lxy {from 2; 7 contradicts 8} 

This is valid intuitively: if there’s one specific person (God, for example) that 
everyone loves, then everyone loves at least one person. 

For quantificational arguments without relations and identity: 

1. there are mechanical strategies (like that sketched in §8.2) that always give a 
proof or refutation in a finite number of lines; and 

2. a refutation at most needs 2n entities (where n is the number of distinct predi-
cates in the argument). 

Neither holds for relational arguments. Against 1, no possible mechanical 
strategy will always give a proof or refutation of a relational argument. This 
result is called Church’s theorem, after Alonzo Church. So working out 
relational arguments sometimes requires ingenuity and not just mechanical 
methods; the problem with our proof strategy is that it can lead into endless 
loops.1 Against 2, refuting invalid relational arguments sometimes requires a 
possible world with an infinite number of entities. 0222 

Instructions lead into an endless loop if they command the same sequence 
of actions over and over, endlessly. I’ve written computer programs with 
endless loops by mistake. I put an endless loop into the Index for fun: 

Endless loop; see loop, endless 

Loop, endless; see endless loop 

 
1 The companion LogiCola computer program follows mechanical rules (algorithms) to 
construct proofs. Left to itself, it would go into an endless loop for some invalid relational 
arguments. But LogiCola is told beforehand which arguments go into an endless loop and 
which refutations to then give, so it can stop the loop at a reasonable point. 



 

 

Our quantificational proof strategy can lead into such a loop. If you see this 
coming, quit the strategy and improvise your own refutation. 

Wffs that begin with a universal/existential quantifier combination, like 
“(x)(∃y),” often lead into endless loops. Here’s an example:1 

Everyone loves someone. 
∴ There’s someone that everyone loves. 

(x)(∃y)Lxy Invalid 
∴ (∃y)(x)Lxy 

The premise by itself leads into an endless loop: 

Everyone loves someone. 
∴ a loves someone. 
∴ a loves b. 
∴ b loves someone. 
∴ b loves c. 
∴ c loves someone. 
∴ c loves d. 
… and so on endlessly … 

(x)(∃y)Lxy 
∴ (∃y)Lay 
∴ Lab 
∴ (∃y)Lby 
∴ Lbc 
∴ (∃y)Lcy 
∴ Lcd 
… and so on endlessly … 

This argument is invalid, but we have to improvise to get the refutation; we 
can’t wait until our proof strategy ends (since it never will) and then use the 
simple formulas to construct a refutation. Instead, we have to think out the 
refutation by ourselves. While there’s no strategy that always works, I 
suggest that you: 

• break out of the loop before introducing your third constant (often it suffices 
 
1 This example is like arguing “Everyone lives in some house, so there must be some (one) 
house that everyone lives in.” Some great minds have committed this quantifier-shift fallacy. 
Aristotle argued, “Every agent acts for an end, so there must be some (one) end for which 
every agent acts.” St Thomas Aquinas argued, “If everything at some time fails to exist, then 
there must be some (one) time at which everything fails to exist.” And John Locke argued, 
“Everything is caused by something, so there must be some (one) thing that caused every-
thing.” 



 

to use two beings, a and b; don’t multiply entities unnecessarily), 
• begin your refutation with values you already have (maybe you already have 

“Lab” and “Laa”), and 
• add other wffs to make premises true and conclusion false (maybe try adding 

“Lba” or “∼Lba,” and then “Lbb” or “∼Lbb,” until your refutation works). 

Fiddle with the values until you find a refutation that works. 0223 
Consider our example again: 

Everyone loves someone. 
∴ There’s someone that everyone loves. 

(x)(∃y)Lxy Invalid 
∴ (∃y)(x)Lxy 

If we stop the attempted proof before introducing our third constant, we may 
get either of these as the beginning of our refutation: 

a, b ∼Lab 
  

a, b Lab 

We need to add more formulas to make the premise true and conclusion 
false. With the first box, we need EVERYONE to love someone. Since a doesn’t 
love b, we need to have a love a. So we add this: 

a, b Laa, ∼Lab 

We also need b to love someone (so we need Lbb or Lba) – but without there 
being some one person that everyone loves (which excludes Lba, so we have 
to add Lbb and ∼Lba). So with ingenuity we construct this possible world, 
with beings a and b, that makes the premise true and conclusion false: 

a, b 
Laa, ∼Lab 
Lbb, ∼Lba 

In this egoistic world, all love themselves but not others. This makes “Every-
one loves someone” true but “There’s someone that everyone loves” false 
(since not everyone loves a and not everyone loves b). This refutation works 



 

 

too: 

a, b 
Lab, ∼Laa 
Lba, ∼Lbb 

In this altruistic world, all love others but not themselves. This makes “Eve-
ryone loves someone” true but “There’s someone that everyone loves” false 
(since not everyone loves a and not everyone loves b). 

Refuting relational arguments sometimes requires a universe with an infi-
nite number of entities. Here’s an example: 

In all cases, if x is greater than y and y is greater than z then x is greater than z. 
In all cases, if x is greater than y then y isn’t greater than x. 
b is greater than a. 
∴ There’s something than which nothing is greater. 

(x)(y)(z)((Gxy • Gyz) ⊃ Gxz) Invalid 
(x)(y)(Gxy ⊃ ∼Gyx) 
Gba 
∴ (∃x)∼(∃y)Gyx 0224 

We can imagine a world with an infinity of beings – in which each being is 
surpassed in greatness by another. Let’s take the natural numbers (0, 1, 2, …) 
as the universe of discourse. Let “a” refer to 0 and “b” refer to 1 and “Gxy” 
mean “x > y.” On this interpretation, the premises are all true. But the conclu-
sion, which says “There’s a number than which no number is greater,” is false. 
This shows that the form is invalid. 

So relational arguments raise problems about infinity (endless loops and 
infinite worlds) that other kinds of argument we’ve studied don’t raise. 

9.5a Exercise: LogiCola I (RC & BC) 27. 
Say whether each is valid (and give a proof) or invalid (and give a refutation). 



 

(∃x)( ∃y)Lxy 
∴ (∃y)( ∃x)Lxy 

* 1   (∃x)(∃y)Lxy Valid 
* [ ∴ (∃y)(∃x)Lxy 
* 2 ┌ asm: ∼(∃y)(∃x)Lxy 
* 3 │ ∴ (y)∼(∃x)Lxy—{from 2} 
* 4 │ ∴ (∃y)Lay—{from 1} 
* 5 │ ∴ Lab—{from 4} 
* 6 │ ∴ ∼(∃x)Lxb—{from 3} 
* 7 │ ∴ (x)∼Lxb—{from 6} 
* 8 └ ∴ ∼Lab—{from 7} 
* 9 ∴ (∃y)(∃x)Lxy—{from 2; 5 contradicts 8} 

1. (x)Lxa 
∴ (x)Lax 

2. (∃x)(y)Lxy 
∴ (∃x)Lxa 

3. (x)(y)(Lxy ⊃ x=y) 
∴ (x)Lxx 

4. (x)(∃y)Lxy 
∴ Laa 

5. (x)(y)Lxy 
∴ (x)(y)((Fx • Gy) ⊃ Lxy) 

6. (x)(y)(Uxy ⊃ Lxy) 
(x)(∃y)Uxy 
∴ (x)(∃y)Lxy 

7. (x)Lxx 
∴ (∃x)(y)Lxy 

8. (x)Gaxb 
∴ (∃x)(∃y)Gxcy 

9. (x)(y)Lxy 
∴ (∃x)Lax 



 

 

10. Lab 
Lbc 
∴ (∃x)(Lax • Lxc) 

11. (x)Lxx 
∴ (x)(y)(Lxy ⊃ x=y) 

12. (∃x)Lxa 
∼Laa 
∴ (∃x)(∼a=x • Lxa) 

13. (x)(y)(z)((Lxy • Lyz) ⊃ Lxz) 
(x)(y)(Kxy ⊃ Lyx) 
∴ (x)Lxx 

14. (x)Lxa 
(x)(Lax ⊃ x=b) 
∴ (x)Lxb 

15. (x)(y)(Lxy ⊃ (Fx • ∼Fy)) 
∴ (x)(y)(Lxy ⊃ ∼Lyx) 0225 

9.5b Exercise: LogiCola I (RC & BC) 28. 
First appraise intuitively. Then translate into logic and say whether valid (and give a 
proof) or invalid (and give a refutation). 

1. Juliet loves everyone. 
∴ Someone loves you. [Use Lxy, j, and u.] 

2. Nothing caused itself. 
∴ There’s nothing that caused everything. [Use Cxy.] 

3. Alice is older than Betty. 
∴ Betty isn’t older than Alice. [Use Oxy, a, and b. What implicit premise would 
make this valid?] 

4. There’s something that everything depends on. 
∴ Everything depends on something. [Dxy] 

5. Everything depends on something. 
∴ There’s something that everything depends on. [Dxy] 



 

6. Paris loves all females. 
No females love Paris. 
Juliet is female. 
∴ Paris loves someone who doesn’t love him. [Lxy, p, Fx, j] 

7. In all cases, if a first thing caused a second, then the first exists before the 
second. 
Nothing exists before it exists. 
∴ Nothing caused itself. [Use Cxy and Bxy (for “x exists before y exists”).] 

8. Everyone hates my enemy. 
My enemy hates no one besides me. 
∴ My enemy is me. [Hxy, e, m] 

9. Not everyone loves everyone. 
∴ Not everyone loves you. [Lxy, u] 

10. There’s someone that everyone loves. 
∴ Some love themselves. 

11. Andy shaves all and only those who don’t shave themselves. 
∴ It is raining. [Sxy, a, R] 

12. No one hates themselves. 
I hate all logicians. 
∴ I am not a logician. [Hxy, i, Lx] 

13. Juliet loves everyone besides herself. 
Juliet is Italian. 
Romeo is my logic teacher. 
My logic teacher isn’t Italian. 
∴ Juliet loves Romeo. [j, Lxy, Ix, r, m] 0226 

14. Romeo loves either Lisa or Colleen. 
Romeo doesn’t love anyone who isn’t Italian. 
Colleen isn’t Italian. 
∴ Romeo loves Lisa. [Lxy, r, l, c] 

15. Everyone loves all lovers. 
Romeo loves Juliet. 
∴ I love you. [Use Lxy, r, j, i, and u. This one is difficult.] 



 

 

16. Everyone loves someone. 
∴ Some love themselves. 

17. Nothing caused itself. 
This chemical brain process caused this pain. 
∴ This chemical brain process isn’t identical to this pain. [Cxy, b, p] 

18. For every positive contingent truth, something explains why it’s true. 
The existence of the world is a positive contingent truth. 
If something explains the existence of the world, then some necessary being 
explains the existence of the world. 
∴ Some necessary being explains the existence of the world. [Use Cx, Exy, e, and 
Nx. This argument for the existence of God is from Richard Taylor.] 

19. That girl is Miss Novak. 
∴ If you don’t like Miss Novak, then you don’t like that girl. [Use t, m, u, and Lxy; 
from the movie, The Little Shop around the Corner: “If you don’t like Miss Novak, I 
can tell you right now that you won’t like that girl. Why? Because it is Miss No-
vak.”] 

20. Everyone who is wholly good prevents every evil that he can prevent. 
Everyone who is omnipotent can prevent every evil. 
If someone prevents every evil, then there’s no evil. 
There’s evil. 
∴ Either God isn’t omnipotent, or God isn’t wholly good. [Use Gx, Ex, Cxy (for “x 
can prevent y”), Pxy (for “x prevents y”), Ox, and g; from J. L. Mackie.] 

21. Your friend is wholly good. 
Your knee pain is evil. 
Your friend can prevent your knee pain. 
Your friend doesn’t prevent your knee pain (since he could prevent it only by 
amputating your leg – which would bring about a worse situation). 
∴ “Everyone who is wholly good prevents every evil that he can prevent” is false. 
[Use f, Gx, k, Ex, Cxy, and Pxy. Alvin Plantinga thus attacked premise 1 of the 
previous argument; he proposed instead roughly this: “Everyone who is wholly 
good prevents every evil that he knows about if he can do so without thereby 
eliminating a greater good or bringing about a greater evil.”] 0227 

22. For everything contingent, there’s some time at which it fails to exist. 
∴ If everything is contingent, then there’s some time at which everything fails to 
exist. [Use Cx for “x is contingent”; Ext for “x exists at time t”; t for a time varia-
ble; and t´, t´´, t´´´, … for time constants. This is a critical step in St Thomas Aqui-
nas’s third argument for the existence of God.] 



 

23. If everything is contingent, then there’s some time at which everything fails to 
exist. 
If there’s some time at which everything fails to exist, then there’s nothing in 
existence now. 
There’s something in existence now. 
Everything that isn’t contingent is necessary. 
∴ There’s a necessary being. [Besides the letters for the previous argument, use 
Nx for “x is necessary” and n for “now.” This continues Aquinas’s argument; here 
premise 1 is from the previous argument.] 

24. [Gottlob Frege tried to systematize mathematics. One of his axioms said that 
every sentence with a free variable1 determines a set; so “x is blue” determines a 
set containing all and only blue things. While this seems sensible, Bertrand Rus-
sell showed that this entails that “x doesn’t contain x” determines a set y contain-
ing all and only those things that don’t contain themselves – and this leads to the 
self-contradiction “y contains y if and only if y doesn’t contain y.” The foundations 
of mathematics haven’t been the same since “Russell’s paradox.”] 
If every sentence with a free variable determines a set, then there’s a set y such 
that, for all x, y contains x if and only if x doesn’t contain x. 
∴ Not every sentence with a free variable determines a set. [Use D for “Every 
sentence with a free variable determines a set,” Sx for “x is a set,” and Cyx for “y 
contains x.” See §16.4.] 

25. All dogs are animals. 
∴ All heads of dogs are heads of animals. [Use Dx, Ax, and Hxy (for “x is a head of 
y”). Translate “x is a head of a dog” as “for some y, y is a dog and x is a head of y.” 
Augustus De Morgan in the 19th century claimed that this was a valid argument 
that traditional logic couldn’t validate.] 

9.6 Definite descriptions 

Definite descriptions, phrases of the form “the so and so,” are used to pick out 
a definite (single) person or thing. Consider how we’ve been symbolizing 
these two English sentences: 

Socrates is bald = Bs 
The king of France is bald = Bk 0228 

The first sentence has a proper name (“Socrates”) while the second has a 
definite description (“the king of France”); both seem to ascribe a property 
(baldness) to a particular object or entity. Bertrand Russell argued that this 
 
1 An instance of a variable is “free” in a wff if it doesn’t occur as part of a wff that begins with a 
quantifier using that variable; each instance of “x” is free in “Fx” but not in “(x)Fx.” 



 

 

object-property analysis is misleading. Definite descriptions (like “the king of 
France”) should instead be analyzed using a complex of predicates and 
quantifiers: 

The king of France is bald 
= (∃x)((Kx • ∼(∃y)(∼y=x • Ky)) • Bx) 
There’s exactly one king of France, and he’s bald 
For some x, x is king of France and there’s no y such that: y≠x and y is king of 
France and x is bald 

Russell saw his analysis as having two advantages. 
First, “The king of France is bald” might be false for any of three reasons: 

1. There’s no king of France; 
2. there’s more than one king of France; or 
3. there’s exactly one king of France, and he has hair on his head. 

In fact, “The king of France is bald” is false for reason 1: France has no king. 
This fits Russell’s analysis. By contrast, the object-property analysis suggests 
that if “The king of France is bald” is false, then “The king of France isn’t bald” 
would have to be true – and so the king of France would have to have hair! So 
Russell’s analysis expresses better the logical complexity of definite descrip-
tions. 

Second, the object-property analysis of definite descriptions can easily 
lead us into metaphysical errors, like positing existing things that aren’t real. 
The philosopher Alexius Meinong argued roughly as follows (and Russell at 
first accepted this argument): 

“The round square does not exist” is a true statement about the round square. 
If there’s a true statement about something, then that something has to exist. 
∴ The round square exists. 
But the round square isn’t a real thing. 
∴ Some things that exist aren’t real things. 

Russell later saw the belief in existing non-real things as foolish. Appealing to 
his theory of descriptions, he criticized Meinong’s argument as resting on a 
naïve object-property analysis of this statement: 

“The round square does not exist.” 

If this were a true statement about the round square, as Meinong’s first 
premise asserts, then the round square would have to exist – which the 



 

statement denies. Instead, the statement just denies that there’s exactly one 
being that’s both round and square. So Russell’s analysis keeps us from 
having to accept existing things that aren’t real. 0229 

9.7 Copi proofs 

We earlier discussed traditional Copi proofs for propositional logic and basic 
quantificational logic (§§7.5 and 8.6). Copi proofs can also be used for 
identity and relations. Copi uses our SI (Self-identity) and SE (Substitute 
Equals) rules, and adds a SS (Switch Sides) replacement rule: “x=y = y=x” 
(where you can use any variable or constant for “x” and for “y”). 

9.7a and 9.7b Exercise: LogiCola IDO 
Do Copi proofs for problems in §9.2a (just the valid ones, namely 3, 4, 6, 7, and 8) 
and §9.2b (just the valid ones, namely 1, 2, 3, 4, 6, 9, 10, 12, 13, 14, 15, and 18). These 
are identity arguments. 

9.7c and 9.7d Exercise: LogiCola IRO and IBO 
Do Copi proofs for problems in §9.5a (just the valid ones, namely 2, 5, 6, 8, 9, 10, 12, 
14, and 15) and §9.5b (just the valid ones, namely 1, 2, 4, 6, 7, 8, 10, 11, 12, 13, 14, 15, 
17, 18, 19, 20, 21, 23, 24, and 25). These are relational arguments. 

  



 

10 Basic Modal Logic 

Modal logic studies arguments whose validity depends on “possible,” “neces-
sary,” and similar notions. This chapter covers the basics and the next gets 
into further modal systems. 

10.1 Translations 

To help us evaluate arguments, we’ll construct a modal language. This 
includes propositional logic’s vocabulary, wffs, inference rules, and proofs. It 
adds symbols for modal operators: “◇” and “☐” (diamond and box): 

◇A =  It’s possible that A. 
A is true in some possible world. 

A =  It’s true that A. 
A is true in the actual world. 

☐A =  It’s necessary that A. 
A is true in all possible worlds. 

“Possible” is weaker than “true,” while “necessary” is stronger than “true.” “A 
is necessary” claims that A has to be true – it couldn’t have been false. 

“Possible” here means logically possible (not self-contradictory). “I run a 
mile in two minutes” may be physically impossible; but it’s logically possible 
(the idea contains no self-contradiction). Likewise, “necessary” means 
logically necessary (self-contradictory to deny). “2+2 = 4” and “All bachelors 
are unmarried” are examples of necessary truths; such truths are based on 
logic, the meaning of concepts, or necessary connections between properties. 

We can rephrase “possible” as true in some possible world – and “neces-
sary” as true in all possible worlds. A possible world is a consistent descrip-
tion of how things might have been or might in fact be. Picture a possible 
world as a consistent story (or novel). The story is consistent, in that its 
statements don’t entail self-contradictions; it describes a set of possible 
situations that are all possible together. The story may or may not be true. 
The actual world is the story that’s true – the description of how things in fact 
are. 



 

As before, grammatical formulas are wffs (well-formed formulas). Wffs 
now are strings we can construct using the propositional rules plus this new 
rule: 

The result of writing “◇” or “☐,” and then a wff, is a wff. 
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Don’t use parentheses with “◇A” and “☐A”; these forms are incorrect: 
“◇(A),” “(◇A),” “☐(A),” “(☐A).” Parentheses here would serve no purpose. 

We’ll focus now on how to translate English sentences into modal logic. 
Here are some simpler examples: 

A is possible (consistent, could be true) 
= ◇A 

A is necessary (must be true, has to be true) 
= ☐A 

A is impossible (self-contradictory) 
= ∼◇A = A couldn’t be true 
= ☐∼A = A has to be false 

An impossible statement (like “2 ≠ 2”) is one that’s false in every possible 
world. 

These examples are more complicated: 

A is consistent (compatible) with B 
= ◇(A • B) 
It’s possible that A and B are both true 

A entails B 
= ☐(A ⊃ B) 
It’s necessary that if A then B 

“Entails” makes a stronger claim than plain “if-then.” Compare these two: 

“There’s rain” entails “There’s precipitation” 
= ☐(R ⊃ P) 

If it’s Saturday, then I don’t teach class 
= (S ⊃ ∼T) 



 

 

The first is logically necessary; every conceivable situation with rain also has 
precipitation. The second just happens to be true; we can consistently 
imagine me teaching on Saturday, even though in fact I never do. 

Here are further forms: 

A is inconsistent with B 
= ∼◇(A • B) 
It’s not possible that A and B are both true 

A doesn’t entail B 
= ∼☐(A ⊃ B) 
It’s not necessary that if A then B 

A is a contingent statement1 
= (◇A • ◇∼A) 
A is possible and not-A is possible 

A is a contingent truth 
= (A • ◇∼A) 
A is true but could have been false 

Statements are necessary, impossible, or contingent. But truths are only 
necessary or contingent (since impossible statements are false). 0232 

When translating, it’s usually good to mimic the English word order: 

necessary not = ☐∼ 
not necessary = ∼☐ 

necessary if = ☐( 
if necessary = (☐ 

Use a separate box or diamond for each “necessary” or “possible.” So “If A is 
necessary and B is possible, then C is possible” is “((☐A • ◇B) ⊃ ◇C).” 

This English form is ambiguous between two meanings: 

“If you’re a bachelor, then you must be unmarried.” 

 
1 English sometimes uses “possible” to mean what we call “contingent” (true in at least one 
possible world and false in at least one possible world). In our sense of “possible” (true in at 
least one possible world), what is necessary is also thereby possible. 



 

Simple necessity 
(B ⊃ ☐U) 

If you’re a bachelor, then you’re inherently unmarriable (in no possible world 
would anyone marry you). 

If B, then U (by itself) is necessary. 

Conditional necessity 
☐(B ⊃ U) 

It’s necessary that if you’re a bachelor then you’re unmarried. 

It’s necessary that if-B-then-U. 

Box-inside “(B ⊃ ☐U)” affirms simple necessity: given your bachelorhood, 
“You’re unmarried” is inherently necessary; this is insulting and presumably 
false. Box-outside “☐(B ⊃ U)” affirms conditional necessity: what’s necessary 
isn’t “You’re a bachelor” or “You’re unmarried” by itself, but the connection 
between the two: it’s necessary that if you’re a bachelor (unmarried man) 
then you’re unmarried. So our English “If you’re a bachelor, then you must be 
unmarried” is ambiguous; its wording suggests simple necessity (which 
denies your freedom to marry) but it’s likely meant as conditional necessity. 

Medievals called the box-inside form “necessity of the consequent” (the 
second part is necessary) and the box-outside form “necessity of the conse-
quence” (the if-then is necessary). The ambiguity is important; several 
fallacious philosophical arguments depend on the ambiguity for their plausi-
bility. 

It’s not ambiguous if you say that the second part is “by itself” or “intrinsi-
cally” necessary or impossible – or if you use “entails” or start with “neces-
sary.” These forms aren’t ambiguous: 

If A, then B (by itself) is necessary = (A ⊃ ☐B) 
If A, then B is intrinsically necessary = (A ⊃ ☐B) 

A entails B = ☐(A ⊃ B) 
Necessarily, if A then B = ☐(A ⊃ B) 
It’s necessary that if A then B = ☐(A ⊃ B) 
“If A then B” is a necessary truth = ☐(A ⊃ B) 

The ambiguous forms have if-then with a strong modal term (like “neces-



 

 

sary,” 0233 “must,” “impossible,” or “can’t”) in the then-part:1 

“If A is true, then it’s necessary (must be) that B” could mean “(A ⊃ ☐B)” or 
“☐(A ⊃ B).” 

“If A is true, then it’s impossible (couldn’t be) that B” could mean “(A ⊃ 
☐∼B)” or “☐(A ⊃ ∼B).” 

When you translate an ambiguous English sentence, give both forms. With 
ambiguous arguments, work out both arguments. 

10.1a Exercise: LogiCola J (BM & BT) 
Translate these into wffs. Be sure to translate ambiguous forms both ways. 

“God exists and evil doesn’t exist” entails “There’s no matter.” 

☐((G • ∼E) ⊃ ∼M) 

1. It’s necessary that God exists. 

2. “There’s a God” is self-contradictory. 

3. It’s not necessary that there’s matter. 

4. It’s necessary that there’s no matter. 

5. “There’s rain” entails “There’s precipitation.” 

6. “There’s precipitation” doesn’t entail “There’s rain.” 

7. “There’s no precipitation” entails “There’s no rain.” 

8. If rain is possible, then precipitation is possible. 

9. God exists. 

10. If there’s rain, then there must be rain. 

11. It’s not possible that there’s evil. 

12. It’s possible that there’s no evil. 

13. If you get more points than your opponent, then it’s impossible for you to lose. 

14. It’s necessary that if you see that B is true then B is true. 

 
1 There’s an exception to these boxed rules: if the if-part is a claim about necessity or possibil-
ity, then just use the box-inside form. So “If A is necessary then B is necessary” is just “(☐A ⊃ 
☐B)” – and “If A is possible then B is impossible” is just “(◇A ⊃ ∼◇B).” 



 

15. If B has an all-1 truth table, then B is inherently necessary. 

16. Necessarily, if there’s a God then there’s no evil. 

17. If there’s a God, then there can’t be evil. 

18. If there must be matter, then there’s evil. 

19. Necessarily, if there’s a God then “There’s evil” (by itself) is self-contradictory. 

20. It’s necessary that it’s heads or tails. 

21. Either it’s necessary that it’s heads or it’s necessary that it’s tails. 

22. “There’s rain” is a contingent statement. 

23. “There’s rain” is a contingent truth. 

24. “If there’s rain, then there’s evil” is a necessary truth. 

25. If there’s rain, then “There’s evil” (by itself) is logically necessary. 

26. If there’s rain, then it’s necessary that there’s evil. 0234 

27. It’s necessary that it’s possible that there’s matter. 

28. “There’s a God” isn’t a contingent truth. 

29. If there’s a God, then it must be that there’s a God. 

30. It’s necessary that if there’s a God then “There’s a God” (by itself) is necessary. 

10.2 Proofs 

For modal proofs, we need world prefixes and modal inference rules. 
A world prefix is a string of zero or more instances of “W.” So “0” (zero 

instances), “W,” “WW,” and so on are world prefixes; these represent possible 
worlds, with the blank world prefix (“0”) representing the actual world. A 
derived line is now a line consisting of a world prefix and then “∴” and then a 
wff. And an assumption is now a line consisting of a world prefix and then 
“asm:” and then a wff. Here are examples of derived lines and assumptions: 

∴ A (So A is true in the actual world.) 
W ∴ A (So A is true in world W.) 
WW ∴ A (So A is true in world WW.) 

asm: A (Assume A is true in the actual world.) 
W asm: A (Assume A is true in world W.) 
WW asm: A (Assume A is true in world WW.) 

Derived lines with W’s are more common. 
We can use S- and I-rules and RAA in modal proofs. Unless otherwise spec-



 

 

ified, we can use an inference rule only within a given world; so if we have 
“(A ⊃ B)” and “A” in the same world, then we can infer “B” in this same world. 
RAA needs additional wording (italicized below) for world prefixes: 

RAA: Suppose some pair of not-blocked-off lines using the same world prefix has 
contradictory wffs. Then block off all the lines from the last not-blocked-off 
assumption on down and infer a line consisting in this assumption’s world prefix 
followed by “∴” followed by a contradictory of the assumption. 

For RAA, lines with contradictory wffs must have the same world prefix. “W ∴ 
A” and “WW ∴ ∼A” isn’t enough; “A” may be true in one world but false in 
another. But “WW ∴ A” and “WW ∴ ∼A” is a genuine contradiction. And the 
derived line must have the same world prefix as the assumption; if “W asm: 
A” leads to a contradiction in any world, then RAA lets us derive “W ∴ ∼A.” 

Modal proofs use four new inference rules. The reverse-squiggle rules hold 
regardless of what pair of contradictory wffs replaces “A” / “∼A”; here “→” 
means that we can infer whole lines from left to right: 0235 

Reverse squiggle RS 
 

∼☐A → ◇∼A 

∼◇A → ☐∼A 

“Not necessary” entails “possibly false.” And “not possible” entails “necessari-
ly false.” Use these rules only within the same world. Our rules cover revers-
ing squiggles on longer formulas, if the whole formula begins with “∼☐” or 
“∼◇”: 

∼◇∼B 
–––––––– 
∴ ☐∼∼B 

∼☐(C • ∼D) 
–––––––––––– 
∴ ◇∼(C • ∼D) 

In the first example, we also could conclude “☐B” (dropping “∼∼”). This next 
example is illegal in our system, since it fits poorly into our proof strategy, 
even though it’s logically correct: 

Don’t do this: 



 

(P ⊃ ∼☐Q) ––––––––––– 
∴ (P ⊃ ◇∼Q) 

Reverse squiggles whenever you have a wff that begins with “∼” and then a 
modal operator; this moves an operator to the beginning of the formula, so 
we can drop it later. 

We drop modal operators using the next two rules (which hold regardless 
of what wff replaces “A”). Here’s the drop-diamond rule: 

Drop diamond DD 
 

◇A → W ∴ A, 
use a new string of W’s 

Here the line with “◇A” can use any world prefix – and the line with “∴ A” 
must use a new string of one or more W’s (a string not occurring in earlier 
lines). If “A” is possible, then “A” is true in some possible world; we can give 
this world a name – but a new name, since “A” needn’t be true in any of the 
worlds used in the proof so far. We’ll use “W” for the first diamond we drop, 
“WW” for the second, and so forth. So if we drop two diamonds, then we 
introduce two new worlds: 

◇H 
◇T –––––––– 
W ∴ H 
WW ∴ T 

Heads is possible, tails is possible; let’s call an imagined world with heads 
“W,” and one with tails “WW.” It’s OK to use “W” in the first inference, since it 
occurs in no earlier line. But the second inference must use “WW,” since “W” 
has now already occurred. 

We can drop diamonds from longer formulas, if the diamond begins the 
wff. So this first inference is fine: 

◇(A • B) –––––––––– 
W ∴ (A • B) 

These next two examples are wrong (since the formula doesn’t begin with a 
diamond – instead, it begins with a left-hand parenthesis): 



 

 

(◇A ⊃ B) ––––––––––– 
W ∴ (A ⊃ B) 

(◇A • ◇B) –––––––––– 
W ∴ (A • B) 

Drop only initial operators (diamonds or boxes). 
Here’s the drop-box rule: 0236 

Drop box DB 
 

☐A → W ∴ A, 
use any world prefix 

The lines with “☐A” and “∴ A” can use any world prefixes, the same or 
different, including the blank world prefix for the actual world. If “A” is 
necessary, then “A” is true in all possible worlds, and so we can put “A” in any 
world. But it’s bad strategy to drop a box into a new world; stay in old worlds. 
As before, we can drop boxes from longer formulas, as long as the box begins 
the wff. So this next inference is fine: 

☐(A ⊃ B) ––––––––––– 
W ∴ (A ⊃ B) 

These next two example are wrong (since the formula doesn’t begin with a 
box – instead it begins with a left-hand parenthesis – drop only initial opera-
tors): 

(☐A ⊃ B) ––––––––––– 
W ∴ (A ⊃ B) 

(☐A ⊃ ☐B) ––––––––––– 
W ∴ (A ⊃ B) 

“(☐A ⊃ B)” and “(☐A ⊃ ☐B)” are if-then forms and follow the if-then rules: if 
we have the first part true, we can get the second true; if we have the second 
part false, we can get the first false; if we get stuck, we make an assumption. 

Here’s a valid modal argument and its proof: 



 

Necessarily, if there’s rain then there’s precipitation. 
It’s possible that there’s rain. 
∴ It’s possible that there’s precipitation. 

* 1   ☐(R ⊃ P) Valid 
* 2   ◇R 
* [ ∴ ◇P 
* 3 ┌ asm: ∼◇P 
* 4 │ ∴ ☐∼P {from 3} 
* 5 │ W ∴ R {from 2} 
* 6 │ W ∴ (R ⊃ P) {from 1} 
* 7 │ W ∴ P {from 5 and 6} 
* 8 └ W ∴ ∼P {from 4} 
* 9 ∴ ◇P {from 3; 7 contradicts 8} 

Assume “It’s not possible that there’s precipitation.” Reverse the squiggle to 
get “It’s necessary that there’s no precipitation” in 4. Drop the diamond in 2, 
using a new world W, to get “There’s rain” in W in 5. Drop the box in 1 to get 
“If there’s rain then there’s precipitation” in W in 6. From these two, get 
“There’s precipitation” in W in 7. Drop a box again in 8 to get contradiction. 
Our conclusion follows: “It’s possible that there’s precipitation.” 

We’ll typically use modal rules in this order: (1) First reverse squiggles; 
(2) then drop initial diamonds, using a new world each time; (3) lastly, drop 
each initial box once for each old world. Star when reversing squiggles or 
dropping a diamond (starred lines have redundant information and can 
largely can be ignored in deriving further lines): 

* ∼☐A 
––––––––– 

∴ ◇∼A 

* ◇A 
–––––––– 

W ∴ A 

0237 Don’t star when dropping a box; we can never exhaust a “necessary” 
statement – and we may have to use it again later in the proof. 

Here’s an easy modal proof: 

* 1   ☐(A • B) Valid 
* [ ∴ ☐A 
* 2 ┌ asm: ∼☐A 
* 3 │ ∴ ◇∼A {from 2} 
* 4 │ W ∴ ∼A {from 3} 



 

 

* 5 │ W ∴ (A • B) {from 1} 
* 6 └ W ∴ A {from 5} 
* 7 ∴ ☐A {from 2; 4 contradicts 6} 

Reverse squiggles to get “◇∼A” in line 3. Drop a diamond to get “W ∴ ∼A” in 
line 4. Then drop a box to get “W ∴ (A • B)” in line 5. 

In this proof, there’s no point to dropping the box into the actual world, to 
go from “☐(A • B)” in line 1 to “∴ (A • B)” with no initial W’s. Drop a box into 
the actual world (besides into any W-worlds) only in these two cases: 

1. The original premises or conclusion have an unmodalized instance of a letter. 
(A letter is unmodalized if it doesn’t occur as part a larger wff beginning with “☐” 
or “◇”; in “(A • ◇A)” only the first “A” is unmodalized.) 

2. You’ve done everything else possible (including further assumptions if needed) 
and still have no other old worlds. 

Here are examples: 

Case 1: unmodalized letter 

1   ☐(A • B) 
 [ ∴ A ⇐ unmodalized 
2 ┌ asm: ∼A 
3 │ ∴ (A • B) {from 1} 
4 └ ∴ A {from 3} 
5 ∴ A {from 2; 2 contradicts 4} 

Here the original argument has an unmodalized letter. When this happens, 
drop boxes into the actual world (as in line 3) and also into all W-worlds (if 
there are any). 

Case 2: no other worlds 

1   ☐∼A 
[ ∴ ∼☐A 
2 ┌ asm: ☐A 
3 │ ∴ A {from 2} 
4 └ ∴ ∼A {from 1} 
5 ∴ ∼☐A {from 2; 3 contradicts 4} 

Here, when you drop the box to get line 3, there are no other old worlds 
(since you had no diamonds to drop); so use the actual world (with no W’s). 



 

Our “standard strategy” here has us drop boxes into the actual world in these 
two cases, and only these. This always works, but it sometimes gives us lines 
that we don’t need; we can skip these lines if we see that we don’t need them. 
0238 

In doing proofs, first assume the conclusion’s opposite; then use modal 
rules plus S- and I-rules to derive all you can. If you find a contradiction, 
apply RAA. If you’re stuck and need to break a NOT-BOTH, OR, or IF-THEN, 
then make another assumption. If you get no contradiction and yet can’t do 
anything further, then try to refute. Here’s a fuller statement of our strategy’s 
modal steps: 

1. FIRST REVERSE SQUIGGLES: For each unstarred, not-blocked-off line that 
begins with “∼☐” or “∼◇,” derive a line using the reverse-squiggle rules. Star the 
original line. 

2. THEN DROP DIAMONDS: For each unstarred, not-blocked-off line that begins 
with a diamond, derive an instance using the next available new world (but don’t 
drop a diamond if you already have a not-blocked-off-instance in some previous 
line – so don’t drop “◇A” if you already have “W ∴ A”). Star the original line. 

3. LASTLY DROP BOXES: For each not-blocked-off line that begins with a box, 
derive instances using each old world. Don’t star the original line; you might have 
to use it again. (Drop boxes into the actual world under the two conditions given 
on the previous page.) 

Drop diamonds before boxes. Introduce a new world each time you drop a 
diamond, and use the same old worlds when you drop a box. And drop only 
initial diamonds and boxes. 

10.2a Exercise: LogiCola KV 
Prove each of these arguments to be valid (all are valid). 

☐(A ⊃ B) 
 ◇∼B 
∴ ◇∼A 



 

 

* 1   ☐(A ⊃ B) Valid 
* 2   ◇∼B 
* [ ∴ ◇∼A 
* 3 ┌ asm: ∼◇∼A 
* 4 │ ∴ ☐A {from 3} 
* 5 │ W ∴ ∼B {from 2} 
* 6 │ W ∴ (A ⊃ B) {from 1} 
* 7 │ W ∴ A {from 4} 
* 8 └ W ∴ B {from 6 and 7} 
* 9 ∴ ◇∼A {from 3; 5 contradicts 8} 

1. ◇(A • B) 
∴ ◇A 

2. A 
∴ ◇A 

3. ∼◇(A • ∼B) 
∴ ☐(A ⊃ B) 

4. ☐(A ∨ ∼B) 
∼☐A 
∴ ◇∼B 

5. (◇A ∨ ◇B) 
∴ ◇(A ∨ B) 

6. (A ⊃ ☐B) 
◇∼B 
∴ ◇∼A 

7. ∼◇(A • B) 
◇A 
∴ ∼☐B 0239 

8. ☐A 
∴ ◇A 



 

9. ☐A 
∼☐B 
∴ ∼☐(A ⊃ B) 

10. ☐(A ⊃ B) 
∴ (☐A ⊃ ☐B) 

10.2b Exercises: LogiCola KV 29. 
First appraise intuitively. Then translate into logic (using the letters given) and 
prove to be valid (all are valid). 

1. “You knowingly testify falsely because of threats to your life” entails “You lie.” 
It’s possible that you knowingly testify falsely because of threats to your life but 
don’t intend to deceive. (Maybe you hope no one will believe you.) 
∴ “You lie” is consistent with “You don’t intend to deceive.” [Use T, L, and I; from 
Tom Carson, who writes on the morality of lying.] 

2. Necessarily, if you don’t decide then you decide not to decide. 
Necessarily, if you decide not to decide then you decide. 
∴ Necessarily, if you don’t decide then you decide. [Use D for “You decide” and N 
for “You decide not to decide.” This is adapted from Jean-Paul Sartre.] 

3. If truth is a correspondence with the mind, then “There are truths” entails 
“There are minds.” 
“There are minds” isn’t logically necessary. 
Necessarily, if there are no truths then it is not true that there are no truths. 
∴ Truth isn’t a correspondence with the mind. [Use C, T, and M.] 

4. There’s a perfect God. 
There’s evil in the world. 
∴ “There’s a perfect God” is logically compatible with “There’s evil in the world.” 
[Use G and E. Most who doubt the conclusion would also doubt premise 1.] 

5. “There’s a perfect God” is logically compatible with T. 
T logically entails “There’s evil in the world.” 
∴ “There’s a perfect God” is logically compatible with “There’s evil in the world.” 
[Use G, T, and E. Here T (for “theodicy”) is a possible explanation of why God 
permits evil that’s consistent with God’s perfection and entails the existence of 
evil. T might say: “The world has evil because God, who is perfect, wants us to 
make significant free choices to struggle to bring a half-completed world toward 
its fulfillment; moral evil comes from the abuse of human freedom and physical 
evil from the half-completed state of the world.” This basic argument (but not the 
specific T) is from Alvin Plantinga.] 



 

 

6. “There’s a perfect God and there’s evil in the world and God has some reason 
for permitting the evil” is logically consistent. 
∴ “There’s a perfect God and there’s evil in the world” is logically consistent. 
[Use G, E, and R. This is Ravi Zacharias’s version of Plantinga’s argument.] 0240 

7. God is omnipotent. 
“You freely always do the right thing” is logically possible. 
If “You freely always do the right thing” is logically possible and God is omnipo-
tent, then it’s possible for God to bring it about that you freely always do the right 
thing. 
∴ It’s possible for God to bring it about that you freely always do the right thing. 
[Use O, F, and B; from J. L. Mackie. He thought God had a third option besides 
making robots who always act rightly and free beings who sometimes act wrong-
ly: he could make free beings who always act rightly.] 

8. “God brings it about that you do A” is inconsistent with “You freely do A.” 
“God brings it about that you freely do A” entails “God brings it about that you do 
A.” 
“God brings it about that you freely do A” entails “You freely do A.” 
∴ It’s impossible for God to bring it about that you freely do A. [Use B, F, and G. 
This attacks the conclusion of the previous argument.] 

9. “This is a square” entails “This is composed of straight lines.” 
“This is a circle” entails “This isn’t composed of straight lines.” 
∴ “This is a square and also a circle” is self-contradictory. [S, L, C] 

10. “This is red and there’s a blue light that makes red things look violet to normal 
observers” entails “Normal observers won’t sense redness.” 
“This is red and there’s a blue light that makes red things look violet to normal 
observers” is logically consistent. 
∴ “This is red” doesn’t entail “Normal observers will sense redness.” [Use R, B, 
and N; from Roderick Chisholm.] 

11. “All brown dogs are brown” is a necessary truth. 
“Some dog is brown” isn’t a necessary truth. 
“Some brown dog is brown” entails “Some dog is brown.” 
∴ “All brown dogs are brown” doesn’t entail “Some brown dog is brown.” [Use A 
for “All brown dogs are brown,” X for “Some dog is brown,” and S for “Some 
brown dog is brown.” This attacks a doctrine of traditional logic (§2.8), that “all A 
is B” entails “some A is B.”] 



 

12. It’s necessary that, if God exists as a possibility but does not exist in reality, 
then there could be a being greater than God (namely, a similar being that also 
exists in reality). 
“There could be a being greater than God” is self-contradictory (since “God” is 
defined as “a being than which no greater could be”). 
It’s necessary that God exists as a possibility. 
∴ It’s necessary that God exists in reality. [Use P for “God exists as a possibility,” 
R for “God exists in reality,” and G for “There’s a being greater than God.” This is a 
modal version of St Anselm’s ontological argument.] 0241 

13. If “X is good” and “I like X” are interchangeable, then “I like hurting people” 
logically entails “Hurting people is good.” 
“I like hurting people but hurting people isn’t good” is consistent. 
∴ “X is good” and “I like X” aren’t interchangeable. [Use I, L, and G. This argu-
ment attacks subjectivism.] 

14. “You sin” entails “You know what you ought to do and you’re able to do it and 
you don’t do it.” 
It’s necessary that if you know what you ought to do then you want to do it. 
It’s necessary that if you want to do it and you’re able to do it then you do it. 
∴ It’s impossible for you to sin. [S, K, A, D, W] 

15. Necessarily, if it’s true that there are no truths then there are truths. 
∴ It’s necessary that there are truths. [Use T for “There are truths.”] 

10.3 Refutations 

Applying our proof strategy to an invalid argument leads to a refutation: 

It’s possible that it’s heads. 
It’s possible that it’s tails. 
∴ It’s possible that it’s both heads and tails. 

*1 1   ◇H Invalid 
* 12   ◇T 
* 1 [ ∴ ◇(H • T) 
* 13   asm: ∼◇(H • T) 
* 14   ∴ ☐∼(H • T) {from 3} 
* 15   W ∴ H {from 1} 
* 16   WW ∴ T {from 2} 
* 17   W ∴ ∼(H • T) {from 4} 
* 18   WW ∴ ∼(H • T) {from 4} 
* 19   W ∴ ∼T {from 5 and 7} 



 

 

* 10   WW ∴ ∼H {from 6 and 8} 

W H, ∼T 

WW T, ∼H 

Reverse a squiggle (line 4). Drop two diamonds, using a new world each time 
(lines 5 and 6). Drop the box twice, using W and WW (lines 7 and 8). Getting 
no contradiction, we gather simple wffs for a refutation. We get a little galaxy 
of two possible worlds: one with heads-and-not-tails and another with tails-
and-not-heads. The argument is invalid, since this galaxy makes the premises 
both true (since it’s heads in one possible world and tails in another) but the 
conclusion false (since no possible world has both heads and tails). 

If we try to prove an invalid argument, we’ll instead be led to a refutation – 
a galaxy of possible worlds that make the premises all true and conclusion 
false. In evaluating premises and conclusion, use these rules to evaluate each 
formula or subformula that starts with a modal operator: 0242 

“◇A” is true if and only if at least one world has “A” true. 

“☐A” is true if and only if all worlds have “A” true. 

Premise “◇H” is true because world W has “H” true, and premise “◇T” is 
true because world WW has “T” true.1 But conclusion “◇(H • T)” is false 
because no world has “(H • T)” true: 

In W: (H • T) = (1 • 0) = 0 

In WW: (H • T) = (0 • 1) = 0 

Always check that your refutation works. If you don’t get premises all 1 and 
conclusion 0, then you did something wrong; look at what you did with the 
wff that came out wrong (a premise that’s 0 or ?, or a conclusion that’s 1 or 
?). 

These two rules are crucial for working out proofs and refutations: 

• For each initial diamond, introduce a new world. 
• For each initial box, derive an instance for each old world. 

 
1 POSSIBLE is like OR: something holds in this world OR that world OR that world … – so a 
single true case makes a POSSIBLE true. NECESSARY is like AND: something holds in this 
world AND that world AND that world … – so a single false case makes a NECESSARY false. 



 

If you have two diamonds, don’t drop both using the same world – and don’t 
drop just one diamond. And if you have two worlds, then drop any box using 
both worlds; if in our example we dropped the box in “☐∼(H • T)” using “W” 
but not “WW,” then our attempted refutation would fail: 

W H, ∼T 

WW T 

W has heads and not tails, WW has tails 

Since “H” is unknown in WW, our conclusion “◇(H • T)” would also be 
unknown (because the second case with “WW” is unknown): 

In W: (H • T) = (1 • 0) = 0 

In WW: (H • T) = (? • 1) = ? 

The “It’s possible that it’s both heads and tails” conclusion is unknown, since 
our world WW doesn’t exclude it being heads (besides being tails). We avoid 
such problems if we drop each initial box using each old world; here we’d go 
from “☐∼(H • T)” to “WW ∴ ∼(H • T),” which would lead to “WW ∴ ∼H.” 

As we refute arguments, we’ll often have to evaluate premises or conclu-
sions that don’t start with boxes or diamonds, such as these wffs: 0243 

∼☐H 
∼☐H 

∼☐(H ∨ T) 
∼☐(H ∨ T) 

∼◇(H • T) 
∼◇(H • T) 

Identify any subformulas that start with a boxes or diamonds (as highlighted 
here). Evaluate each subformula to be 1 or 0, and then apply “∼” to reverse 
the result. On our heads-tails refutation, “☐H” = 0, and so “∼☐H” = 1. 
Likewise, “☐(H ∨ T)” = 1, and so “∼☐(H ∨ T)” = 0; and “◇(H • T)” = 0, and 
so “∼◇(H • T)” = 1. In evaluating a wff that starts with a squiggle and then a 
box-or-diamond, evaluate the wff without the squiggle and then give the 
original wff the opposite value. Divide and conquer! 

Here’s another invalid argument: 



 

 

** 1   (☐A ⊃ ☐B) Invalid 
** [ ∴ (A ⊃ B) 
** 2   asm: ∼(A ⊃ B) 
** 3   ∴ A {from 2} 
** 4   ∴ ∼B {from 2} 
** 5      asm: ∼☐A {break 1} 
** 6      ∴ ◇∼A {from 5} 
** 7      W ∴ ∼A {from 6} 

 A, ∼B 

W ∼A 
 

Our refutation has an actual world and a possible world W. To evaluate the 
premise, first identity and evaluate subformulas that start with a box or 
diamond (these are highlighted here), and then plug in 1 or 0 for these: 

For “(☐A ⊃ ☐B),” we first evaluate “☐A” and “☐B.” 
“☐A” is false because “A” is false in W. 
“☐B” is false because “B” is false in the actual world. 
Replace both with “0.” 

We get “(0 ⊃ 0),” which simplifies to “1.” 
So “(☐A ⊃ ☐B)” is true. 

The conclusion is “(A ⊃ B),” which uses unmodalized letters; these should be 
evaluated in the actual world. So conclusion (A ⊃ B) = (1 ⊃ 0) = 0. Since we 
have true premises and a false conclusion, our argument is invalid. 

As we refute invalid arguments, we’ll often have complex premises or con-
clusions to evaluate, such as these wffs: 

(☐A ⊃ ☐B) 
(☐A ⊃ ☐B) 

(☐(F ∨ G) ⊃ (∼◇G • ◇∼H)) 
(☐(F ∨ G) ⊃ (∼◇G • ◇∼H)) 

(∼☐(F ⊃ G) ≡ ∼◇H) 
(∼☐(F ⊃ G) ≡ ∼◇H) 

As above, first identity subformulas that start with boxes or diamonds (as 
highlighted). Evaluate each such subformula to be 1 or 0, replace it with 1 or 
0, and figure out whether the whole formula is 1 or 0. Divide and conquer! 
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This English argument has an ambiguous first premise, which could have 

two different meanings: 

If you’re a bachelor, then you must be unmarried. 
You’re a bachelor. 
∴ It’s logically necessary that you’re unmarried. 

(B ⊃ ☐U) If you’re a bachelor, then you’re inherently unmarriable. 

☐(B ⊃ U)  It’s necessary that if you’re a bachelor then you’re unmarried. 

Work out both versions: 

Box-inside version (valid but premise 1 is false): 

* 1   (B ⊃ ☐U) Valid 
* 2   B 
* [ ∴ ☐U 
* 3 ┌ asm: ∼☐U 
* 4 └ ∴ ☐U {from 1 and 2} 
* 5 ∴ ☐U {from 3; 3 contradicts 4} 
 

Box-outside version (invalid): 

* 1   ☐(B ⊃ U) Invalid 
* 2   B 
* [ ∴ ☐U 
* 3   asm: ∼☐U 
* 4   ∴ ◇∼U—{from 3} 
* 5   W ∴ ∼U—{from 4} 
* 6   W ∴ (B ⊃ U)—{from 1} 
* 7   ∴ (B ⊃ U)—{from 1} 
* 8   W ∴ ∼B—{from 5 and 6} 
* 9   ∴ U—{from 2 and 7} 

 B, U 

W ∼B, ∼U 

Both versions are flawed: the first has a false premise, while the second is 
invalid. So the proof that you’re inherently unmarriable fails. Arguments with 
a modal ambiguity often have one interpretation with a false premise and 
another that’s invalid; such arguments often seem sound until we focus on 



 

 

the ambiguity. 

10.3a Exercise: LogiCola KI30. 
Prove each of these arguments to be invalid (all are invalid). 

☐(A ⊃ B) 
◇A 
∴ ☐B 

* 11   ☐(A ⊃ B) Invalid 
* 12   ◇A 
*1 [ ∴ ☐B 
* 13   asm: ∼☐B 
* 14   ∴ ◇∼B {from 3} 
* 15   W ∴ ∼B {from 4} 
* 16   WW ∴ A {from 2} 
* 17   W ∴ (A ⊃ B) {from 1} 
* 18   WW ∴ (A ⊃ B) {from 1} 
* 19   W ∴ ∼A {from 5 and 7} 
* 10   WW ∴ B {from 6 and 8} 

W ∼A, ∼B 

WW A, B 
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1. ◇A 
∴ ☐A 

2. A 
∴ ☐A 

3. ◇A 
◇B 
∴ ◇(A • B) 

4. ☐(A ⊃ ∼B) 
B 
∴ ☐∼A 



 

5. (☐A ⊃ ☐B) 
∴ ☐(A ⊃ B) 

6. ◇A 
∼☐B 
∴ ∼☐(A ⊃ B) 

7. ☐(C ⊃ (A ∨ B)) 
(∼A • ◇∼B) 
∴ ◇∼C 

8. ☐(A ∨ ∼B) 
∴ (∼◇B ∨ ☐A) 

9. ☐((A • B) ⊃ C) 
◇A 
◇B 
∴ ◇C 

10. ∼☐A 
☐(B ≡ A) 
∴ ∼◇B 

10.3b Exercise: LogiCola KC31. 
First appraise intuitively. Then translate into logic (using the letters given) and say 
whether valid (and give a proof) or invalid (and give a refutation). Translate ambig-
uous English arguments both ways; prove or disprove each symbolization separately. 

1. If the pragmatist view of truth is right, then “A is true” entails “A is useful to 
believe.” 
“A is true but not useful to believe” is consistent. 
∴ The pragmatist view of truth isn’t right. [Use P, T, and B.] 

2. You know. 
“You’re mistaken” is logically possible. 
∴ “You know and are mistaken” is logically possible. [Use K and M.] 

3. Necessarily, if this will be then this will be. 
∴ If this will be, then it’s necessary (in itself) that this will be. [Use B. This 
illustrates two senses of “Que será será” – “Whatever will be will be.” The first 
sense is a truth of logic while the second is a form of fatalism.] 



 

 

4. I’m still. 
If I’m still, then it’s necessary that I’m not moving. 
If it’s necessary that I’m not moving, then whether I move is not a matter of my 
free choice. 
∴ Whether I move is not a matter of my free choice. [Use S, M, and F. This is 
adapted from the medieval thinker Boethius, who used a similar example to 
explain the box-inside/box-outside distinction.] 

5. It’s necessarily true that if you’re morally responsible for your actions then 
you’re free. 
It’s necessarily true that if your actions are uncaused then you aren’t morally 
responsible for your actions. 
∴ “You’re free” doesn’t entail “Your actions are uncaused.” [Use R, F, and U; from 
A. J. Ayer.] 0246 

6. If “One’s conscious life won’t continue forever” entails “Life is meaningless,” 
then a finite span of life is meaningless. 
If a finite span of life is meaningless, then an infinite span of life is meaningless. 
If an infinite span of life is meaningless, then “One’s conscious life will continue 
forever” entails “Life is meaningless.” 
∴ If it’s possible that life is not meaningless, then “One’s conscious life won’t 
continue forever” doesn’t entail “Life is meaningless.” [C, L, F, I] 

7. If you have money, then you couldn’t be broke. 
You could be broke. 
∴ You don’t have money. [Use M and B. Is this argument just a valid instance of 
modus tollens: “(P ⊃ Q), ∼Q ∴ ∼P”?] 

8. If you know, then you couldn’t be mistaken. 
You could be mistaken. 
∴ You don’t know. [Use K and M. Since we could repeat this reasoning for any 
alleged item of knowledge, the argument seems to show that genuine knowledge 
is impossible.] 

9. It’s necessary that if there’s a necessary being then “There’s a necessary being” 
(by itself) is necessary. 
“There’s a necessary being” is logically possible. 
∴ “There’s a necessary being” is logically necessary. [Use N for “There’s a neces-
sary being” or “There’s a being that exists of logical necessity”; this being is often 
identified with God; from Charles Hartshorne and St Anselm; it’s sometimes called 
“Anselm’s second ontological argument.” The proof raises logical issues that we’ll 
deal with in the next chapter.] 



 

10. It’s necessary that either I’ll do it or I won’t do it. 
If it’s necessary that I’ll do it, then I’m not free. 
If it’s necessary that I won’t do it, then I’m not free. 
∴ I’m not free. [Use D for “I’ll do it.” Aristotle and the Stoic Chrysippus discussed 
this argument. This argument’s flaw relates to a point made by Chrysippus, that 
“☐(D ∨ ∼D) ∴ (☐D ∨ ☐∼D)” is invalid and is like arguing “Everything is either A 
or non-A; therefore either everything is A or everything is non-A.”] 

11. “This agent’s actions were all determined” is consistent with “I describe this 
agent’s character in an approving way.” 
“I describe this agent’s character in an approving way” is consistent with “I praise 
this agent.” 
∴ “This agent’s actions were all determined” is consistent with “I praise this 
agent.” [D, A, P] 

12. If thinking is just a chemical brain process, then “I think” entails “There’s a 
chemical process in my brain.” 
“There’s a chemical process in my brain” entails “I have a body.” 
“I think but I don’t have a body” is logically consistent. 
∴ Thinking isn’t just a chemical brain process. [Use J, T, C, and B. This argument 
attacks a form of materialism.] 0247 

13. If “I did that on purpose” entails “I made a prior purposeful decision to do 
that,” then there’s an infinite chain of previous decisions to decide. 
It’s impossible for there to be an infinite chain of previous decisions to decide. 
∴ “I did that on purpose” is consistent with “I didn’t make a prior purposeful 
decision to do that.” [Use D, P, and I; from Gilbert Ryle.] 

14. God knew that you’d do it. 
If God knew that you’d do it, then it was necessary that you’d do it. 
If it was necessary that you’d do it, then you weren’t free. 
∴ You weren’t free. [Use K, D, and F. This argument is the focus of an ancient 
controversy. Would divine foreknowledge preclude human freedom? If it would, 
then should we reject human freedom (as did Luther) or divine foreknowledge 
(as did Charles Hartshorne)? Or perhaps (as the medieval thinkers Boethius, 
Aquinas, and Ockham claimed) is there a flaw in the argument that divine fore-
knowledge precludes human freedom?] 

15. If “good” means “socially approved,” then “Racism is socially approved” logi-
cally entails “Racism is good.” 
“Racism is socially approved but not good” is consistent. 
∴ “Good” doesn’t mean “socially approved.” [Use M, S, and G. This argument 
attacks cultural relativism.] 



 

 

16. Necessarily, if God brings it about that A is true, then A is true. 
A is a self-contradiction. 
∴ It’s impossible for God to bring it about that A is true. [Use B and A, where B is 
for “God brings it about that A is true.”] 

17. If this is experienced, then this must be thought about. 
“This is thought about” entails “This is put into the categories of judgments.” 
∴ If it’s possible for this to be experienced, then it’s possible for this to be put into 
the categories of judgments. [Use E, T, and C; from Immanuel Kant, who argued 
that our mental categories apply, not necessarily to everything that exists, but 
rather to everything that we could experience.] 

18. Necessarily, if formula B has an all-1 truth table then B is true. 
∴ If formula B has an all-1 truth table, then B (taken by itself) is necessary. [Use 
A and B. This illustrates the box-outside versus box-inside distinction.] 

19. Necessarily, if you mistakenly think that you exist then you don’t exist. 
Necessarily, if you mistakenly think that you exist then you exist. 
∴ “You mistakenly think that you exist” is impossible. [Use M and E. This relates 
to Descartes’s “I think, therefore I am” (“Cogito ergo sum”).] 

20. If “good” means “desired by God,” then “This is good” entails “There’s a God.” 
“There’s no God, but this is good” is consistent. 
∴ “Good” doesn’t mean “desired by God.” [Use M, A, and B. This attacks one form 
of the divine command theory of ethics. Some (see 9 and 26 of this section and 12 
of §10.2b) say, against premise 2, that “There’s no God” is logically impossible.] 
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21. If Plato is right, then it’s necessary that ideas are superior to material things. 
It’s possible that ideas aren’t superior to material things. 
∴ Plato isn’t right. [P, S] 

22. “I seem to see a chair” doesn’t entail “There’s an actual chair that I seem to 
see.” 
If we directly perceive material objects, then “I seem to see a chair and there’s an 
actual chair that I seem to see” is consistent. 
∴ We don’t directly perceive material objects. [S, A, D] 

23. “There’s a God” is logically incompatible with “There’s evil in the world.” 
There’s evil in the world. 
∴ “There’s a God” is self-contradictory. [G, E] 



 

24. If you do all your homework right, then it’s impossible that you get this prob-
lem wrong. 
It’s possible that you get this problem wrong. 
∴ You don’t do all your homework right. [R, W] 

25. “You do what you want” is compatible with “Your act is determined.” 
“You do what you want” entails “Your act is free.” 
∴ “Your act is free” is compatible with “Your act is determined.” [W, D, F] 

26. It’s necessarily true that if God doesn’t exist in reality then there’s a being 
greater than God (since then any existing being would be greater than God). 
It’s not possible that there’s a being greater than God (since “God” is defined as “a 
being than which no being could be greater”). 
∴ It’s necessary that God exists in reality.—[Use R and B. This is a simplified 
modal form of St Anselm’s ontological argument.] 

27. It was always true that you’d do it. 
If it was always true that you’d do it, then it was necessary that you’d do it. 
If it was necessary that you’d do it, then you weren’t free. 
∴ You weren’t free. [Use A (for “It was always true that you’d do it” – don’t use a 
box here), D, and F. This argument is much like problem 14. Are statements about 
future contingencies (for example, “I’ll brush my teeth tomorrow”) true or false 
before they happen? Should we do truth tables for such statements in the normal 
way, assigning them “1” or “0”? Does this preclude human freedom? If so, should 
we then reject human freedom? Or should we adopt a many-valued logic that says 
that statements about future contingencies aren’t “1” or “0” but must instead have 
some third truth value (maybe “½”)? Or is the argument fallacious?] 

  



 

11 Further Modal Systems 

Modal logic studies arguments whose validity depends on “possible,” “neces-
sary,” and similar notions. The previous chapter presented a basic system 
that builds on propositional logic. This present chapter considers alternative 
systems of propositional and quantified modal logic. 

11.1 Galactic travel 

While logicians usually agree on which arguments are valid, there are more 
disagreements about modal arguments. Many disputes involve arguments in 
which one modal operator occurs within the scope of another – like “◇◇A ∴ 
◇A” and “☐(A ⊃ ☐B), ◇A ∴ B.” These disputes reflect differences in how to 
formulate the drop-box rule. So far, we’ve assumed a system called “S5,” 
which lets us go from any world to any world when we drop a box (§10.2): 

Drop box DB 
 

☐A → W ∴ A, 
use any world prefix 

Here the line with “☐A” and the line with “W ∴ A” can use any world prefixes, 
the same or different. 

This assumes that whatever is necessary in any world is thereby true in all 
worlds without restriction. A further implication is that whatever is neces-
sary in one world is thereby necessary in all worlds. 

Some weaker views reject these ideas. On these views, what is necessary 
only has to be true in all “suitably related” worlds; so these views restrict the 
drop-box rule. All the views in question let us go from “☐A” in a world to “A” 
in the same world. But we can’t always go from “☐A” in one world to “A” in 
another world; traveling between worlds requires (at least on my way of 
expressing it) a suitable “travel ticket.” 

We get travel tickets when we drop diamonds. Let “W1” and “W2” stand 
for world prefixes. Suppose we go from “◇A” in world W1 to “A” in new 
world W2. Then we get a travel ticket from W1 to W2, and we’ll write “W1 ⇒ 



 

W2”: 

W1 ⇒ W2 

We have a ticket to move from world W1 to world W2 

0250 Suppose we do a proof with wffs “◇◇A” and “◇B.” We’d get these 
travel tickets when we drop diamonds (here “#” stands for the actual world): 

11   ◇◇A 
12   ◇B 
. . . . . . . . . . 
11   W ∴ ◇A {from 1} # ⇒ W 
12   WW ∴ A {from 11} W ⇒ WW 
13   WWW ∴ B {from 2} # ⇒ WWW 

Dropping a diamond gives us a travel ticket from the world in the “from” line 
to the world in the “to” line. So in line 11 we get ticket “# ⇒ W” – because we 
moved from “◇◇A” in the actual world (“#”) to “◇A” in world W. Tickets 
are reusable; we can use “W1 ⇒ W2” any number of times. 

The rules for using tickets vary. System T lets us use only one ticket at a 
time, and only in the direction of the arrow; system S4 lets us combine a 
series of tickets, while system B lets us use them in a backwards direction. 
Suppose we have “☐A” in world W1 and want to put “A” in world W2: 

• System T. We need a ticket from W1 to W2. 
• System S4. Like T, but we also can use a series of tickets. 
• System B. Like T, but a ticket also works backwards. 

Suppose we have three travel tickets: 

# ⇒ W 
W ⇒ WW 

# ⇒ WWW 

System T would let us, when we drop boxes, go from # to W, from W to WW, 
and from # to WWW. The other systems allow these and more. System S4 lets 
us use a series of tickets in the direction of the arrow; this lets us go from # to 
WW. System B lets us use single tickets backwards; this lets us go from W to 
#, from WW to W, and from WWW to #. In contrast, system S5 lets us go from 



 

 

any world to any world; this is equivalent to letting us use any ticket or series 
of tickets in either direction. 

S5 is the most liberal system and accepts the most valid arguments; so S5 
is the strongest system. T is the weakest system, allowing the fewest proofs. 
S4 and B are intermediate, each allowing some proofs that the other doesn’t. 
The four systems give the same result for most arguments. But some argu-
ments are valid in one system but invalid in another; these arguments use 
wffs that apply a modal operator to a wff already containing a modal opera-
tor. 

This argument is valid in S4 or S5 but invalid in T or B: 0251 

* 1   ☐A 
* [ ∴ ☐☐A 
* 2 ┌ asm: ∼☐☐A 
* 3 │ ∴ ◇∼☐A {from 2} 
* 4 │ W ∴ ∼☐A {from 3} # ⇒ W 
* 5 │ W ∴ ◇∼A {from 4} 
* 6 │ WW ∴ ∼A {from 5} W ⇒ WW 
* 7 └ WW ∴ A {from 1} Need S4 or S5 
* 8 ∴ ☐☐A {from 2; 6 contradicts 7} 

Line 7 requires that we combine a series of tickets in the direction of the 
arrow. Tickets “# ⇒ W” and “W ⇒ WW” then let us go from actual world # 
(line 1) to world WW (line 7). This requires systems S4 or S5. 

This next one is valid in B or S5 but invalid in T or S4: 

* 1   A 
* [ ∴ ☐◇A 
* 2 ┌ asm: ∼☐◇A 
* 3 │ ∴ ◇∼◇A {from 2} 
* 4 │ W ∴ ∼◇A {from 3} # ⇒ W 
* 5 │ W ∴ ☐∼A {from 4} 
* 6 └ ∴ ∼A {from 5} Need B or S5 
* 7 ∴ ☐◇A {from 2; 1 contradicts 6} 

Line 6 requires using ticket “# ⇒ W” backwards, to go from world W (line 5) 
to the actual world # (line 6). This requires systems B or S5. 

This last one is valid in S5 but invalid in T or B or S4: 

* 1   ◇A 
* [ ∴ ☐◇A 
* 2 ┌ asm: ∼☐◇A 



 

* 3 │ ∴ ◇∼◇A {from 2} 
* 4 │ W ∴ ∼◇A {from 3} # ⇒ W 
* 5 │ W ∴ ☐∼A {from 4} 
* 6 │ WW ∴ A {from 1} # ⇒ WW 
* 7 └ WW ∴ ∼A {from 5} Need S5 
* 8 ∴ ☐◇A {from 2; 6 contradicts 7} 
 

Line 7 requires combining a series of tickets and using some backwards. 
Tickets “# ⇒ W” and “# ⇒ WW” then let us go from W (line 5) to WW (line 7). 
This requires system S5. 

S5 is the simplest system in several ways: 

• We can formulate S5 more simply. The box-dropping rule doesn’t have to 
mention travel tickets; we need only say that, if we have “☐A” in any world, 
then we can put “A” in any world (the same or a different one). 0252 

• S5 captures simple intuitions about necessity and possibility: what’s necessary 
is what’s true in all worlds, what’s possible is what’s true in some worlds, and 
what’s necessary or possible doesn’t vary between worlds. 

• On S5, any string of boxes and diamonds simplifies to its last symbol. So “☐☐” 
and “◇☐” simplify to “☐,” and “◇◇” and “☐◇” simplify to “◇.” 

Which is the best system? This depends on what we take the box and dia-
mond to mean. If we take them to be about the logical necessity and possibil-
ity of ideas, then S5 is the best system. If an idea (for example, the claim that 
2 = 2) is logically necessary, then it couldn’t have been other than logically 
necessary. So if A is logically necessary, then it’s logically necessary that A is 
logically necessary [“(☐A ⊃ ☐☐A)”]. Similarly, if an idea is logically possible, 
then it’s logically necessary that it’s logically possible [“(◇A ⊃ ☐◇A)”]. Of 
the four systems, only S5 accepts both formulas. All this presupposes that we 
use the box to talk about the logical necessity of ideas. 

Or we could take the box to be about the logical necessity of sentences. The 
sentence “2 = 2” just happens to express a necessary truth; it wouldn’t have 
expressed one if English had used “=a” to mean “≠.” So the sentence is neces-
sary, but it’s not necessary that it’s necessary; this makes “(☐A ⊃ ☐☐A)” 
false. The idea that “2 = 2” now expresses, however, is both necessary and 
necessarily necessary; a change in our language wouldn’t make this idea 
false, but it would change how we’d express this idea. So whether S5 is the 
best system can depend on whether we take the box to be about the necessity 
of ideas or of sentences. 

There are still other ways to take “necessary.” Sometimes calling some-
thing “necessary” might mean that it’s “physically necessary,” “proven,” 
“known,” or “obligatory.” Some logicians like the weak system T because it 



 

 

holds for various senses of “necessary”; such logicians might still use S5 for 
arguments about the logical necessity of ideas. While I have sympathy with 
this view, most of the modal arguments I’m interested in are about the logical 
necessity of ideas. So I use S5 as the standard system of modal logic but feel 
free to switch to weaker systems for arguments about other kinds of necessi-
ty. 

Here we’ve considered the four main modal systems. We could invent 
other systems – for example, ones in which we can combine travel tickets 
only in groups of three. Logicians develop such systems, not to help us in 
analyzing real arguments, but rather to explore interesting formal struc-
tures.1 

11.1a Exercise: LogiCola KG 32. 
Using system S5, prove each of these arguments to be valid. Also say in which 
systems the argument is valid: T, B, S4, or S5. 0253 

∼☐A 
∴ ☐∼☐A 

* 1   ∼☐A Valid 
* [ ∴ ☐∼☐A 
* 2 ┌ asm: ∼☐∼☐A 
* 3 │ ∴ ◇☐A {from 2} 
* 4 │ ∴ ◇∼A {from 1} 
* 5 │ W ∴ ☐A {from 3} # ⇒ W 
* 6 │ WW ∴ ∼A {from 4} # ⇒ WW 
* 7 └ WW ∴ A {from 5} Need S5 
* 8 ∴ ☐∼☐A {from 2; 6 contradicts 7} 

Line 7 combines a series of tickets and uses some backwards. This requires 
S5. 

1. ◇☐A 
∴ A 

2. ◇A 
∴ ◇◇A 

3. ◇◇A 
∴ ◇A 

 
1 For more on alternative modal systems, consult G. E. Hughes and M. J. Cresswell, A New 
Introduction to Modal Logic (London: Routledge, 1996). 



 

4. ◇☐A 
∴ ☐A 

5. (☐A ⊃ ☐B) 
∴ ☐(☐A ⊃ ☐B) 

6. ☐(A ⊃ B) 
∴ ☐(☐A ⊃ ☐B) 

7. (◇A ⊃ ☐B) 
∴ ☐(A ⊃ ☐B) 

8. ☐(A ⊃ ☐B) 
∴ (◇A ⊃ ☐B) 

9. ◇☐◇A 
∴ ◇A 

10. ◇A 
∴ ◇☐◇A 

11. ☐A 
∴ ☐(B ⊃ ☐A) 

12. ☐◇☐◇A 
∴ ☐◇A 

13. ☐◇A 
∴ ☐◇☐◇A 

14. ☐(A ⊃ ☐B) 
◇A 
∴ ☐B 

15. ☐A 
∴ ☐☐☐A 



 

 

11.1b Exercise: LogiCola KG 33. 
Fist appraise intuitively. Then translate into logic (using the letters given) and, 
assuming S5, prove validity. Also say in which systems the argument is valid: T, B, S4, 
or S5. 

1. It’s necessary that if there’s a necessary being then “There’s a necessary being” 
(by itself) is necessary. 
“There’s a necessary being” is logically possible. 
∴ “There’s a necessary being” is logically necessary. [Use N for “There’s a neces-
sary being” or “There’s a being that exists of logical necessity”; this being is often 
identified with God. This argument (which we saw before in §10.3b) is from 
Charles Hartshorne and St Anselm. Its validity depends on which system of modal 
logic is correct. Some philosophers defend the argument, often after defending a 
modal system needed to make it valid. Others argue that the argument is invalid, 
and so any modal system that would make it valid must be wrong. Still others 
deny the theological import of the conclusion; they say that a necessary being 
could be a prime number or the world and needn’t be God.] 

2. “There’s a necessary being” isn’t a contingent statement. 
“There’s a necessary being” is logically possible. 
∴ There’s a necessary being. [Use N. This version of the Anselm–Hartshorne 
argument is more clearly valid.] 0254 

3. Prove that the first premise of argument 1 is logically equivalent to the first 
premise of argument 2 by showing that each can be deduced from the other. In 
which systems does this equivalence hold? 3. It’s necessary that if there’s a neces-
sary being then “There’s a necessary being” (by itself) is necessary. 
“There’s no necessary being” is logically possible. 
∴ There’s no necessary being. [Use N. Some object that the first premise of the 
Anselm–Hartshorne argument just as easily leads to an opposite conclusion.] 

4. It’s necessary that 2 + 2 = 4. 
It’s possible that no language ever existed. 
If all necessary truths hold because of language conventions, then “It’s necessary 
that 2 + 2 = 4” entails “Some language has sometime existed.” 
∴ Not all necessary truths hold because of language conventions. [Use T, L, and 
N. This attacks the linguistic theory of logical necessity.] 

11.2 Quantified translations 

We’ll now develop a quantified modal system that combines our quan-
tificational and modal systems. We’ll call this our “naïve” system, since it 



 

ignores certain problems; later we’ll add refinements.1 
Many quantified modal translations are easy. This pair is tricky: 

Everyone could be above average 
= ◇(x)Ax 
It’s possible that everyone is above average 
It’s possible that, for all x, x is above average 

Anyone could be above average 
= (x)◇Ax 
For all x, it’s possible that x is above average 

The first is false while the second is true. 
Quantified modal logic can express the difference between necessary and 

contingent properties. Numbers seem to have both kinds of property. The 
number 8, for example, has the necessary properties of being even and of 
being one greater than seven; 8 couldn’t have lacked these properties. But 8 
also has contingent properties, ones it could have lacked, such as being my 
favorite number and being less than the number of chapters in this book. We 
can symbolize “necessary property” and “contingent property” as follows: 
0255 

F is a necessary (essential) property of x 
= ☐Fx 
x is necessarily F (x has the necessary property of being F) 
In all possible worlds, x would be F 

F is a contingent (accidental) property of x 
= (Fx • ◇∼Fx) 
x is contingently F (x is F but could have lacked F) 
In the actual world x is F; but in some possible world x isn’t F. 

Humans have mostly contingent properties. Socrates had contingent proper-
ties, like having a beard and being a philosopher; these are contingent, 
because he could (without self-contradiction) have been a clean-shaven non-
philosopher. But Socrates also had necessary properties, like being self-
identical and not being a square circle; every being has these properties of 
necessity. 

Aristotelian essentialism is the controversial view that there are properties 
that some beings have of necessity but some other beings totally lack. Plant-
 
1 My understanding of quantified modal logic follows Alvin Plantinga’s The Nature of Necessity 
(London: Oxford University Press, 1974). For related discussions, see Saul Kripke’s Naming 
and Necessity (Cambridge, Mass.: Harvard University Press, 1980) and Kenneth Konyndyk’s 
Introductory Modal Logic (Notre Dame, Ind.: Notre Dame Press, 1986). 



 

 

inga, supporting this view, suggests that Socrates had of necessity these 
properties that some other beings totally lack: not being a prime number, 
being snub-nosed in W (a specific possible world), being a person (capable of 
conscious rational activity), and being identical with Socrates. This last 
property differs from that of being named “Socrates.” 

Plantinga explains “necessary property” as follows. Suppose “a” names a 
being and “F” names a property. Then the entity named by “a” has the proper-
ty named by “F” necessarily, if and only if the proposition expressed by “a is 
non-F” is logically impossible. Then to say that Socrates necessarily has the 
property of not being a prime number is to say that the proposition “Socrates 
is a prime number” (with the name “Socrates” referring to the person Socra-
tes) is logically impossible. We must use names (like “Socrates”) here and not 
definite descriptions (like “the entity I’m thinking about”). 

We previously discussed the box-inside/box-outside ambiguity. This quan-
tified modal sentence similarly could have either of two meanings: 

“All bachelors are necessarily unmarried.” 

Simple necessity 
(x)(Bx ⊃ ☐Ux) 

All bachelors are inherently unmarriable – in no possible world would 
anyone marry them. 

Conditional necessity 
☐(x)(Bx ⊃ Ux) 

It’s necessarily true that all bachelors are unmarried. (The meaning of 
“bachelor” makes this true.) 

When translating a statement like “All A’s are necessarily B’s,” give both 
forms. With ambiguous arguments, work out both arguments. As before, 
fallacies can result from confusing the forms. 

Discussions about Aristotelian essentialism frequently involve such modal 
0256 ambiguities. This following sentence could have either of two meanings: 

“All persons are necessarily persons.” 

Simple necessity 
(x)(Px ⊃ ☐Px) 

Everyone who in fact is a person has the necessary property of being a 
person. 



 

Conditional necessity 
☐(x)(Px ⊃ Px) 

It’s necessary that all persons are persons. 

The first is controversial and attributes to each person the necessary proper-
ty of being a person; the medievals called this de re (“of the thing”) necessity. 
If this first form is true, then you couldn’t have been a non-person – your 
existing as a non-person is self-contradictory; this excludes the possibility of 
your being reincarnated as an unconscious doorknob. In contrast, the second 
form is trivially true and attributes necessity to the proposition (or saying) 
“All persons are persons”; the medievals called this de dicto (“of the saying”) 
necessity. 

11.2a Exercise: LogiCola J (QM & QT) 34. 
Translate these English sentences into wffs; translate ambiguous forms both ways. 

It’s necessary that all mathematicians have the necessary property of being 
rational. 

☐(x)(Mx ⊃ ☐Rx) 

Here the first “☐” symbolizes de dicto necessity (“It’s necessary that …”), 
while the second symbolizes de re necessity (“have the necessary property of 
being rational”). 

1. It’s possible for anyone to be unsurpassed in greatness. [Use Ux.] 

2. It’s possible for everyone to be unsurpassed in greatness. 

3. John has the necessary property of being unmarried. [Use Ux and j.] 

4. All experts are necessarily smart. [Ex, Sx] 

5. Being named “Socrates” is a contingent property of Socrates. [Nx, s] 

6. It’s necessary that everything is self-identical. [Use “=.”] 

7. Every entity has the necessary property of being self-identical. 

8. John is necessarily sitting. [Sx, j] 

9. Everyone observed to be sitting is necessarily sitting. [Ox, Sx] 

10. All numbers have the necessary property of being abstract entities. [Nx, Ax] 

11. It’s necessary that all living beings in this room are persons. [Lx, Px] 

12. All living beings in this room have the necessary property of being persons. 



 

 

13. All living beings in this room have the contingent property of being persons. 

14. Any contingent claim could be true. [Cx, Tx] 

15. “All contingent claims are true” is possible. 

16. All mathematicians are necessarily rational. [Mx, Rx] 

17. All mathematicians are contingently two-legged. [Mx, Tx] 

18. All mathematical statements that are true are necessarily true. [Mx, Tx] 0257 

19. It’s possible that God has the necessary property of being unsurpassed in 
greatness. [Ux, g] 

20. Some being has the necessary property of being unsurpassed in greatness. 
[Ux] 

11.3 Quantified proofs 

On our initial naïve approach to quantified modal logic (which has defects), 
we just use the same quantificational and modal inference rules as before. 
Here’s a quantified modal proof: 

It’s necessary that everything is self-identical. 
∴ Every entity has the necessary property of being self-identical. 

* 1   ☐(x)x=x Valid 
* [ ∴ (x)☐x=x 
* 2 ┌ asm: ∼(x)☐x=x 
* 3 │ ∴ (∃x)∼☐x=x {from 2} 
* 4 │ ∴ ∼☐a=a {from 3} 
* 5 │ ∴ ◇∼a=a {from 4} 
* 6 │ W ∴ ∼a=a {from 5} 
* 7 │ W ∴ (x)x=x {from 1} 
* 8 └ W ∴ a=a {from 7} 
* 9 ∴ (x)☐x=x {from 2; 6 contradicts 8} 

This next modal argument has an ambiguous premise: 

All bachelors are necessarily unmarried. 
You’re a bachelor. 
∴ “You’re unmarried” is logically necessary. 

Premise 1 might assert either simple necessity “(x)(Bx ⊃ ☐Ux)” (“All bache-



 

lors are inherently unmarriable”) or conditional necessity ☐(x)(Bx ⊃ Ux)” 
(“It’s necessary that all bachelors are unmarried”). We’ll work it out both 
ways: 

Box-inside version (valid but premise 1 is false): 

* 1   (x)(Bx ⊃ ☐Ux) Valid 
* 2   Bu 
* [ ∴ ☐Uu 
* 3 ┌ asm: ∼☐Uu 
* 4 │ ∴ (Bu ⊃ ☐Uu) {from 1} 
* 5 └ ∴ ☐Uu {from 4 and 2} 
* 6 ∴ ☐Uu {from 3; 3 contradicts 5} 
 

Box-outside version (invalid): 

*1 1   ☐(x)(Bx ⊃ Ux) Invalid 
* 12   Bu 
*1 [ ∴ ☐Uu 
* 13   asm: ∼☐Uu 
* 14   ∴ ◇∼Uu—{from 3} 
* 15   W ∴ ∼Uu—{from 4} 
*1 6   W ∴ (x)(Bx ⊃ Ux)—{from 1} 
*1 7   ∴ (x)(Bx ⊃ Ux)—{from 1} 
* 18   W ∴ (Bu ⊃ Uu)—{from 6} 
* 19   ∴ (Bu ⊃ Uu)—{from 7} 
* 10   W ∴ ∼Bu—{from 5 and 8} 
* 11   ∴ Uu—{from 2 and 9} 

 Bu, Uu 

W ∼Bu, ∼Uu 

0258 Both versions are flawed; the first has a false premise while the second 
is invalid. So another proof that you’re inherently unmarriable fails! Ambigu-
ous modal arguments often have one interpretation with a false premise and 
another that’s invalid. Such arguments may seem sound until we focus on the 
ambiguity. 

Our refutation has two possible worlds, each with only one entity – you. In 
the actual world, you’re a bachelor and unmarried; in world W, you’re not a 
bachelor and not unmarried. In this galaxy, the premises are true (since in 
both worlds all bachelors are unmarried – and in the actual world you’re a 
bachelor) but the conclusion is false (since in world W you’re not unmar-
ried). 

As with relations, applying our proof strategy mechanically sometimes 
leads into an endless loop. Here we keep getting new letters and worlds, 



 

 

endlessly: 

It’s possible for anyone to be above average. 
∴ It’s possible for everyone to be above average. 

*1 1   (x)◇Ax 
*1 [ ∴ ◇(x)Ax 
* 12   asm: ∼◇(x)Ax 
* 13   ∴ ☐∼(x)Ax {from 2} 
* 14   ∴ ◇Aa {from 1} New letter! 
* 15   W ∴ Aa {from 4} New world! 
* 16   W ∴ ∼(x)Ax {from 3} 
* 17   W ∴ (∃x)∼Ax {from 6} 
*1 8   W ∴ ∼Ab {from 7} New letter! 
* 19    ∴ ◇Ab {from 1} 
* 10   WW ∴ Ab {from 9} New world! 
* 11   WW ∴ ∼(x)Ax {from 3} 
* 12   WW ∴ (∃x)∼Ax {from 11} 
… and so on endlessly … 

Using ingenuity, we can devise a refutation with two entities and two worlds: 

 a, b 

W Aa, ∼Ab 

WW Ab, ∼Aa 

Here each person is above average in some world or other – but in no world 
is every person above average. For now, we’ll assume in our refutations that 
every world contains the same entities (and at least one such entity). 

11.3a Exercise: LogiCola KQ 35. 
Say whether valid (and give a proof) or invalid (and give a refutation). 0259 

(x)☐Fx 
∴ ☐(x)Fx 



 

* 1   (x)☐Fx Valid 
* [ ∴ ☐(x)Fx 
* 2 ┌ asm: ∼☐(x)Fx 
* 3 │ ∴ ◇∼(x)Fx {from 2} 
* 4 │ W ∴ ∼(x)Fx {from 3} 
* 5 │ W ∴ (∃x)∼Fx {from 4} 
* 6 │ W ∴ ∼Fa {from 5} 
* 7 │ ∴ ☐Fa {from 1} 
* 8 └ W ∴ Fa {from 7} 
* 9 ∴ ☐(x)Fx {from 2; 6 contradicts 8} 

This is called a “Barcan inference,” after Ruth Barcan Marcus. It’s doubtful that our 
naïve quantified modal logic gives the right results for arguments like this (see 
§11.4). 

1. (∃x)☐Fx 
∴ ☐(∃x)Fx 

2. a=b 
∴ (☐Fa ⊃ ☐Fb) 

3. ∴ ☐(∃x)x=a 

4. ∴ (∃x)☐x=a 

5. ◇(x)Fx 
∴ (x)◇Fx 

6. ∴ (x)☐x=x 

7. ∴ ☐(x)x=x 

8. ☐(x)(Fx ⊃ Gx) 
∴ (x)(Fx ⊃ ☐Gx) 

9. ◇(∃x)Fx 
∴ (∃x)◇Fx 

10. (∃x)◇Fx 
∴ ◇(∃x)Fx 



 

 

11. (◇(x)Fx ⊃ (x)◇Fx) 
∴ ((∃x)∼Fx ⊃ ☐(∃x)∼Fx) 

12. ∴ (x)(y)(x=y ⊃ ☐x=y) 

13. ☐(x)(Fx ⊃ Gx) 
☐Fa 
∴ ☐Ga 

14. ∼a=b 
∴ ☐∼a=b 

11.3b Exercise: LogiCola KQ 36. 
First appraise intuitively. Then translate into logic (using the letters given) and say 
whether valid (and give a proof) or invalid (and give a refutation). Translate ambig-
uous English arguments both ways; prove or disprove each symbolization separately. 

1. I have a beard. 
∴ “Whoever doesn’t have a beard isn’t me” is a necessary truth. [Use Bx and i. G. 
E. Moore criticized such reasoning, which he saw as essential to idealistic meta-
physics and its claim that every property of a thing is necessary. The conclusion 
entails that “I have a beard” is logically necessary. Moore would see “Whoever 
doesn’t have a beard isn’t me” as only a contingent truth.] 

2. “Whoever doesn’t have a beard isn’t me” is a necessary truth. 
∴ “I have a beard” is logically necessary. [Use Bx and i.] 

3. Aristotle isn’t identical to Plato. 
If some being has the property of being necessarily identical to Plato but not all 
beings have the property of being necessarily identical to Plato, then some beings 
have necessary properties that other beings lack. 
∴ Some beings have necessary properties that other beings lack. [Use a, p, and S 
(for “Some beings have necessary properties that other beings lack”). This de-
fense of Aristotelian essentialism is essentially from Alvin Plantinga.] 0260 

4. All mathematicians are necessarily rational. 
Paul is a mathematician. 
∴ Paul is necessarily rational. [Mx, Rx, p] 

5. Necessarily there exists something unsurpassed in greatness. 
∴ There exists something that necessarily is unsurpassed in greatness. [Ux] 



 

6. The number that I’m thinking of isn’t necessarily even. 
8 = the number that I’m thinking of. 
∴ 8 isn’t necessarily even. [Use n, E, and e. Does our naïve quantified modal logic 
correctly decide whether this argument is valid?] 

7. “I’m a thinking being, and there are no material objects” is logically possible. 
Every material object has the necessary property of being a material object. 
∴ I’m not a material object. [Use Tx, Mx, and i; from Alvin Plantinga.] 

8. All humans are necessarily rational. 
All living beings in this room are human. 
∴ All living beings in this room are necessarily rational. [Use Hx, Rx, and Lx; 
from Aristotle, who was the first logician and the first to combine quantification 
with modality.] 

9. It’s not necessary that all cyclists are rational. 
Paul is a cyclist. 
Paul is rational. 
∴ Paul is contingently rational. [Cx, Rx, p] 

10. “Socrates has a pain in his toe but doesn’t show pain behavior” is consistent. 
It’s necessary that everyone who has a pain in his toe is in pain. 
∴ “All who are in pain show pain behavior” isn’t a necessary truth. [Use s, Tx for 
“x has a pain in his toe,” Bx for “x shows pain behavior,” and Px for “x is in pain.” 
This attacks a behaviorist analysis of the concept of “pain.”] 

11. If Q (the question “Why is there something and not nothing?”) is a meaningful 
question, then it’s possible that there’s an answer to Q. 
Necessarily, every answer to Q refers to an existent that explains the existence of 
other things. 
Necessarily, nothing that refers to an existent that explains the existence of other 
things is an answer to Q. 
∴ Q isn’t a meaningful question. [M, Ax, Rx] 

12. The number of apostles is 12. 
12 is necessarily greater than 8. 
∴ The number of apostles is necessarily greater than 8. [Use n, t, e, and Gxy. 
Does our naïve system correctly decide whether this argument is valid?] 

13. All (well-formed) cyclists are necessarily two-legged. 
Paul is a (well-formed) cyclist. 
∴ Paul is necessarily two-legged. [Cx, Tx, p] 0261 



 

 

14. Something exists in the understanding than which nothing could be greater. 
(In other words, there’s some x such that x exists in the understanding and it’s not 
possible that there be something greater that x.) 
Anything that exists in reality is greater than anything that doesn’t exist in reality. 
Socrates exists in reality. 
∴ Something exists in reality than which nothing could be greater. (In other 
words, there’s some x such that x exists in reality and it’s not possible that there 
be something greater than x.) [Use Ux for “x exists in the understanding,” Rx for 
“x exists in reality,” Gxy for “x is greater than y,” and s for “Socrates.” Use a uni-
verse of discourse of possible beings – including fictional beings like Santa Claus 
in addition to actual beings. (Is this legitimate?) This is a form of St Anselm’s first 
ontological argument for the existence of God.] 

15. “Someone is unsurpassably great” is logically possible. 
“Everyone who is unsurpassably great is, in every possible world, omnipotent, 
omniscient, and morally perfect” is necessarily true. 
∴ Someone is omnipotent, omniscient, and morally perfect. [Use Ux and Ox. This 
is a simplified form of Alvin Plantinga’s ontological argument for the existence of 
God. Plantinga regards the second premise as true by definition; he sees the first 
premise as controversial but reasonable.] 

16. Anything could cease to exist. 
∴ Everything could cease to exist. [Use Cx for “x ceases to exist.” Some see 
Aquinas’s third argument for the existence of God as requiring this inference.] 

11.4 A sophisticated system 

Our naïve quantified modal logic has defects. Dealing with these will push us 
to question established logical and metaphysical ideas. 

First, our system mishandles definite descriptions (terms of the form “the 
so and so”). We’ve been translating definite descriptions using small letters, 
as in the following example: 

The number I’m thinking of is necessarily odd = ☐On 

But this English sentence is ambiguous; it could mean either of two things 
(where “Tx” means “I’m thinking of number x”): 



 

(∃x)((Tx • ∼(∃y)(∼x=y • Ty)) • ☐Ox) 
I’m thinking of just one number, and it has the necessary property of being odd. 

☐(∃x)((Tx • ∼(∃y)(∼x=y • Ty)) • Ox) 
This is necessary: “I’m thinking of just one number and it’s odd.” 

The first form (box inside) might be true – if, for example, the number 7 has 
the necessary property of being odd and I’m thinking of just the number 7. 
The 0262 second form (box outside) is definitely false, since it’s possible that 
I’m thinking of no number, or more than one number, or an even number. 

So our naïve way to translate “the so and so” is ambiguous. To fix this 
problem, our sophisticated system will require that we symbolize “the so and 
so” using Russell’s “there is just one …” analysis (§9.6) – as in the above 
boxes. This analysis also blocks the proof of invalid arguments like this one: 

8 is the number I’m thinking of. 
It’s necessary that 8 is 8. 
∴ It’s necessary that 8 is the number I’m thinking of. 

e=n 
 ☐e=e 
∴ ☐e=n 

This is invalid – since it may be only contingently true that 8 is the number 
I’m thinking of. The argument is provable in naïve quantified modal logic, 
since the conclusion follows from the premises by the substitute-equals rule 
(§9.2). Our sophisticated system avoids this by requiring the longer analysis 
of “the number I’m thinking of.” So “8 is the number I’m thinking of” gets 
changed into “I’m thinking of just one number and it is 8” – and the above 
argument becomes this: 

I’m thinking of just one number and it is 8. 
It’s necessary that 8 is 8. 
∴ This is necessary: “I’m thinking of just one number and it is 8.” 

(∃x)((Tx • ∼(∃y)(∼x=y • Ty)) • x=e) Invalid 
☐e=e 
∴ ☐(∃x)((Tx • ∼(∃y)(∼x=y • Ty)) • x=e) 

So translated, the argument becomes invalid and not provable. 
The second problem is that our naïve system assumes that the same enti-

ties exist in all possible worlds. This leads to implausible results; for example, 



 

 

it makes Gensler (and everyone else) into a logically necessary being: 

∴ In every possible world, there exists a being who is Gensler. 

* [ ∴ ☐(∃x)x=g Valid ??? 
* 1 ┌ asm: ∼☐(∃x)x=g 
* 2 │ ∴ ◇∼(∃x)x=g {from 1} 
* 3 │ W ∴ ∼(∃x)x=g {from 2} 
* 4 │ W ∴ (x)∼x=g {from 3} 
* 5 │ W ∴ ∼g=g {from 4} ??? 
* 6 └ W ∴ g=g {self-identity} 
* 7 ∴ ☐(∃x)x=g {from 1; 5 contradicts 6} 

But Gensler isn’t a logically necessary being; there are impoverished possible 
worlds without me. So something is wrong here. 

There are two ways out of the problem. One way changes how we take 
“(∃x).” The provable “☐(∃x)x=g” is false if we take “(∃x)” to mean “for some 
existing being x.” But we might take “(∃x)” to mean “for some possible being 
x”; then “☐(∃x)x=g” would mean the more plausible: “In every possible 
world, there’s a possible being who is Gensler.” Perhaps there’s a possible 
being Gensler in every 0263 world; in some of these worlds Gensler exists, and 
in others he doesn’t. This view would need an existence predicate “Ex” to 
distinguish between possible beings that exist and those that don’t; we could 
then use “(∃x)∼Ex” to say that there are possible beings that don’t exist. This 
view is paradoxical, since it posits non-existent beings. 

Alvin Plantinga defends an opposing view, which he calls “actualism.” Ac-
tualism holds that to be a being and to exist is the same thing; there neither 
are nor could have been non-existent beings. Of course there could have been 
beings other than those that now exist. But this doesn’t mean that there now 
are beings that don’t exist. Actualism denies the latter claim. 

Since I favor actualism, I’ll avoid non-existent beings and continue to take 
“(∃x)” to mean “for some existing being.” On this reading, “☐(∃x)x=g” means 
“It’s necessary that there’s an existing being who is Gensler.” This is false, 
since I might not have existed. So we must reject some line of the above 
proof. 

The faulty line seems to be 5 (and its derivation from 4): 

In W, every existing being is distinct from Gensler. 
∴ In W, Gensler is distinct from Gensler. 

4   W ∴ (x)∼x=g 
5   W ∴ ∼g=g {from 4} 



 

This inference shouldn’t be valid – unless we presuppose the additional 
premise “W ∴ (∃x)x=g” – that Gensler is an existing being in world W. 

Rejecting line 5 requires moving to a free logic – one free of the assump-
tion that individual constants like “g” always refer to existing beings. Recall 
our drop-universal rule DU of §8.2: 

Drop universal DU 
 

(x)Fx → Fa, 
use any constant 

Every existing being is F. 
∴ a is F. 

Suppose that every existing being is F; “a” might not denote an existing being, 
and so “a is F” might not be true. So we need to modify the rule to require the 
premise that “a” denotes an existing being: 

Drop universal DU* 
 

(x)Fx, (∃x)x=a → Fa, 
use any constant 

Every existing being is F. 
a is an existing being. 

∴ a is F. 

Here we symbolize “a is an existing being” by “(∃x)x=a” (“For some existing 
being x, x is identical to a”). With this change, “☐(∃x)x=g” (“Gensler is a 
necessary being”) is no longer provable. 

If we weaken DU, we need to strengthen our drop-existential rule DE: 

Drop existential DE* 
 

(∃x)Fx → Fa, (∃x)x=a, 
use a new constant 

Some existing being is F. 
∴ a is F. 

∴ a is an existing being. 



 

 

0264 When we drop an existential using DE*, we get an existence claim (like 
“(∃x)x=a”) that we can use in dropping universals with DU*. The resulting 
system can prove almost everything we could prove before – except that 
proofs are now longer. The main effect is to block a few proofs; we can no 
longer prove that Gensler exists in all possible worlds. 

Our free-logic system also blocks the proof of this Barcan inference: 

Every existing being has the necessary property of being F. 
∴ In every possible world, every existing being is F. 

* 1   (x)☐Fx Invalid 
* [ ∴ ☐(x)Fx 
* 2   asm: ∼☐(x)Fx 
* 3   ∴ ◇∼(x)Fx {from 2} 
* 4   W ∴ ∼(x)Fx {from 3} 
* 5   W ∴ (∃x)∼Fx {from 4} 
* 6   W ∴ ∼Fa {from 5} 
* 7   W ∴ (∃x)x=a {from 5} 

 
b exists,  
a doesn’t 
Fb, ∼Fa 

W a & b exist  
Fb, ∼Fa 

Our new rule for dropping “(∃x)” tells us that “a” denotes an existing being in 
world W (line 7). But we don’t know if “a” denotes an existing being in the 
actual world; so we can’t conclude “☐Fa” from “(x)☐Fx” in line 1. With our 
naïve system, we could conclude “☐Fa” – and then put “Fa” in world W to 
contradict line 6; but now the line is blocked, and the proof fails. 

While we don’t automatically get a refutation, we can invent one on our 
own. Our refutation lists which entities exist in which worlds; it uses “a 
exists” for “(∃x)x=a.” Here “Every existing being has the necessary property 
of being F” is true – since entity b is the only existing being and in every 
world it is F. But “In every possible world, every existing being is F” is false – 
since in world W there is an existing being, a, that isn’t F. 

Here’s another objection to the argument. Suppose only abstract objects 
(numbers, sets, etc.) existed and all these had the necessary property of being 
abstract. Then “Every existing being has the necessary property of being 
abstract” would be true. But “In every possible world, every existing being is 
abstract” could still be false – if other possible worlds had concrete entities.1 
 
1 Or suppose God created nothing and all uncreated beings had the necessary property of 
being uncreated. Then “Every existing being has the necessary property of being uncreated” 



 

Our new approach lets different worlds have different existing entities. 
Gensler might exist in one world but not another. We shouldn’t picture 
existing in different worlds as spooky; it’s just a way of talking about different 
possibilities. I might not have existed. We can tell consistent stories where 
my parents didn’t meet and where I never came into existence. If the stories 
had been true, then I wouldn’t have existed. So I don’t exist in these stories 
(although I might exist in other stories). Existing in a possible world is much 
like existing in a story; a “possible world” is a technical analogue of a “con-
sistent story.” “I exist in world W” just means “If world W had been actual, 
then I would have existed.” 0265 

We also could allow possible worlds with no entities. In such worlds, all 
wffs starting with existential quantifiers are false and all those starting with 
universal quantifiers are true. 

Should we allow this as a possible world when we do our refutations? 

W a doesn’t exist, Fa 

It seems incoherent to claim that “a has property F” is true while a doesn’t 
exist. It seems that only existing beings have positive properties; in a con-
sistent story where Gensler doesn’t exist, Gensler couldn’t be a logician or a 
backpacker. So if “a exists” isn’t true in a possible world, then “a has property 
F” isn’t true in that world either. We can put this idea into an inference rule 
PE*: 

Property existence PE* 
 

Fa → (∃x)x=a 

a has property F. 
∴ a is an existing being. 

Rule PE* holds regardless of what capital letter replaces “F,” what constant 
replaces “a,” and what variable replaces “x.” By PE*, “Descartes thinks” entails 
“Descartes exists.” Conversely, the falsity of “Descartes exists” entails the 
falsity of “Descartes thinks.” Rule PE* expresses that it’s a necessary truth 
that only existing objects have properties. Plantinga calls this view “serious 
actualism”; actualists who reject PE* are deemed frivolous. 

The first example below isn’t a correct instance of PE* (since the wff sub-
stituted for “Fa” in PE* can’t contain “∼”), but the second is: 
 
would be true. But “In every possible world, every existing being is uncreated” could still be 
false – since there could have been possible worlds with created beings. 



 

 

This one is wrong: 

∼Fa ––––––––– 
∴ (∃x)x=a 

a isn’t F ––––––––– 
∴ a exists 

This one is right: 

Fa ––––––––– 
∴ (∃x)x=a 

a is F –––––––– 
∴ a exists 

This point is confusing because “a isn’t F” in English can have two different 
senses. “Descartes doesn’t think” could mean either of these: 

Descartes is an existing being who doesn’t think 
= (∃x)(x=d • ∼Td) 

It’s false that Descartes is an existing being who thinks 
= ∼(∃x)(x=d • Td) 

The first form is de re (about the thing); it affirms the property of being a 
non-thinker of the entity Descartes. Taken this first way, “Descartes doesn’t 
think” entails “Descartes exists.” The second form is de dicto (about the 
saying); it denies the statement “Descartes thinks” (which may be false either 
because Descartes is a non-thinking entity or because Descartes doesn’t 
exist). Taken this second way, “Descartes doesn’t think” doesn’t entail 
“Descartes exists.” 

One might object to PE* on the grounds that Santa Claus has properties 
(such as being fat) but doesn’t exist. But various stories predicate conflicting 
properties 0266 to Santa; they differ, for example, on which day he delivers 
presents. Does Santa have contradictory properties? Or is one Santa story 
uniquely “true”? What would that mean? When we say “Santa is fat,” we mean 
that in such and such a story (or possible world) there’s a being called Santa 
who is fat. We shouldn’t think of Santa as a non-existing being in our actual 
world who has properties such as being fat. Rather, what exists in our actual 
world is stories about there being someone with certain properties – and 
children who may believe these stories. So Santa needn’t make us give up 
PE*. 



 

We need to modify our current definition of “necessary property”: 

F is a necessary property of a 
= ☐Fa 
In all possible worlds, a is F 

Let’s grant that Socrates has properties only in worlds where he exists – and 
that there are worlds where he doesn’t exist. Then there are worlds where 
Socrates has no properties – and so there aren’t any properties that Socrates 
has in all worlds. By our definition, Socrates would have no necessary prop-
erties. 

Socrates still might have some necessary combinations of properties. Per-
haps it’s true in all worlds that if Socrates exists then Socrates is a person. 
This suggests a more refined definition of “necessary property”: 

F is a necessary property of a 
= ☐((∃x)x=a ⊃ Fa) 
It’s necessary that if a exists then a is F 
In all possible worlds where a exists, a is F 

This reflects better what philosophers mean when they speak of necessary 
properties. It also lets us claim that Socrates has the necessary property of 
being a person. This would mean that Socrates is a person in every possible 
world where he exists; equivalently, in no possible world does Socrates exist 
as anything other than a person. Here’s an analogous definition of “contin-
gent property”: 

F is a contingent property of a 
= (Fa • ◇((∃x)x=a • ∼Fa)) 
a is F; but in some possible world where a exists, a isn’t F 

This section sketched a sophisticated quantified modal logic. Its refine-
ments overcome some problems but also make the system harder to use. We 
seldom need the refinements. So we’ll keep the naïve system of earlier 
sections as our “official system” and build on it in later chapters. But we’ll be 
aware that this system is oversimplified in some ways. If our naïve system 
gives questionable results, we can appeal to the sophisticated system to clear 
things up. 

  



 

12 Deontic and Imperative Logic 

Imperative logic studies arguments with imperatives, like “Don’t do this.” 
Deontic logic studies arguments whose validity depends on “ought,” “permis-
sible,” and similar notions. We’ll take imperative logic first and then build 
deontic logic on it.1 

12.1 Imperative translations 

Imperative logic builds on previous systems and adds two ways to form wffs: 

1. Any underlined capital letter is a wff. 
2. The result of writing a capital letter and then one or more small letters, one 
small letter of which is underlined, is a wff. 

Underlining (combined with bolding in this e-book version) turns indicatives 
into imperatives: 

Indicative (You’re doing A) 

A 
Au 

Imperative (Do A) 

A 
Au 

Here are some further translations: 

 
1 I’ll mostly follow Hector-Neri Castañeda’s approach. See his “Imperative reasonings,” Phil-
osophy and Phenomenological Research 21 (1960): pp. 21–49; “Outline of a theory on the 
general logical structure of the language of action,” Theoria 26 (1960): pp. 151–82; “Actions, 
imperatives, and obligations,” Proceedings of the Aristotelian Society 68 (1967–68): pp. 25–
48; and “On the semantics of the ought-to-do,” Synthese 21 (1970): pp. 448–68. 



 

Don’t do A = ∼A 
Do A and B = (A • B) 
Do A or B = (A ∨ B) 
Don’t do either A or B = ∼(A ∨ B) 0268 

Don’t combine doing A with doing B 
= ∼(A • B) 
Don’t both do A and do B 

Don’t combine doing A with not doing B 
= ∼(A • ∼B) 
Don’t do A without doing B 

Underline imperative parts but not factual ones: 

You’re doing A and you’re doing B = (A • B) 
You’re doing A, but do B = (A • B) 
Do A and B = (A • B) 

If you’re doing A, then you’re doing B 
= (A ⊃ B) 

If you (in fact) are doing A, then do B 
= (A ⊃ B) 

Do A, only if you (in fact) are doing B 
= (A ⊃ B) 

Since English can’t put an imperative after “if,” we can’t read “(A ⊃ B)” as “If 
do A, then you’re doing B.” But we can read it as the equivalent “Do A, only if 
you’re doing B.” This means the same as “(∼B ⊃ ∼A)”: “If you aren’t doing B, 
then don’t do A.” 

There’s a subtle difference between these two: 

If you (in fact) are doing A, then don’t do B 
= (A ⊃ ∼B) 

Don’t combine doing A with doing B 
= ∼(A • B) 

“A” is underlined in the second but not the first; otherwise, the two wffs 
would be equivalent. The if-then “(A ⊃ ∼B)” says that if A is done then you 



 

 

aren’t to do B. But the don’t-combine “∼(A • B)” just forbids a combination: 
doing A and B together. If you’re doing A, it doesn’t follow that you aren’t to 
do B; maybe you should do B and stop doing A. We’ll see more on this distinc-
tion later. 

These examples underline the letter for the agent: 

X, do (or be) A = Ax 
X, do A to Y = Axy 

These use quantifiers: 

Everyone does A = (x)Ax 
Let everyone do A = (x)Ax 

Let everyone who (in fact) is doing A do B 
= (x)(Ax ⊃ Bx) 

Let someone who (in fact) is doing A do B 
= (∃x)(Ax • Bx) 

Let someone both do A and do B 
= (∃x)(Ax • Bx) 

Notice which letters are underlined. 0269 

12.1a Exercise: LogiCola L (IM & IT) 37. 
Translate these English sentences into wffs; take each “you” as a singular “you.” 

If the cocoa is about to boil, remove it from the heat 

(B ⊃ R) 

Our sentence also could translate as “(B ⊃ Ru)” or “(Bc ⊃ Ruc).” 

1. Leave or shut up. [Use L and S.] 

2. If you don’t leave, then shut up. 

3. Do A, only if you want to do A. [Use A and W.] 

4. Do A, only if you want to do A. [This time use Au and Wu.] 

5. Don’t combine accelerating with braking. 



 

6. If you accelerate, then don’t brake. 

7. If you brake, then don’t accelerate. 

8. If you believe that you ought to do A, then do A. [Use A for “You do A” and B 
for “You believe that you ought to do A.”] 

9. Don’t combine believing that you ought to do A with not doing A. 

10. If everyone does A, then do A yourself. 

11. If you have a headache, then take aspirin. [Hx, Ax, u] 

12. Let everyone who has a headache take aspirin. 

13. Gensler, rob Jones. [Rxy, g, j] 

14. If Jones hits you, then hit Jones. [Hxy, j, u] 

15. If you believe that A is wrong, then don’t do A. [Use A for “You do A” and B 
for “You believe that A is wrong.”] 

16. If you do A, then don’t believe that A is wrong. 

17. Don’t combine believing that A is wrong with doing A. 

18. Would that someone be sick and also be well. [Sx, Wx] 

19. Would that someone who is sick be well. 

20. Would that someone be sick who is well. 

12.2 Imperative proofs 

Imperative proofs work much like indicative ones and require no new 
inference rules. But we must treat “A” and “A” as different wffs. “A” and “∼A” 
aren’t contradictories; it’s consistent to say “You’re now doing A, but don’t.” 

Here’s an imperative argument that follows an I-rule inference: 

If you’re accelerating, then don’t brake. 
You’re accelerating. 
∴ Don’t brake. 

(A ⊃ ∼B) Valid 
A 
∴ ∼B 

While this seems valid, there’s a problem with calling it “valid.” We earlier 
defined “valid” using “true” and “false” (§1.2): an argument is valid if it would 
0270 be contradictory to have the premises all true and conclusion false. But 
“Don’t brake” and other imperatives aren’t true or false. So how can the valid 



 

 

/ invalid distinction apply to imperative arguments? 
We need a broader definition of “valid” that applies equally to indicative 

and imperative arguments. This one (which avoids “true” and “false”) does 
the job: 

An argument is valid if the conjunction of its premises with its conclusion’s 
contradictory is inconsistent. 

To say that our argument is valid means that this combination is incon-
sistent: 

“If you’re accelerating, then don’t brake; you’re accelerating; brake.” 

The combination is inconsistent. So our argument is valid in this new sense.1 
This next argument uses a don’t-combine premise, which makes it invalid: 

Don’t combine accelerating with braking. 
You’re accelerating. 
∴ Don’t brake. 

∼(A • B) Invalid 
A 
∴ ∼B 

The first premise forbids us to accelerate and brake together. Suppose we’re 
accelerating. It doesn’t follow that we shouldn’t brake; maybe, to avoid 
hitting a car, we should brake and stop accelerating. So the argument is 
invalid. It’s consistent to conjoin the premises with the contradictory of the 
conclusion: 

Don’t combine accelerating with braking – never do both together; you in fact are 
accelerating right now; but you’ll hit a car unless you slow down; so stop acceler-
ating right away – and brake immediately. 

Here it makes good consistent sense to endorse the premises while also 
adding the denial of the conclusion (“Brake”). 

We’d work out the symbolic argument this way (being careful to treat “A” 
and “A” as different wffs, almost as if they were different letters): 
 
1 We could equivalently define a valid argument as one in which every set of imperatives and 
indicatives that’s consistent with the premises also is consistent with the conclusion. 



 

* 1   ∼(Aº • B¹) = 1 Invalid 
* 2   A¹ = 1 
* [ ∴ ∼B¹ = 0 
* 3   asm: B 
* 4   ∴ ∼A {from 1 and 3} 

A, ∼A, B 

On our refutation: 

A = 1 
A = 0 
B = 1 

We quickly get a refutation – a set of assignments of 1 and 0 to the letters 
that make the premises 1 but conclusion 0. Our refutation says this: 0271 

You’re accelerating; don’t accelerate; instead, brake. 

But our refutation assigns false to the imperative “Accelerate” – even though 
imperatives aren’t true or false. So what does “A = 0” mean? 

We can generically read “1” as “correct” and “0” as “incorrect.” Applied to 
indicatives, these mean “true” or “false.” Applied to imperatives, these mean 
that the prescribed action is “correct” or “incorrect” relative to some stand-
ard that divides actions prescribed by the imperative letters into correct and 
incorrect actions. The standard could be of different sorts, based on things 
like morality, law, or traffic safety; generally we won’t specify the standard. 

Suppose we have a propositional-logic argument with imperative letters 
added. The argument is valid if and only if, relative to every assignment of “1” 
or “0” to the indicative and imperative letters, if the premises are “1,” then so 
is the conclusion. Equivalently, the argument is valid if and only if, relative to 
any possible facts and any possible consistent standards for correct actions, if 
all the premises are correct then so is the conclusion. 

So our refutation amounts to this: we imagine certain facts being 
true/false and certain actions being correct/incorrect: 

A = 1 “You’re accelerating” is true. 
A = 0 Accelerating is incorrect. 
B = 1 Braking is correct. 

Our argument could have all the premises correct but not the conclusion. 
Compare the two imperative arguments that we’ve considered: 

If you’re accelerating, then don’t brake. 



 

 

You’re accelerating. 
∴ Don’t brake. 

(A ⊃ ∼B) Valid 
A 
∴ ∼B 

Don’t combine accelerating with braking. 
You’re accelerating. 
∴ Don’t brake. 

∼(A • B) Invalid 
A 
∴ ∼B 

Both arguments are the same, except that the first uses an if-then “(A ⊃ ∼B),” 
while the second uses a don’t-combine “∼(A • B).” Since one argument is 
valid and the other isn’t, the two wffs aren’t equivalent. 

Imagine that you find yourself accelerating and braking, thus wearing 
down your brakes and wasting energy. Then you violate all three of these 
imperatives: 

(A ⊃ ∼B) = If you’re accelerating, then don’t brake 

(B ⊃ ∼A) = If you’re braking, then don’t accelerate 

∼(A • B) = Don’t combine accelerating with braking 

The three differ on what to do next. The first tells you not to brake. The 
second tells you not to accelerate. But the third leaves it open whether you’re 
to stop 0272 accelerating or stop braking. Maybe you need to brake (and stop 
accelerating) to avoid hitting another car; or maybe you need to accelerate 
(and stop braking) to pass another car. The don’t-combine form doesn’t tell a 
person in this forbidden combination exactly what to do. 

Consistency imperatives need the don’t-combine form. Suppose that you’re 
inconsistent if you combine doing A with doing B. Then: 

∼(A • B) = Don’t combine doing A with doing B. 

This forbids a combination but doesn’t say exactly what to do. Suppose that 
you’re inconsistently doing A and B together. From this we can’t conclude 
which you are to change; both of these are invalid: 

Don’t combine doing A with doing B. 



 

You’re doing A. 
∴ Don’t do B. 

∼(A • B) Invalid 
A 
∴ ∼B 

Don’t combine doing A with doing B. 
You’re doing B. 
∴ Don’t do A. 

∼(A • B) Invalid 
B 
∴ ∼A 

These inference forms are wrong, even though they may seem correct. 
Together they’d tell you to give up both A and B. But all you need to do is give 
up one of these, A or B. The “∼(A • B)” form is logically equivalent to “(∼A ∨ 
∼B),” which means “Either don’t do A or don’t do B.” 

Suppose that acting to do this is somehow inconsistent with believing that 
this is wrong. Here’s the corresponding consistency imperative: 

∼(A • B) = Don’t combine acting to do this with believing that this is wrong 

This combination always has a faulty element. If your act is correct, then your 
belief is wrong; if your belief is correct, then your act is wrong. If you com-
bine this act with this belief, then your act clashes with your belief. How 
should you regain consistency? This depends on the situation – since either of 
the two could be faulty; so sometimes it’s better to change your act and 
sometimes it’s better to change your belief.1 The don’t-combine form forbids 
an inconsistency, but it correctly doesn’t tell a person in this forbidden 
combination exactly what to do. For this reason, it’s important to express 
consistency imperatives as pure don’t-combine imperatives instead of as 
mixed if-then imperatives like these: 

(B ⊃ ∼A) = If you believe that this is wrong, then don’t act to do this 

(A ⊃ ∼B) = If you act to do this, then don’t believe that this is wrong 0273 

The first wrongly assumes that your belief has to be correct in such conflict 
cases, while the second wrongly assumes that your act has to be correct. 
 
1 Maybe your act is fine but your belief is faulty; for example, you treat dark-skinned people 
fairly but believe that this is wrong. More typically, your belief is fine but your act is faulty. 



 

 

Since either can be faulty, both if-then imperatives can give bad advice. So it’s 
better to express consistency imperatives as don’t-combine forms, like “∼(A • 
B).” 

Before leaving this section, let me point out problems with two alternative 
ways to understand imperative logic. Consider this argument: 

If you get 100 percent, then celebrate. 
Get 100 percent. 
∴ Celebrate. 

(G ⊃ C)  Invalid 
 G 
∴ C 

G, ∼G, ∼C 

This is intuitively invalid. Don’t celebrate yet – maybe you’ll flunk. To derive 
the conclusion, we need, not an imperative second premise, but rather a 
factual one saying that you did get 100 percent. 

Two common ways to understand imperative logic would wrongly judge 
this argument to be valid. The obedience view says that an imperative 
argument is valid just if doing what the premises prescribe necessarily 
involves doing what the conclusion prescribes. This is fulfilled in the present 
argument; if you do what both premises say, you’ll get 100 percent and 
celebrate. So the obedience view says that our argument is valid. So the 
obedience view is wrong. 

The threat view analyzes the imperative “Do A” as “Either you will do A or 
else S will happen” – where sanction “S” is some unspecified bad thing. So “A” 
is taken to mean “(A ∨ S).” But if we replace “C” with “(C ∨ S)” in our argu-
ment and “G” with “(G ∨ S),” then our argument becomes valid. So the threat 
view says that our argument is valid. So the threat view is wrong. 

12.2a Exercise: LogiCola MI 38. 
Say whether valid (and give a proof) or invalid (and give a refutation). 

(A ⊃ ∼B) 
(∼A ⊃ ∼C) 
∴ ∼(B • C) 



 

* 1   (A ⊃ ∼B) Valid 
* 2   (∼A ⊃ ∼C) 
* [ ∴ ∼(B • C) 
* 3 ┌ asm: (B • C) 
* 4 │ ∴ B—{from 3} 
* 5 │ ∴ C—{from 3} 
* 6 │ ∴ ∼A—{from 1 and 4} 
* 7 └ ∴ A—{from 2 and 5} 
* 8 ∴ ∼(B • C)—{from 3; 6 contradicts 7} 

1. ∼A 
∴ ∼(A • B) 

2. ∼(A • ∼B) 
∴ (A ⊃ B) 

3. (A ⊃ B) 
∴ (∼B ⊃ ∼A) 

4. (A ⊃ B) 
∴ ∼(A • ∼B) 

5. ∼◇(A • B) 
∼(C • ∼A) 
∴ ∼(C • B) 0274 

6. (x)(Fx ⊃ Gx) 
Fa 
∴ Ga 

7. (x)∼(Fx • Gx) 
(x)(Hx ⊃ Fx) 
∴ (x)(Gx ⊃ ∼Hx) 

8. (x)(Fx ⊃ Gx) 
(x)(Gx ⊃ Hx) 
∴ (x)(Fx ⊃ Hx) 

9. (∼A ∨ ∼B) 
∴ ∼(A • B) 



 

 

10. ∼(A • ∼B) 
∴ (∼A ∨ B) 

12.2b Exercise: LogiCola MI 39. 
First appraise intuitively. Then translate into logic (using the letters given) and say 
whether valid (and give a proof) or invalid (and give a refutation). 

1. Make chicken for dinner or make eggplant for dinner. 
Peter is a vegetarian. 
If Peter is a vegetarian, then don’t make chicken for dinner. 
∴ Make eggplant for dinner. [Use C, E, and V. This one is from Peter Singer.] 

2. Don’t eat cake. 
If you don’t eat cake, then give yourself a gold star. 
∴ Give yourself a gold star. [Use E and G.] 

3. If this is greasy food, then don’t eat this. 
This is greasy food. 
∴ Don’t eat this. [Use G and E; from Aristotle, except that he saw the conclusion 
of an imperative argument as an action: since you accept the premises, you don’t 
eat the thing. I’d prefer to say that if you accept these premises and are consistent, 
then you won’t eat the thing.] 

4. Don’t both drive and watch the scenery. 
Drive. 
∴ Don’t watch the scenery. [D, W] 

5. If you believe that you ought to commit mass murder, then commit mass mur-
der. 
You believe that you ought to commit mass murder. 
∴ Commit mass murder. [Use B and C. Suppose we take “Follow your con-
science” to mean “If you believe that you ought to do A, then do A.” Then this 
principle can tell us to do evil things. Would the corresponding don’t-combine 
form also tell us to do evil things? See the next example.] 

6. Don’t combine believing that you ought to commit mass murder with not 
committing mass murder. 
You believe that you ought to commit mass murder. 
∴ Commit mass murder. [B, C] 

7. Don’t combine having this end with not taking this means. 
Don’t take this means. 
∴ Don’t have this end. [E, M] 0275 



 

8. Lie to your friend only if you want people to lie to you under such circumstanc-
es. 
You don’t want people to lie to you under such circumstances. 
∴ Don’t lie to your friend. [Use L and W. Premise 1 is based on a simplified 
version of Immanuel Kant’s formula of universal law; we’ll see a more sophisti-
cated version in Chapter 14.] 

9. Studying is needed to become a teacher. 
“Become a teacher” entails “Do what’s needed to become a teacher.” 
“Do what’s needed to become a teacher” entails “If studying is needed to become a 
teacher, then study.” 
∴ Either study or don’t become a teacher. [Use N for “Studying is needed to 
become a teacher,” B for “You become a teacher,” D for “You do what’s needed to 
become a teacher,” and S for “You study.” This example shows that we can deduce 
complex ends-means imperatives from purely descriptive premises.] 

10. Winn Dixie is the largest grocery store in Big Pine Key. 
∴ Either go to Winn Dixie or don’t go to the largest grocery store in Big Pine Key. 
[w, l, Gxy, u] 

11. Drink something available. 
Only juice and soda are available. 
∴ Drink some juice or soda. [Dxy, u, Ax, Jx, Sx] 

12. If the cocoa is about to boil, remove it from the heat. 
If the cocoa is steaming, it’s about to boil. 
∴ If the cocoa is steaming, remove it from the heat. [B, R, S] 

13. Don’t shift. 
∴ Don’t combine shifting with not pedaling. [S, P] 

14. If he’s in the street, wear your gun. 
Don’t wear your gun. 
∴ He isn’t in the street. [Use S and G. This imperative argument, from Hector-
Neri Castañeda, has a factual conclusion; calling it “valid” means that it’s incon-
sistent to conjoin the premises with the denial of the conclusion.] 

15. If you take logic, then you’ll make logic mistakes. 
Take logic. 
∴ Make logic mistakes. [T, M] 

16. Get a soda. 
If you get a soda, then pay a dollar. 
∴ Pay a dollar. [G, P] 



 

 

17. ∴ Either do A or don’t do A. [This (vacuous) imperative tautology is analo-
gous to the logical truth “You’re doing A or you aren’t doing A.”] 

18. Don’t combine believing that A is wrong with doing A. 
∴ Either don’t believe that A is wrong, or don’t do A. [B, A] 0276 

19. Mail this letter. 
∴ Mail this letter or burn it. [Use M and B. This one was used to try to discredit 
imperative logic. The argument is valid, since this is inconsistent: “Mail this letter; 
don’t either mail this letter or burn it.” Note that “Mail this letter or burn it” 
doesn’t entail “You may burn it”; it’s consistent to follow “Mail this letter or burn 
it” with “Don’t burn it.”] 

20. Let every incumbent who will be honest be endorsed. 
∴ Let every incumbent who won’t be endorsed not be honest. [Use Hx, Ex, and 
the universe of discourse of incumbents.] 

12.3 Deontic translations 

Deontic logic adds two operators: “O” (for “ought”) and “R” (for “all right” or 
“permissible”); these attach to imperatives to form deontic wffs: 

OA = It’s obligatory that A 
OAu = You ought to do A 

RA = It’s permissible that A 
RAu = It’s all right for you to do A 

“O” / “☐” (moral / logical necessity) are somewhat analogous, as are “R” / “◇” 
(moral / logical possibility). 

“Ought” here is intended in the all-things-considered, normative sense that 
we often use in discussing moral issues. This sense of “ought” differs from at 
least two other senses that may follow different logical patterns: 

• Prima facie senses of “ought” (which give a moral consideration that may be 
overridden in a given context): “Insofar as I promised to go with you to the 
movies, I ought to do this [prima facie duty]; but insofar as my wife needs me 
to drive her to the hospital, I ought to do this instead [prima facie duty]. Since 
my duty to my wife is more weighty, in the final analysis I ought to drive my 
wife to the hospital [all-things-considered duty].” 

• Descriptive senses of “ought” (which state what’s required by conventional 



 

social rules but needn’t express one’s own positive or negative evaluation): 
“You ought [by company regulations] to wear a tie to the office.” 

I’ll be concerned with logical connections between ought judgments, where 
“ought” is taken in this all-things-considered, normative sense.1 I’ll mostly 
avoid metaethical issues, like how to further analyze “ought,” how to justify 
ethical principles, and whether moral judgments are objectively true or false. 
While my 0277 explanations sometimes assume that ought judgments are true 
or false, what I say could be rephrased to avoid this assumption.2 

Here are some further translations: 

Act A is obligatory (required, a duty) 
= OA 

Act A is all right (right, permissible, OK) 
= RA 

Act A is wrong 
= ∼RA = Act A isn’t all right 
= O∼A = Act A ought not to be done 

It ought to be that A and B 
= O(A • B) 

It’s all right that A or B 
= R(A ∨ B) 

If you do A, then you ought not to do B 
= (A ⊃ O∼B) 

You ought not to combine doing A with doing B 
= O∼(A • B) 

The last pair are deontic if-then and don’t-combine forms. 
Here are translations using quantifiers: 

It’s obligatory that everyone do A = O(x)Ax 
 
1 I’m also taking imperatives in an all-things-considered (not prima facie) sense. So I don’t 
take “Do A” to mean “Other-things-being-equal, do A.” 
2 For a discussion of whether moral judgments are true-or-false (as I contend they are), see 
my Ethics: A Contemporary Introduction, 3rd ed. (New York: Routledge, 2018) and Ethics and 
Religion (New York: Cambridge, 2016). 



 

 

It’s not obligatory that everyone do A = ∼O(x)Ax 
It’s obligatory that not everyone do A = O∼(x)Ax 
It’s obligatory that everyone refrain from doing A = O(x)∼Ax 

These two are importantly different: 

It’s obligatory that someone answer the phone = O(∃x)Ax 

There’s someone who has the obligation to answer the phone = (∃x)OAx 

The first might be true while the second is false; it might be obligatory (on 
the group) that someone or other in the office answer the phone – while yet 
no specific person has the obligation to answer it. To prevent the “Let the 
other person do it” mentality in such cases, we sometimes need to assign 
duties. 

Compare these three: 

It’s obligatory that some who kill repent 
= O(∃x)(Kx • Rx) 

It’s obligatory that some kill who repent 
= O(∃x)(Kx • Rx) 

It’s obligatory that some both kill and repent 
= O(∃x)(Kx • Rx) 

These three are importantly different; underlining in the wffs shows which 
parts are obligatory: repenting, killing, or killing-and-repenting. If we just 
attached “O” to indicatives, our formulas couldn’t distinguish the forms; all 
three would translate as “O(∃x)(Kx • Rx).” Because of such examples, we 
need to attach “O” 0278 to imperative wffs, not to indicative ones.1 

Wffs in deontic logic divide broadly into descriptive, imperative, and deon-
tic (normative). Here are examples of each: 

• Descriptive (“You do A”): A, Au 
• Imperative (“Do A”): A, Au 
• Deontic (“ought” or “all right”): OA, OAu, RA, RAu 

Such wff-types can matter for logic; for example, “O” and “R” must attach to 
imperative wffs. Here are rules for distinguishing these three types of wff: 

 
1 We can’t distinguish the three as “(∃x)(Kx • ORx),” “(∃x)(OKx • Rx),” and “(∃x)O(Kx • Rx)” – 
since putting “(∃x)” outside “O” changes the meaning. See the previous paragraph. 



 

• Any not-underlined capital letter not immediately followed by a small letter is 
a descriptive wff. Any underlined capital letter not immediately followed by a 
small letter is an imperative wff. 

• The result of writing a not-underlined capital letter and then one or more 
small letters, none of which are underlined, is a descriptive wff. The result of 
writing a not-underlined capital letter and then one or more small letters, one 
small letter of which is underlined, is an imperative wff. 

• The result of prefixing any wff with “∼” is a wff and is descriptive, imperative, 
or deontic, depending on what the original wff was. 

• The result of joining any two wffs by “•” or “∨” or “⊃” or “≡” and enclosing the 
result in parentheses is a wff. The resulting wff is descriptive if both original 
wffs were descriptive; it’s imperative if at least one was imperative; it’s deon-
tic if both were deontic or if one was deontic and the other descriptive. 

• The result of writing a quantifier and then a wff is a wff and is descriptive, 
imperative, or deontic, depending on what the original wff was. 

• The result of writing a small letter and then “=a” and then a small letter is a 
descriptive wff. 

• The result of writing “◇” or “☐,” and then a wff, is a descriptive wff. 
• The result of writing “O” or “R,” and then an imperative wff, is a deontic wff. 

12.3a Exercise: LogiCola L (DM & DT) 40. 
Translate these English sentences into wffs; take each “you” as a singular “you.” 

“You ought to do A” entails “It’s possible that you do A.” 

☐(OA ⊃ ◇A) 

Here “◇A” doesn’t use underlining; “◇A” means “It’s possible that you do A” 
– while “◇A” means “The imperative ‘Do A’ is logically consistent.” Our 
sentence also could translate as “☐(OAu ⊃ ◇Au).” 
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1. If you’re accelerating, then you ought not to brake. [Use A and B.] 

2. You ought not to combine accelerating with braking. 

3. If A is wrong, then don’t do A. 

4. Do A, only if A is permissible. 

5. “Do A” entails “A is permissible.” 

6. Act A is morally indifferent (morally optional). 

7. If A is permissible and B is permissible, then A-and-B is permissible. 

8. It’s not your duty to do A, but it’s your duty not to do A. 



 

 

9. If you believe that you ought to do A, then you ought to do A. [Use B for “You 
believe that you ought to do A” and A for “You do A.”] 

10. You ought not to combine believing that you ought to do A with not doing A. 

11. “Everyone does A” doesn’t entail “It would be all right for you to do A.” [Ax, 
u] 

12. If it’s all right for X to do A to Y, then it’s all right for Y to do A to X. [Axy] 

13. It’s your duty to do A, only if it’s possible for you to do A. 

14. It’s obligatory that the state send only guilty persons to prison. [Gx, Sxy, s] 

15. If it’s not possible for everyone to do A, then you ought not to do A. [Ax, u] 

16. If it’s all right for someone to do A, then it’s all right for everyone to do A. 

17. If it’s all right for you to do A, then it’s all right for anyone to do A. 

18. It’s not all right for anyone to do A. 

19. It’s permissible that everyone who isn’t sinful be thankful. [Sx, Tx] 

20. It’s permissible that everyone who isn’t thankful be sinful. 

12.4 Deontic proofs 

We’ll now add six inference rules. The first four, following the modal and 
quantificational pattern, are for reversing squiggles and dropping “R” and 
“O.” 

These reverse-squiggle rules hold regardless of what pair of contradictory 
imperative wffs replaces “A” / “∼A”: 

Reverse squiggle RS 
 

∼OA → R∼A 

∼RA → O∼A 

These let us go from “not obligatory to do” to “permissible not to do” – and 
from “not permissible to do” to “obligatory not to do.” Use these rules only 
within the same world and only when the formula begins with “∼O” or “∼R.” 

We need to expand our worlds. From now on, a possible world is a consist-
ent set of indicatives and imperatives. And a deontic world is a possible world 
(in this expanded sense) in which (a) the indicative statements are all true 
and (b) the imperatives prescribe some jointly permissible combination of 
actions. So these equivalences hold: 



 

OA (A is obligatory) = ”Do A” is in all deontic worlds 

RA (A is permissible) = ”Do A” is in some deontic worlds 0280 

Suppose I have an 8 am class (C), I ought to get up before 7 am (OG), it would 
be permissible for me to get up at 6:45 am (RA), and it would be permissible 
for me to get up at 6:30 am (RB). Then every deontic world would have “C” 
and “G”; but some deontic worlds would have “A” while others would have 
“B.” 

A world prefix now is a string of zero or more instances of “W” or “D.” As 
before, world prefixes represent possible worlds. “D,” “DD,” and so on repre-
sent deontic worlds; we can use these in derived lines and assumptions, such 
as: 

D ∴ A (So A is true in deontic world D.) 

DD asm: A (Assume A is true in deontic world DD.) 

We can drop deontic operators using the next two rules (which hold regard-
less of what imperative wff replaces “A”). Here’s the drop-“R” rule: 

Drop “R” DR 
 

RA → D ∴ A, 
use a new string of D’s 

Here the line with “RA” can use any world prefix – and the line with “∴ A” 
must use a world prefix that’s the same except that it ends with a new string 
(a string not occurring in earlier lines) of one or more D’s. If act A is permis-
sible, then “Do A” is in some deontic world; we may give this world an 
arbitrary and hence new name – corresponding to a new string of D’s. We’ll 
use “D” for the first “R” we drop, “DD” for the second, and so forth. So if we 
drop two R’s, then we must introduce two deontic worlds: 

RA 
RB 
––––––– 
D ∴ A 
DD ∴ B 

Act A is permissible, act B is permissible; so some deontic world (call it “D”) 
has “Do A” and another (call it “DD”) has “Do B.” It’s OK to use “D” in the first 
inference, since it occurs in no earlier line; but the second inference must use 



 

 

“DD,” since “D” has now already occurred. So permissible options need not be 
combinable; if it’s permissible to marry Ann and permissible to marry Beth, it 
needn’t be permissible to marry both Ann and Beth (bigamy). 

We can drop an “R” from formulas that are more complicated, as long as 
“R” begins the wff; so this first inference is fine: 

R(A • B) 
–––––––––– 
D ∴ (A • B) 

These next two examples are wrong (since the formula doesn’t begin with an 
“R” – instead, it begins with a left-hand parenthesis): 

(RA ⊃ B) 
–––––––––– 
D ∴ (A ⊃ B) 

(RA • RB) 
––––––––– 
D ∴ (A • B) 

Drop only an initial “R” – and introduce a new and different deontic world 
whenever you drop an “R.” 

Here’s the drop-“O” rule: 0281 

Drop “O” DO 
 

OA → D ∴ A, 
use a blank or any string of D’s 

Here the line with “OA” can use any world prefix, and the line with “∴ A” must 
use a world prefix which is either the same or else the same except that it 
adds one or more D’s at the end. If act A is obligatory, then “Do A” is in all 
deontic worlds. So if we have “OA” in the actual world, then we can derive “∴ 
A,” “D ∴ A,” “DD ∴ A,” and so on; but it’s good strategy to stay in old deontic 
worlds when dropping “O” (and to use the actual world if there are no world 
with D’s). As before, we can drop an “O” from formulas that are more compli-
cated, as long as “O” begins the wff. So this next inference is fine: 

O(A ⊃ B) 
–––––––––– 
D ∴ (A ⊃ B) 



 

These next two example are wrong (since the formula doesn’t begin with “O” 
– instead it begins with a left-hand parenthesis – drop only initial operators): 

(OA ⊃ B) 
–––––––––– 
D ∴ (A ⊃ B) 

(OA ⊃ OB) 
–––––––––– 
D ∴ (A ⊃ B) 

“(OA ⊃ B)” and “(OA ⊃ OB)” are if-then forms and follow the if-then rules: if 
we have the first part true, we can get the second true; if we have the second 
part false, we can get the first false; and if we get stuck, we’ll need to make 
another assumption. 

Rule DO lets us go from “OA” in a world to “A” in the same world. This ac-
cords with “Hare’s Law” (named after R. M. Hare): 

Hare’s Law 

☐(OA ⊃ A) 

An ought judgment entails the corresponding imperative: “You ought to do A” 
entails “Do A.” 

Hare’s Law (also called “prescriptivity”) equivalently claims that “You ought 
to do it, but don’t” is inconsistent. This law fails for some weaker prima facie 
or descriptive senses of “ought”; there’s no inconsistency in this: “You ought 
(according to company policy) to do it, but don’t do it.” The law seems to hold 
for the all-things-considered, normative sense of “ought”; this seems incon-
sistent: “All things considered, you ought to do it; but don’t do it.” However, 
some philosophers reject Hare’s Law; those who reject it would want to 
specify that in applying rule DO the world prefix of the derived line has to end 
in a “D” (and so we can’t use a blank world prefix in the derived line). 

Here’s a deontic proof using these rules: 0282 

* 1   O∼(A • B) Valid 
* 2   OA 
* [ ∴ O∼B 
* 3 ┌ asm: ∼O∼B 
* 4 │ ∴ RB {from 3} 
* 5 │ D ∴ B {from 4} 
* 6 │ D ∴ ∼(A • B) {from 1} 
* 7 │ D ∴ A {from 2} 



 

 

* 8 └ D ∴ ∼B {from 6 and 7} 
* 9 ∴ O∼B {from 3; 5 contradicts 8} 

Reverse a squiggle (line 4). Drop an initial “R,” using a new deontic world 
(line 5). Drop each initial “O,” using the same old deontic world (lines 6 and 
7). This all works like a modal proof, except for underlining and having “O,” 
“R,” and “D” in place of “☐,” “◇,” and “W.” As with modal logic, we can star 
(and then ignore) a line when we use a reverse-squiggle or “R”-dropping rule 
on it. 

Things get more complicated if we use the rules for dropping “R” and “O” 
on a formula in some other possible world. Here’s a simple case. Formulas 
“RA” and “OB” are in the actual world (using the blank world prefix); and so 
we put the corresponding imperatives in a deontic world “D.” 

RA 
OB 
––––– 
D ∴ A 
D ∴ B 

In the next example, formulas “RA” and “OB” are in world W; so here we keep 
“W” and just add “D” (the rules for dropping “R” and “O” allow these moves): 

W ∴ RA 
W ∴ OB 
––––––– 
WD ∴ A 
WD ∴ B 

Here world WD is a deontic world that depends on possible world W; this 
means that (a) the indicative statements in WD are those of world W, and (b) 
the imperatives of WD prescribe some set of actions that are jointly permis-
sible according to the deontic judgments of world W. The following proof 
uses world prefix “WD” in lines 7 to 9: 

*1 [ ∴ ☐(O(A • B) ⊃ OA)  Valid 
* 11 ┌ asm: ∼☐(O(A • B) ⊃ OA) 
* 12 │ ∴ ◇∼(O(A • B) ⊃ OA) {from 1} 
* 13 │ W ∴ ∼(O(A • B) ⊃ OA) {from 2} 
* 14 │ W ∴ O(A • B) {from 3} 
* 15 │ W ∴ ∼OA {from 3} 
* 16 │ W ∴ R∼A {from 5} 
* 17 │ WD ∴ ∼A {from 6} 
* 18 │ WD ∴ (A • B) {from 4} 



 

* 19 └ WD ∴ A {from 8} 
* 10 ∴ ☐(O(A • B) ⊃ OA) {from 1; 7 contradicts 9} 

0283 When we drop the “R” from line 6 (“W ∴ R∼A”), we add a new deontic 
world D to world W, so we get “WD ∴ ∼A” in line 7. The next two chapters 
will often use complex world prefixes like “WD.” 

We have two more rules. The indicative-transfer rule lets us transfer indic-
atives freely between a deontic world and whatever world it depends on; we 
can do this because these two worlds have the same indicative (descriptive 
or deontic) wffs. IT holds regardless of what descriptive or deontic wff 
replaces “A”: 

Indicative transfer IT 
 

D ∴ A → A 

The world prefixes of the derived and deriving lines must be identical except 
that one ends in one or more additional D’s. Here are some correct uses: 

A 
–––––– 
D ∴ A 

D ∴ A 
––––––– 
∴ A 

D ∴ A 
––––––– 
DD ∴ A 

OA 
––––––– 
D ∴ OA 

This next inference is wong, since IT is to be used only with indicatives 
(including deontic judgments): 

A 
––––– 
D ∴ A 

It can be useful to move an indicative between deontic worlds when we need 
to do so to get a contradiction or apply an I-rule. Here’s an example: 



 

 

It’s obligatory that all teachers prepare classes. 
You’re a teacher. 
∴ You ought to prepare classes. 

* 11   O(x)(Tx ⊃ Px) Valid 
* 12   Tu 
* 1 [ ∴ OPu 
* 13 ┌ asm: ∼OPu 
* 14 │ ∴ R∼Pu {from 3} 
* 15 │ D ∴ ∼Pu {from 4} 
* 16 │ D ∴ (x)(Tx ⊃ Px) {from 1} 
* 17 │ D ∴ (Tu ⊃ Pu) {from 6} 
* 18 │ D ∴ ∼Tu {from 5 and 7} 
* 19 └ D ∴ Tu {from 2} 
* 10 ∴ OPu {from 3; 8 contradicts 9} 

Instead of moving the indicative “Tu” from the actual world to D in line 9, we 
could have moved “∼Tu” from D to the actual world. 

Our final inference rule, Kant’s Law, is named for Immanuel Kant: 

Kant’s Law KL 
 

OA → ◇A 

“Ought” implies “can”: “You ought to do A” entails “It’s possible for you to do 
A.” 

This holds regardless of what imperative wff replaces “A” and what indicative 
wff replaces “A,” if the former is like the latter except for underlining, and 
every 0284 wff out of which the former is constructed is an imperative.1 
Kant’s Law is often useful with arguments having both deontic (“O” or “R”) 
and modal operators (“☐” or “◇”); note that you infer “◇A” (“It’s possible 
for you to do A”) and not “◇A” (“The imperative ‘Do A’ is consistent”). 

Kant’s Law equivalently claims that “You ought to do it, but it’s impossible” 
is inconsistent. This law fails for some weaker prima facie or descriptive 
senses of “ought”; since company policy may require impossible things, this is 
consistent: “You ought (according to company policy) to do it, but it’s impos-
sible.” The law seems to hold for the all-things-considered, normative sense 
of “ought”; this seems inconsistent: “All things considered, you ought to do it; 
but it’s impossible to do it.” We can’t have an all-things-considered moral 
 
1 The proviso outlaws “O(∃x)(Lx • ∼Lx) ∴ ◇(∃x)(Lx • ∼Lx)” (“It’s obligatory that someone 
who is lying not lie ∴ It’s possible that someone both lie and not lie”). Since “Lx” in the premise 
isn’t an imperative wff, this (incorrect) derivation doesn’t satisfy KL. 



 

obligation to do the impossible. 
KL is a weak form of Kant’s Law. Kant thought that what we ought to do is 

not just logically possible, but also what we’re capable of doing (physically 
and psychologically). Our rule KL expresses only the “logically possible” part; 
but, even so, it’s still useful for many arguments. And it won’t hurt if some-
times we informally interpret “◇” in terms of what we’re capable of doing. 

We’ve already mentioned the first two of these four “laws”:1 

• Hare’s Law: An “ought” entails the corresponding imperative. 
• Kant’s Law: “Ought” implies “can.” 
• Hume’s Law: We can’t deduce an “ought” from an “is.” 
• Poincaré’s Law: We can’t deduce an imperative from an “is.” 

Now we’ll briefly consider the last two. 
Hume’s Law (named for David Hume) claims that we can’t validly deduce 

what we ought to do from premises that don’t contain “ought” or similar 
notions.2 So getting a moral conclusion requires having a moral premise. 
Hume’s Law fails for some weak senses of “ought”; given descriptions of 
company policy and the situation, we can sometimes validly deduce what 
ought (according to company policy) to be done. Hume’s Law seems to hold 
for the all-things-considered, normative sense of “ought.” A more careful 
wording would say: “If B is a consistent non-evaluative statement and A a 
simple contingent action, then B doesn’t entail ‘Act A ought to be done.’” This 
wording sidesteps some counterexamples (§12.4a) where we clearly can 
deduce an “ought” from an “is.” 

Poincaré’s Law (named for the mathematician Jules Henri Poincaré) simi-
larly claims that we can’t validly deduce an imperative from indicative 
premises that 0285 don’t contain “ought” or similar notions. A more careful 
wording would say: “If B is a consistent non-evaluative statement and A a 
simple contingent action, then B doesn’t entail the imperative ‘Do act A.’” 
Again, the qualifications block objections (like problems 9 and 10 of §12.2b). 
We won’t build Hume’s or Poincaré’s Law into our system. 

Our deontic proof strategy is much like the modal strategy. First we re-
verse squiggles to put “O” and “R” at the beginning of a formula. Then we 
drop each initial “R,” putting each permissible thing into a new deontic world. 
Lastly we drop each initial “O,” putting each obligatory thing into each old 
deontic world. Drop obligatory things into the actual world just if: 

 
1 The word “law,” although traditional here, is really too strong, since all four are controversial 
and subject to qualifications. 
2 Some philosophers disagree and claim we can deduce moral conclusions using only premises 
about social conventions, personal feelings, God’s will, or something similar. For views on both 
sides, see my Ethics: A Contemporary Introduction, 3rd ed. (New York: Routledge, 2018). 



 

 

• the premises or conclusion have an instance of an underlined letter that isn’t 
part of some wff beginning with “O” or “R”; or 

• you’ve done everything else possible (including further assumptions if need-
ed) and still have no old deontic worlds. 

Use the indicative transfer rule if you need to move an indicative between the 
actual world and a deontic world (or vice versa). Consider using Kant’s Law if 
you see a letter that occurs underlined in a deontic wff and not-underlined in 
a modal wff; some proofs that use Kant’s Law get tricky. 

From now on, we won’t do refutations for invalid arguments in the book 
(LogiCola keeps doing them), since refutations get too messy when we mix 
various kinds of world. 

12.4a Exercise: LogiCola M (D & M) 41. 
Say whether valid (and give a proof) or invalid (no refutation necessary). 

∴ ∼◇(OA • O∼A) 

* [ ∴ ∼◇(OA • O∼A)  Valid 
* 1 ┌ asm: ◇(OA • O∼A) 
* 2 │ W ∴ (OA • O∼A)—{from 1} 
* 3 │ W ∴ OA—{from 2} 
* 4 │ W ∴ O∼A—{from 2} 
* 5 │ W ∴ A—{from 3} 
* 6 └ W ∴ ∼A—{from 4} 
* 7 ∴ ∼◇(OA • O∼A)—{from 1; 5 contradicts 6} 

This wff says “It’s not logically possible that you ought to do A and also ought 
not to do A”; this is correct if we take “ought” in the all-things-considered, 
normative sense. Morality can’t make impossible demands on us; if we think 
otherwise, our lives will likely be filled with irrational guilt for not fulfilling 
impossible demands. “∼◇(OA • O∼A)” would be incorrect if we took “O” in it 
to mean something like “ought according to company policy” or “prima facie 
ought.” Inconsistent company policies may require that we do A and also 
require that we not do A; and we can have a prima facie duty to do A and 
another to omit doing A. 
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1. O∼A 
∴ O∼(A • B) 

2. (∃x)OAx 
∴ O(∃x)Ax 



 

3. b=c 
∴ (OFab ⊃ OFac) 

4. ∴ O(OA ⊃ A) 

5. ∴ O(A ⊃ OA) 

6. ∴ O(A ⊃ RA) 

7. OA 
OB 
∴ O(A • B) 

8. (x)OFx 
∴ O(x)Fx 

9. O(A ∨ B) 
∴ (∼◇A ⊃ RB) 

10. (A ⊃ OB) 
∴ O(A ⊃ B) 

11. ☐(A ⊃ B) 
OA 
∴ OB 

12. OA 
RB 
∴ R(A • B) 

13. A 
∴ O(B ∨ ∼B) 

14. (x)RAx 
∴ R(x)Ax 

15. OA 
OB 
∴ ◇(A • B) 

16. ∴ (RA ∨ R∼A) 



 

 

17. (OA ⊃ B) 
∴ R(A • B) 

18. ∼◇A 
∴ R∼A 

19. A 
∼A 
∴ OB 

20. O(x)(Fx ⊃ Gx) 
OFa 
∴ OGa 

21. O(A ⊃ B) 
∴ (A ⊃ OB) 

22. O(x)Ax 
∴ (x)OAx 

23. ∴ O(∼RA ⊃ ∼A) 

24. A 
∴ (A ∨ OB) 

25. (A ∨ OB) 
∼A 
∴ OB

Problems 3, 13, and 19 deduce an “ought” from an “is.” If “(A ∨ OB)” is an “ought,” 
then 24 is another example; if it’s an “is,” then 25 is another example. 20 of §12.4b is 
another example. We formulated Hume’s Law so that these examples don’t refute it. 

12.4b Exercise: LogiCola M (D & M) 42. 
First appraise intuitively. Then translate into logic (using the letters given) and say 
whether valid (and give a proof) or invalid (no refutation necessary). 

1. It’s not all right for you to combine texting with driving. 
You ought to drive. 
∴ Don’t text. [Use T and D.] 



 

2. ∴ Either it’s your duty to do A or it’s your duty not to do A. [The conclusion, if 
taken to apply to every action A, is rigorism, the view that there are no morally 
neutral acts (acts permissible to do and also permissible not to do).] 

3. I did A. 
I ought not to have done A. 
If I did A and it was possible for me not to have done A, then I have free will. 
∴ I have free will. [Use A and F. Immanuel Kant thus argued that ethics requires 
free will.] 

4. ∴ If you ought to do A, then do A. 

5. ∴ If you ought to do A, then you’ll in fact do A. 0287 

6. It’s not possible for you to be perfect. 
∴ It’s not your duty to be perfect. [Use “P” for “You are perfect.”] 

7. You ought not to combine texting with driving. 
You don’t have a duty to drive. 
∴ It’s all right for you to text. [T, D] 

8. ∴ Do A, only if it would be all right for you to do A. 

9. If it’s all right for you to insult Jones, then it’s all right for Jones to insult you. 
∴ If Jones ought not to insult you, then don’t you insult Jones. [Use Ixy, u, and j. 
The premise follows from the universalizability principle (“What’s right for one 
person is right for anyone else in similar circumstances”) plus the claim that the 
cases are similar. The conclusion is a distant relative of the golden rule.] 

10. It’s all right for someone to do A. 
∴ It’s all right for anyone to do A. [Can you think of an example where the prem-
ise would be true and conclusion false?] 

11. If fatalism (the view that whatever happens couldn’t have been otherwise) is 
true and I do A, then my doing A (taken by itself) is necessary. 
∴ If fatalism is true and I do A, then it’s all right for me to do A. [F, A] 

12. If it’s all right for you to complain, then you ought to take action. 
∴ You ought to either take action or else not complain. [Use C and T. This is the 
“Put up or shut up” argument.] 



 

 

13. I ought to stay with my brother while he’s sick in bed. 
It’s impossible for me to combine these two things: staying with my brother while 
he’s sick in bed and driving you to the airport. 
∴ It’s all right for me not to drive you to the airport. [S, D] 

14. Jones ought to be happy in proportion to his moral virtue. 
Necessarily, if Jones is happy in proportion to his moral virtue, then Jones will be 
rewarded either in the present life or in an afterlife. 
It’s not possible for Jones to be rewarded in the present life. 
If it’s possible for Jones to be rewarded in an afterlife, then there is a God. 
∴ There is a God. [Use H for “Jones is happy in proportion to his moral virtue,” P 
for “Jones will be rewarded in the present life,” A for “Jones will be rewarded in an 
afterlife,” and G for “There is a God.” This is Kant’s moral argument for the exist-
ence of God. To make premise 3 plausible, we must take “possible” as “factually 
possible” (instead of “logically possible”). But does “ought to be” (premise 1 uses 
this – and not “ought to do”) entail “is factually possible”?] 

15. If killing the innocent is wrong, then one ought not to intend to kill the inno-
cent. 
If it’s permissible to have a nuclear retaliation policy, then intending to kill the 
innocent is permissible. 
∴ If killing the innocent is wrong, then it’s wrong to have a nuclear retaliation 
policy. [K, I, N] 0288 

16. If it’s all right for you to do A, then you ought to do A. 
If you ought to do A, then it’s obligatory that everyone do A. 
∴ If it’s impossible that everyone do A, then you ought not to do A. [Use Ax and 
u. The premises and conclusion are doubtful; the conclusion entails “If it’s impos-
sible that everyone become the first woman president, then you ought not to 
become the first woman president.” The conclusion is a relative of Kant’s formula 
of universal law; it’s also a faulty “formal ethical principle” – an ethical principle 
that we can formulate using abstract logical notions but leaving unspecified the 
meaning of the individual, property, relational, and statement letters.] 

17. It’s obligatory that Smith help someone or other whom Jones is beating up. 
∴ It’s obligatory that Jones beat up someone. [Use Hxy, Bxy, s, and j. This “good 
Samaritan paradox” is provable in most deontic systems that attach “O” to indica-
tives. There are similar examples where the evil deed happens after the good one. 
It may be obligatory that Smith warn someone or other whom Jones will try to 
beat up; this doesn’t entail that Jones ought to try to beat up someone.] 

18. If it’s not right to do A, then it’s not right to promise to do A. 
∴ Promise to do A, only if it’s all right to do A. [A, P] 



 

19. It’s obligatory that someone answer the phone. 
∴ There’s someone who has the obligation to answer the phone. [Ax] 

20. Studying is needed to become a teacher. 
“Become a teacher” entails “Do what’s needed to become a teacher.” 
“Do what’s needed to become a teacher” entails “If studying is needed to become a 
teacher, then study.” 
∴ You ought to either study or not become a teacher. [Use N for “Studying is 
needed to become a teacher,” B for “You become a teacher,” D for “You do what’s 
needed to become a teacher,” and S for “You study.” This is an ought-version of 
§12.2b #9. It shows that we can deduce a complex ought judgment from purely 
descriptive premises.] 

21. If it’s right for you to litter, then it’s wrong for you to preach concern for the 
environment. 
∴ It’s not right for you to combine preaching concern for the environment with 
littering. [L, P] 

22. If you ought to be better than everyone else, then it’s obligatory that everyone 
be better than everyone else. 
“Everyone is better than everyone else” is self-contradictory. 
∴ It’s all right for you not to be better than everyone else. [Use Bx (for “x is 
better than everyone else”) and u.] 

23. You ought not to combine braking with accelerating. 
You ought to brake. 
∴ You ought to brake and not accelerate. [B, A] 0289 

24. “Everyone breaks promises” is impossible. 
∴ It’s all right for there to be someone who doesn’t break promises. [Use Bx. 
Kant thought universal promise-breaking would be impossible, since no one 
would make promises if everyone broke them. But he wanted to draw the strong-
er conclusion that it’s always wrong to break promises. See problem 16.] 

25. It’s all right for you to punish Judy for the accident, only if Judy ought to have 
stopped her car more quickly. 
Judy couldn’t have stopped her car more quickly. 
∴ You ought not to punish Judy for the accident. [P, S] 

26. You ought to pay by check or pay by MasterCard. 
If your MasterCard is expired, then you ought not to pay by MasterCard. 
∴ If your MasterCard is expired, then pay by check. [C, M, E] 



 

 

27. You ought to help your neighbor. 
It ought to be that, if you (in fact) help your neighbor, then you say you’ll help 
him. 
You don’t help your neighbor. 
If you don’t help your neighbor, then you ought not to say you’ll help him. 
∴ You ought to say you’ll help him, and you ought not to say you’ll help him. 
[Use H and S. Roderick Chisholm pointed out that this clearly invalid argument 
was provable in many systems of deontic logic. Is it provable in our system?] 

28. If you take logic, then you’ll make mistakes. 
You ought not to make mistakes. 
∴ You ought not to take logic. [T, M] 

29. If I ought to name you acting mayor because you served on the city council, 
then I ought to name Jennifer acting mayor because she served on the city council. 
I can’t name both you and Jennifer acting mayor. 
∴ It’s false that I ought to name you acting mayor because you served on the city 
council. [U, J] 

 

  



13 Belief Logic 

Our belief logic is “logic” in an extended sense. Instead of studying what 
follows from what, it studies patterns of consistent believing and willing; it 
generates consistency norms that prescribe that we be consistent in various 
ways. We’ll start with a simplified system and then add refinements. 

13.1 Belief translations 

We’ll use “:” to construct descriptive and imperative belief formulas: 

1. The result of writing a small letter and then “:” and then a wff is a descrip-
tive wff. 
2. The result of writing an underlined small letter and then “:” and then a wff 
is an imperative wff. 

Statements about beliefs translate into descriptive belief formulas: 

You believe that A is true = u:A 

You don’t believe that A is true = ∼u:A 

You believe that A is false = u:∼A 

You don’t believe A and you don’t believe not-A 
= (∼u:A • ∼u:∼A) 

If you refrain from believing A, you might believe that A is false or you might 
take no position on A. Here are some further translations: 

You believe that you ought to do A 
= u:OAu 

Everyone believes that they ought to do A 
= (x)x:OAx 

You believe that if A then not-B 
= u:(A ⊃ ∼B) 



 

 

If you believe A, then you don’t believe B 
= (u:A ⊃ ∼u:B) 

Since our belief logic generates norms prescribing consistency, it focuses 
on imperative belief formulas – which we express by underlining the small 
letter: 0291 

Believe that A is true = u:A 

Don’t believe that A is true = ∼u:A 

Believe that A is false = u:∼A 

Don’t believe A and don’t believe not-A 
= (∼u:A • ∼u:∼A) 

Believe that you ought to do A 
= u:OAu 

Let everyone believe that they ought to do A 
= (x)x:OAx 

As before, we distinguish between if-then and don’t-combine forms: 

If you in fact believe A, then don’t believe B 
= (u:A ⊃ ∼u:B) 

Don’t combine believing A with believing B 
= ∼(u:A • u:B) 

13.1a Exercise: LogiCola N (BM & BT) 
Translate these sentences into wffs (use “u” for “you” and “G” for “There’s a God”). 

You believe that there’s a God. (You’re a theist.) 

u:G 

1. You believe that there’s no God. (You’re an atheist.) 

2. You take no position on whether there’s a God. (You’re an agnostic.) 

3. You don’t believe that there’s a God. (You’re a non-theist.) 

4. You believe that “There’s a God” is self-contradictory. 

5. Necessarily, if you’re a theist then you aren’t an atheist. (Is this statement 
true?) 



 

6. Believe that there’s a God. 

7. If “There’s a God” is self-contradictory, then don’t believe that there’s a God. 

8. If you believe A, then you don’t believe not-A. 

9. If you believe A, then don’t believe not-A. 

10. Don’t combine believing A with believing not-A. 

13.2 Belief proofs 

There are three approaches to belief logic. First, we might study what belief 
formulas validly follow from what other belief formulas. We might try to 
prove arguments like this one: 

You believe A. 
∴ You don’t believe not-A. 

u:A 
∴ ∼u:∼A 

But this is invalid, since people can be confused and illogical. Students and 
politicians can assert A and assert not-A almost in the same breath. Beginning 
ethics students often write things like this (§4.3): 0292 

Since morality is relative to culture, no duties bind universally. What’s right in one 
culture is wrong in another. Universal duties are a myth. Relativism should make 
us tolerant toward others; we can’t say that we’re right and they’re wrong. So 
everyone ought to respect the values of others. 

Here “No duties bind universally” clashes with “Everyone ought to respect 
the values of others.” As Socrates was adept at showing, our unexamined 
views are often filled with inconsistencies. But then, given that someone 
believes A, we can deduce little or nothing about what else the person 
believes or doesn’t believe. So this first approach to belief logic is doomed to 
failure. 

A second approach studies how we’d believe if we were completely con-
sistent. A person X is completely consistent (an idealized notion) if and only 
if: 

1. the set S of things that X believes is logically consistent, and 
2. X believes whatever follows logically from set S. 



 

 

Our previous argument would be valid if we added, as an additional premise, 
that you’re completely consistent: 

You’re completely consistent. (implicit) 
You believe A. 
∴ You don’t believe not-A. 

Belief logic would take “You’re completely consistent” as an implicit premise; 
this would be assumed, even though it’s false, to help us explore what belief 
patterns a consistent person would follow. While this works,1 I prefer a third 
approach, in view what I want to do in the next chapter. 

My third approach generates consistency imperatives, like these: 

Don’t combine believing A with believing not-A. 
∼(u:A • u:∼A) 

Don’t combine believing A-and-B with not believing A. 
∼(u:(A • B) • ∼u:A) 

This third approach will assume that we ought to be consistent – we ought 
not to combine inconsistent beliefs and we ought not to believe something 
without also believing whatever follows from it. While this basic idea is 
plausible (but subject to qualifications, see §13.7), it’s not easy to systematize 
logically. 

Our belief logic adds belief worlds and inference rules to our proof ma-
chinery. We represent a belief world by a string of one or more instances of a 
small-letter constant. Since most of our belief norms use a generic “you,” our 
belief worlds will typically be “u,” “uu,” “uuu,” and so on. So a world prefix is 
now a string of zero or more instances of letters from the set <W, D, a, b, c, 
…>, where <a, b, c, …> is the set of small-letter constants. Our two inference 
rules use belief 0293 worlds; while it’s fairly easy to use these rules mechani-
cally, it’s difficult to get an intuitive grasp of how they work. Let me try to 
explain them. 

First, let a belief policy be a set of imperatives about what someone (typi-
cally a generic “you”) is or is not to believe. Here’s an example: 

 
1 Jaakko Hintikka used roughly this second approach in his classic Knowledge and Belief 
(Ithaca, New York: Cornell University Press, 1962). 



 

Believe that Michigan will play. 

u:P 

Be neutral about whether Michigan will win. 

(∼u:W • ∼u:∼W) 

This policy prescribes a way to believe that’s consistent (but boring). In 
general, a belief policy prescribes a consistent way to believe if and only if (1) 
the set S of things that the person is told to believe is logically consistent, and 
(2) the person isn’t forbidden to believe something that follows logically 
from set S. Our task here is to express this idea using possible worlds. I want 
to reject belief policies, such as this one, that prescribe an inconsistent way to 
believe: 

Believe A and believe not-A. 

(u:A • u:∼A) 

How do we reject such policies using possible worlds? 
A belief world (relative to a belief policy about what a person is told to 

believe) is a possible world that contains all the statements that the person is 
told to believe. So if you’re told to believe A, then all your belief worlds have 
A. Individual belief worlds may contain further statements. For example, if 
you’re told to be neutral about B (not to believe B and not to believe not-B), 
then some of your belief worlds will have B and some will have not-B. What’s 
common to all your belief worlds is what you’re told to believe. If a belief 
policy (about what you’re told to believe) forces a belief world to be self-
contradictory, then the belief policy tells you to believe inconsistently; and 
then (by an implicit “Be consistent” built into the system) we reject the belief 
policy. 

Our first inference rule, B+, says that, if you’re told to believe A, then A is 
in all your belief worlds: u, uu, uuu, and so on. Rule B+ operates on positive 
imperative belief formulas; here any wff can replace “A” and any small letter 
can replace “u”: 

B+ 
 

u:A → u ∴ A, 
use any string of u’s 



 

 

The line with “u:A” can use any world prefix with no small letters or “W”1 – 
0294 and the line with “u ∴ A” must use a world prefix that’s the same except 
that it adds at the end a string of one or more instances of “u” (or of the small 
letter that replaces “u”). If we have “u ∴ A” in a proof, “u” refers to a belief 
world based on what you’re told to believe. (If instead we have “Du ∴ A,” then 
we have a belief world based on what you’re told to believe in deontic world 
D.) 

We can use B+ to prove this consistency imperative: “Don’t combine be-
lieving A with believing not-A.” First assume its opposite: “Believe A and 
believe not-A.” Then use B+ to construct a belief world that contains every-
thing that you’re told to believe. Since this world necessarily has contradic-
tions, “Believe A and believe not-A” tells us to believe inconsistently; then (by 
an implicit “Be consistent” built into the system) we can derive the opposite: 
“Don’t combine believing A and believing not-A.” Here’s the proof in symbols: 

* [ ∴ ∼(u:A • u:∼A) Valid 
* 1 ┌ asm: (u:A • u:∼A) 
* 2 │ ∴ u:A {from 1} 
* 3 │ ∴ u:∼A {from 1} 
* 4 │ u ∴ A {from 2} 
* 5 └ u ∴ ∼A {from 3} 
* 6 ∴ ∼(u:A • u:∼A) {from 1; 4 contradicts 5} 

B+ puts the statements you’re told to believe into belief world u. Since world 
u has contradictions, our assumption prescribes an inconsistent combination 
of belief attitudes. So we reject it and derive the original conclusion.2 

We defined “X is completely consistent” using two clauses: 

1. the set S of things that X believes is logically consistent, and 
2. X believes whatever follows logically from set S. 

While B+ captures the first clause, we need rule B– to capture the second. By 
B–, if you’re told NOT to believe A, then not-A must be in SOME of your belief 
worlds. So if you’re told to be neutral about A (NOT to believe A and NOT to 
believe not-A) then some of your belief worlds will have A and some will 
have not-A. Rule B– operates on negative imperative belief formulas; any pair 
of contradictory wffs can replace “A” / “∼A” and any small letter can replace 
“u”: 
 
1 This proviso (about small letters and “W”) blocks proofs of questionable wffs that place one 
imperative belief operator within another, like “b:∼(c:A • c:∼A),” or claim logical necessity for 
consistency imperatives, like “☐∼(u:A • u:∼A).” 
2 Our proof doesn’t show that this conclusion is logically necessary; instead, it shows that it 
follows from an implicit “One ought to be consistent” premise. 



 

B– 
 

∼u:A → u ∴ ∼A, 
use a new string of u’s 

The line with “∼u:A” can use any world prefix not containing small letters or 
“W” – and the line with “u ∴ ∼A” must use a world prefix that’s the same 
except that it ends with a new string (one not occurring in earlier lines) of 
one or more 0295 instances of “u” (or of the small letter that replaces “u”). 

We need B– to prove this consistency imperative: “Don’t combine believing 
A-and-B with not believing A. First assume its opposite: “Believe A-and-B, but 
don’t believe A” – which tells us to believe something but not what logically 
follows from it. Here’s the proof: 

* [ ∴ ∼(u:(A • B) • ∼u:A) Valid 
* 1 ┌ asm: (u:(A • B) • ∼u:A) 
* 2 │ ∴ u:(A • B) {from 1} 
* 3 │ ∴ ∼u:A {from 1} 
* 4 │ u ∴ ∼A {from 3} 
* 5 │ u ∴ (A • B) {from 2} 
* 6 └ u ∴ A {from 5} 
* 7 ∴ ∼(u:(A • B) • ∼u:A) {from 1; 4 contradicts 6} 

By B–, since you’re told NOT to believe A, we put “∼A” into new belief world 
u (line 4). We put what you’re positively told to believe into the same belief 
world u and then get a contradiction. Our assumption prescribes an incon-
sistent combination of belief attitudes. So we derive the original conclusion. 

Our proof strategy goes as follows: 

• First use rule B– on negative imperative belief formulas (formulas that say to 
refrain from believing something). Use a new belief world each time. You can 
star (and then ignore) a line when you use B– on it. 

• Then use B+ on positive imperative belief formulas (formulas that say to 
believe something). Use each old belief world of the person in question each 
time. (Use a single new belief world if you have no old ones.) Don’t star a line 
when you use B+ on it. 

Both rules operate only on imperative belief formulas (like “∼u:A” or “u:A”) – 
not on descriptive ones (like “∼u:A” or “u:A”). Our belief worlds are about 
what a belief policy tells you to believe, not about what you actually believe. 
Our proof structure is designed to prove consistency norms. 

Our recent systems had rules for reversing squiggles; for dropping weak 



 

 

operators (some, possible, permissible); and for dropping strong operators 
(all, necessary, ought). Belief logic is different, since there’s no convenient 
weak operator to go with “You believe that A” (the weak operator would have 
to mean “You don’t believe that not-A”). Belief logic is like a modal logic with 
“☐” but no “◇”: besides having the drop-box rule for “☐A,” we’d then need a 
rule saying that from “∼☐A” we can put “∼A” into a new world W (like B–). 

Our consistency norms have a don’t-combine form, forbidding inconsistent 
combinations. They tell you to make your beliefs coherent with each other; 
but they don’t say what beliefs to add or subtract to bring this about. Suppose 
that P (premise) logically entails C (conclusion); compare these three forms: 
0296 

• (u:P ⊃ u:C) If you believe premise, then believe conclusion 
• (∼u:C ⊃ ∼u:P) If you don’t believe conclusion, then don’t believe premise 
• ∼(u:P • ∼u:C) Don’t combine believing premise with not believing conclu-

sion 

Suppose you believe premise but don’t believe conclusion; then you violate 
all three. What should you do? The first form tells you to believe conclusion; 
but maybe conclusion is irrational and you should reject both premise and 
conclusion. The second tells you to drop premise; but maybe premise is solid 
and you should accept both premise and conclusion. So the first two forms 
can guide you wrongly. The third is better; it simply forbids the inconsistent 
combination of believing premise but not believing conclusion – but it doesn’t 
say what to do if you get into this forbidden combination. 

Here’s another example. Assume that A is logically inconsistent with B; 
compare these three forms: 

• (u:A ⊃ ∼u:B) If you believe A, then don’t believe B. 
• (u:B ⊃ ∼u:A) If you believe B, then don’t believe A. 
• ∼(u:A • u:B) Don’t combine believing A with believing B. 

Suppose you believe A and also believe B, even though the two are inconsist-
ent. The first form tells you to drop B, while the second tells you to drop A; 
but which you should drop depends on the situation. The last form is better; 
it simply tells you to avoid the inconsistent combination. 

Proofs with multiple kinds of operator can be confusing. This chart tells 
what order to use in dropping operators: 



 

First drop these weak operators: 

◇ ∼u: R (∃x) 

Use new worlds/constants; star the old line. 

Then drop these strong operators: 

☐ u: O (x) 

Use old worlds/constants if you have them; don’t star the old line. 

Within each group, the dropping order doesn’t matter – except that it’s wise 
to drop “u:” and “O” before dropping the very strong “☐.” 

Section 9.2 noted that our substitute-equals rule can fail in arguments 
about beliefs. Consider this argument: 

Jones believes that Lincoln is on the penny. 
Lincoln is the first Republican president. 
∴ Jones believes that the first Republican president is on the penny. 

j:Pl 
l=r 
∴ j:Pr 

If Jones is unaware that Lincoln was the first Republican president, the prem-
ises could be true while the conclusion is false. So the argument is invalid. But 
yet 0297 we can derive the conclusion from the premises using our substitute-
equals rule. So we need to qualify this rule so it doesn’t apply in belief con-
texts. From now on, the substitute-equals rule holds only if no interchanged 
instance of the constants occurs within a wff that begins with a small letter 
(underlined or not) followed by a colon (“:”). 

13.2a Exercise: LogiCola OB 
Say whether valid (and give a proof) or invalid (no refutation necessary). 

☐(A ⊃ B) 
∴ (u:A ⊃ u:B) 



 

 

* 1   ☐(A ⊃ B) Invalid 
* [ ∴ (u:A ⊃ u:B) 
* 2   asm: ∼(u:A ⊃ u:B) 
* 3   ∴ u:A—{from 2} 
* 4   ∴ ∼u:B—{from 2} 
* 5   u ∴ ∼B—{from 4} 
* 6   u ∴ (A ⊃ B)—{from 1} 
* 7   u ∴ ∼A—{from 5 and 6} 

Since rules B+ and B– work only on imperative belief formulas, we can’t go 
from “u:A” in line 3 to “u ∴ A.” The conclusion here has the faulty if-then form. 
Suppose that A entails B and you believe A; it doesn’t follow that you should 
believe B – maybe you should reject A and also reject B. 

1. ∼◇(A • B) 
∴ ∼(u:A • u:B) 

2. ∼◇(A • B) 
∴ (u:A ⊃ ∼u:B) 

3. ∼◇(A • B) 
∴ (u:A ⊃ ∼u:B) 

4. ∼◇(A • B) 
∴ (∼u:A ∨ ∼u:B) 

5. ∼◇(A • B) 
∴ (u:∼A ∨ u:∼B) 

6. ☐(A ⊃ B) 
u:A 
∴ u:B 

7. ☐(A ⊃ B) 
u:A 
∴ u:B 

8. ☐(A ⊃ B) 
∼u:∼A 
∴ ∼u:∼B 



 

9. ☐(A ⊃ B) 
∼u:B 
∴ u:∼A 

10. ∼◇(A • B) 
∴ ∼(u:A • ∼u:∼B)

13.2b Exercise: LogiCola OB 43. 
First appraise intuitively. Then translate into logic and say whether valid (and give a 
proof) or invalid (no refutation necessary). 

1. A logically entails B. 
Don’t believe B. 
∴ Don’t believe A. 

2. You believe A. 
∴ You don’t believe not-A. 0298 

3. You believe A. 
∴ Don’t believe not-A. 

4. ∴ If A is self-contradictory, then don’t believe A. 

5. ∴ Either believe A or believe not-A. 

6. Believe A. 
∴ Don’t believe not-A. 

7. ∴ Don’t combine believe that A is true with not believing that A is possible. 

8. (A and B) entails C. 
∴ Don’t combine believing A and believing B and not believing C. 

9. A logically entails (B and C). 
Don’t believe that B is true. 
∴ Believe that A is false. 

10. ∴ If A is true, then believe A. 



 

 

13.3 Believing and willing 

Now we’ll expand belief logic to cover willing as well as believing. We’ll do 
this by treating “willing” as accepting an imperative – just as we previously 
treated “believing” as accepting an indicative: 

u:A = You believe that A 
You accept (endorse, assent to, say in your heart) “A is true” 

u:A = You will that act A be done 
You accept (endorse, assent to, say in your heart) “Let act A be done” 

In translating “u:A,” we’ll often use terms more specific than “will” – like 
“act,” “resolve to act,” or “desire.”1 Which of these fits depends on whether 
the imperative is present or future, and whether it applies to oneself or to 
another. Here are three examples: 

If A is present: u:Au = You act (in order) to do A 
You accept the imperative for you to do A now 

If A is future: u:Au = You’re resolved to do A 
You accept the imperative for you to do A in the future 

If u≠ x: u:Ax = You desire (or want) that X do A 
You accept the imperative for X to do A 

And to accept “Would that I had done that” is to wish that you had done it. 
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There’s a subtle difference between “u:Au” and “Au”: 

u:Au = You act (in order) to do A 
You say in your heart, “Do A now” (addressed to yourself) 

Au = You do A 

The first is about what you try or intend to do, while the second is about what 
you actually do (perhaps accidentally). 

Section 12.3 noted that we’d lose important distinctions if we prefixed “O” 
only to indicatives. Something similar applies here. Consider these three wffs: 

 
1 “Desire” and similar terms can have a prima facie sense (“I have some desire to do A”) or an 
all-things-considered sense (“All things considered, I desire to do A”). Here I intend the latter. 



 

u:(∃x)(Kx • Rx) = You desire that some who kill repent 
You say in your heart “Would that some who kill repent” 

u:(∃x)(Kx • Rx) = You desire that some kill who repent 
You say in your heart “Would that some kill who repent” 

u:(∃x)(Kx • Rx) = You desire that some both kill and repent 
You say in your heart “Would that some kill and repent” 

These differ greatly. Underlining shows which parts are desired: repenting, 
or killing, or killing-and-repenting. If we attached “desire” only to indicative 
formulas, all three would translate the same, as “You desire that (∃x)(Kx • 
Rx)” (“You desire that there’s someone who both kills and repents”). So 
“desire” is better symbolized in terms of accepting an imperative. 

This imperative formula tells you to will something: 

u:A = Will that act A be done 
Accept (endorse, assent to, say in your heart) “Let act A be done” 

Again, our translation can use terms more specific than “will”: 

If A is present: u:Au = Act (in order) to do A 
Accept the imperative for you to do A now 

If A is future: u:Au = Be resolved to do A 
Accept the imperative for you to do A in the future 

If u≠ x: u:Ax = Desire (or want) that X do A 
Accept the imperative for X to do A 

Be careful about underlining. Underlining before “:” makes the formula an 
imperative (instead of an indicative). Underlining after “:” makes the formula 
about willing (instead of believing). Here are the basic cases: 0300 



 

 

Indicatives 

u:A = You believe A. 
u:A = You will A. 

Imperatives 

u:A = Believe A. 
u:A = Will A. 

These baseball examples may be helpful: 

Hub = You hit the ball 
Hub = Hit the ball 
OHub = You ought to hit the ball 
RHub = It’s all right for you to hit the ball 
 
u:Hub = You believe that you’ll hit the ball 
u:Hub = You act (with the intention) to hit the ball 
u:Hub = Believe that you’ll hit the ball 
u:Hub = Act (with the intention) to hit the ball 

13.3a Exercise: LogiCola N (WM & WT) 
Translate these English sentences into wffs (use “u” for “you”). 

Don’t act to do A without believing that A would be all right. 

∼(u:Au • ∼u:RAu) 

1. You want Al to sit down. [Use a for “Al” and Sx for “x sits down.”] 

2. Believe that Al is sitting down. 

3. You believe that Al ought to sit down. 

4. Believe that Al intends to sit down. 

5. Desire that Al sit down. 

6. Eat nothing. [Use Exy for “x eats y.”] 

7. Resolve to eat nothing. 

8. You fall down, but you don’t act (in order) to fall down. [Fx] 

9. You act to kick the goal, but you don’t in fact kick the goal. [Kx] 

10. If you believe that you ought to do A, then do A. 



 

11. Don’t combine believing that you ought to do A with not acting to do A. 

12. Do A, only if you want everyone to do A. (Act only as you’d want everyone to 
act.) [This is a crude form of Kant’s formula of universal law.] 

13. If X does A to you, then do A to X. (Treat others as they treat you.) [Use Axy. 
This principle entails “If X knocks out your eye, then knock out X’s eye.”] 

14. If you do A to X, then X will do A to you. (People will treat you as you treat 
them.) [This is often confused with the golden rule.] 

15. If you want X to do A to you, then do A to X. (Treat others as you want to be 
treated.) [This is the “literal golden rule.”] 

16. Don’t combine acting in order to do A to X with wanting X not to do A to you. 
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13.4 Willing proofs 

Besides inconsistency in beliefs, there’s also inconsistency in will: I might 
have inconsistent resolutions, violate ends-means consistency, or have moral 
beliefs that conflict with how I live. Belief logic can generate norms about 
consistent willing; thus it deals with practical reason as well as theoretical 
reason. 

Except for having more underlining, proofs with willing formulas work like 
before. Here’s a proof of “Don’t combine believing that it’s wrong for you to 
do A with acting to do A” (these parts clash – since if the believing is correct 
then the acting is wrong, and if the acting is correct then the believing is 
wrong): 

* [ ∴ ∼(u:O∼Au • u:Au) Valid 
* 1 ┌ asm: (u:O∼Au • u:Au) 
* 2 │ ∴ u:O∼Au {from 1} 
* 3 │ ∴ u:Au {from 1} 
* 4 │ u ∴ O∼Au {from 2} 
* 5 │ u ∴ Au {from 3} 
* 6 └ u ∴ ∼Au {from 4} 
* 7 ∴ ∼(u:O∼Au • u:Au) {from 1; 5 contradicts 6} 

The second part of the formula is expressed as “u:Au” (which is about what 
you try or intend to do) and not “Au” (which is about what you do, perhaps 
accidentally). The faulty translation “∼(u:O∼Au • Au)” forbids unintentional-
ly doing what one thinks is wrong; there’s no inconsistency in this, except 
perhaps externally. The correct version forbids this combination: thinking 
that A is wrong and at the same time acting with the intention of doing A. 



 

 

13.4a Exercise: LogiCola OW 44. 
Say whether valid (and give a proof) or invalid (no refutation necessary).  

∴ (u:O∼Au ⊃ ∼u:Au) 

* [ ∴ (u:O∼Au ⊃ ∼u:Au) Invalid 
* 1   asm: ∼(u:O∼Au ⊃ ∼u:Au) 
* 2 ∴ u:O∼Au—{from 1} 
* 3 ∴ u:Au—{from 1} 
* 4 u ∴ Au—{from 3} 

This says: “If you believe it’s wrong for you to do A, then don’t act to do A”; 
this leads to problems because it lacks the correct don’t-combine form and 
because your belief may be mistaken. Maybe you believe that it’s wrong to 
treat people fairly; then this formula tells you not to act to treat them fairly. 

1. ∴ ∼(u:A • u:∼A) 

2. ∴ u:(Ba ⊃ RBa) 

3. ∴ (u:Ba ∨ u:∼Ba) 

4. ∴ ∼((u:(A ⊃ B) • u:A) • ∼u:B) 

5. u:(x)OAx 
∴ u:Au 0302 

6. ∼u:Au 
∴ ∼u:OAu 

7. ∴ u:(OAu ⊃ Au) 

8. ∴ (u:Au ∨ ∼u:OAu) 

9. u:Au 
∴ ∼u:O∼Au 

10. ☐(A ⊃ B) 
∴ ∼(u:OA • ∼u:B)



 

13.4b Exercise: LogiCola OW 45. 
First appraise intuitively. Then translate into logic and say whether valid (and give a 
proof) or invalid (no refutation necessary). 

1. ∴ Don’t combine believing that everyone ought to do A with not acting / resolv-
ing to do A yourself. [This is belief logic’s version of “Practice what you preach.”] 

2. ∴ Don’t combine resolving to eat nothing with acting to eat this. [Use Exy and 
t.] 

3. “Attain this end” entails “If taking this means is needed to attain this end, then 
take this means.” 
∴ Don’t combine (1) wanting to attain this end and (2) believing that taking this 
means is needed to attain this end and (3) not acting to take this means. [Use E 
for “You attain this end,” N for “Taking this means is needed to attain this end,” M 
for “You take this means,” and u. The conclusion is an ends-means consistency 
imperative; you violate it if you want to become a doctor and believe that study-
ing is needed for you to do this and yet you don’t act to study.] 

4. “Attain this end” entails “If taking this means is needed to attain this end, then 
take this means.” 
∴ If you want to attain this end and believe that taking this means is needed to 
attain this end, then act to take this means. [Use E, N, M, and u. This formulation 
could tell people with evil ends to do evil things.] 

5. ∴ Don’t accept “For all x, it’s wrong for x to kill,” without being resolved that if 
killing were needed to save your family, then you wouldn’t kill. [Kx, N] 

6. ∴ Don’t accept “For all x, it’s wrong for x to kill,” without it being the case that if 
killing were needed to save your family then you wouldn’t kill. [Use Kx and N. A 
draft board challenged a pacifist friend of mine, “If killing were needed to save 
your family, then would you kill?” My friend answered, “I don’t know – I might 
lose control and kill (it’s hard to predict what you’ll do in a panic situation); but I 
now firmly hope and resolve that I wouldn’t kill.” Maybe my friend didn’t satisfy 
this present formula; but he satisfied the previous one.] 

7. ∴ Don’t combine accepting “It’s wrong for Bob to do A” with wanting Bob to do 
A. 



 

 

8. ∴ Don’t combine believing that the state ought to execute all murderers with 
not desiring that if your friend is a murderer then the state execute your friend. 
[Use s for “the state,” Exy for “x executes y,” Mx for “x is a murderer,” f for “your 
friend,” and u for “you.”] 

9. ∴ Don’t combine acting to do A with not accepting that A is all right. 

10. ∴ If you act to do A, then accept that act A is all right. 

11. ∴ Don’t combine acting to do A with not accepting that A is obligatory. 0303 

12. Believe that you ought to do A. 
∴ Act to do A. 

13. “It’s all right for you to do A” entails “It’s obligatory that everyone do A.” 
∴ Don’t combine acting to do A with not willing that everyone do A. [The con-
clusion is a crude version of Kant’s formula of universal law. To see that the 
premise and conclusion are questionable, substitute “become a doctor” for “do A” 
in both. We’ll see a better version of the formula in the next chapter.] 

13.5 Rationality translations 

Beliefs can be “evident” or “reasonable” for a given person. As I shade my 
eyes from the bright sun, my belief that it’s sunny is evident; it’s very solidly 
grounded. As I hear a prediction of rain, my belief that it will rain is reasona-
ble; my belief accords with reason but isn’t well-grounded enough to be 
evident. “Evident” expresses a higher certitude than does “reasonable.” We’ll 
symbolize these notions as follows: 

A is evident to you 
= Ou:A 
It’s obligatory (rationally required) that you believe A 
Insofar as intellectual considerations are concerned (including your experiences), 
you ought to believe A 

A is reasonable for you to believe 
= Ru:A 
It’s all right (rationally permissible) that you believe A 
Insofar as intellectual considerations are concerned (including your experiences), 
it would be all right for you to believe A 



 

Neither entails that you believe A; to say that a proposition A that you believe 
is evident / reasonable, we’ll use “(u:A • Ou:A)” / “(u:A • Ru:A).” “Evident” 
and “reasonable” are relative to an individual person; “It’s raining” might be 
evident to someone outside but not to someone inside in a windowless room. 

Here are further translations: 

It would be unreasonable for you to believe A 
= ∼Ru:A 
= It’s obligatory that you not believe A 
= O∼u:A 

It would be reasonable for you to take no position on A 
= R(∼u:A • ∼u:∼A) 

It’s evident to you that if A then B 
= Ou:(A ⊃ B) 

If it’s evident to you that A, then it’s evident to you that B 
= (Ou:A ⊃ Ou:B) 

You ought not to combine believing A with believing not-A 
= O∼(u:A • u:∼A) 

Since “O” and “R” attach only to imperatives, “Ou:A” and “Ru:A” aren’t wffs. 
We can almost define “knowledge” simply as “evident true belief”: 0304 

You know that A 
= uKA 
= (Ou:A • (A • u:A)) 
A is evident to you, A is true, and you believe A 

Knowing requires more than just true belief; if you guess right, you have true 
belief without knowledge. Knowledge must be well-grounded; more than just 
being reasonable (permitted by the evidence), it must be evident (required 
by the evidence). The claim that knowledge is evident true belief is plausible. 
But there are cases (like example 10 of §13.6b) where we have one but not 
the other. So this definition of “knowledge” is flawed; but it’s still a useful 
approximation. 

13.5a Exercise: LogiCola N (RM & RT) 
Translate these English sentences into wffs. When an example says a belief is evident 
or reasonable, but doesn’t say to whom, assume it means evident or reasonable to 
you. 



 

 

You ought to want Al to sit down. 

Ou:Sa 

We can paraphrase the sentence as “It’s obligatory that you say in your heart 
‘Would that Al sit down.’” 

1. You ought to believe that Al is sitting down. 

2. It’s evident to you that Al is sitting down. 

3. It’s reasonable for you to believe that Al ought to sit down. 

4. Belief in God is reasonable (for you). [G] 

5. Belief in God is unreasonable for everyone. 

6. It’s not reasonable for you to believe that belief in God is unreasonable for 
everyone. 

7. Belief in God is reasonable only if “There is a God” is logically consistent. 

8. You ought not to combine believing that there is a God with not believing that 
“There is a God” is logically consistent. 

9. You ought not to combine believing that you ought to do A with not acting to do 
A. 

10. You know that x = x. [Use the flawed definition of knowledge given previ-
ously.] 

11. If agnosticism is reasonable, then theism isn’t evident. [Agnosticism = not 
believing G and not believing not-G; theism = believing G.] 

12. You have a true belief that A. [You believe that A, and it’s true that A.] 

13. You mistakenly believe A. 

14. It would be impossible for you mistakenly to believe A. 

15. A is evident to you, if and only if it would be impossible for you mistakenly to 
believe A. [This idea is attractive but quickly leads to skepticism.] 

16. It’s logically possible that you have a belief A that’s evident to you and yet 
false. 

17. It’s evident to all that if they doubt then they exist. [Dx, Ex] 

18. If A entails B, and B is unreasonable, then A is unreasonable. 

19. It’s permissible for you to do A, only if you want everyone to do A. 

20. If you want X to do A to you, then you ought to do A to X. [Use Axy. This one 
and the next are versions of the golden rule.] 

21. You ought not to combine acting to do A to X with wanting X not to do A to 
you. 0305 



 

22. It’s necessary that, if you’re in pain, then it’s evident to you that you’re in pain. 
[Use Px. This claims that “I’m in pain” is a self-justifying belief. Many think that 
there are two kinds of self-justifying belief: those of experience (as in this exam-
ple) and those of reason (as in the next example).] 

23. It’s necessary that, if you believe that x = x, then it’s evident to you that x = x. 
[Perhaps believing “x = x” entails understanding it, and this makes it evident.] 

24. If you have no reason to doubt your perceptions and it’s evident to you that 
you believe that you see a red object, then it’s evident to you that there is an 
actual red object. [Use Dx for “x has reason to doubt his or her perceptions,” Sx 
for “x sees a red object,” and R for “There is an actual red object.” Roderick 
Chisholm claimed that we need evidential principles like this (but more complex) 
to show how beliefs about external objects are based on beliefs about percep-
tions.] 

25. If you have no reason to doubt Jenny’s sincerity and it’s evident to you that 
she shows pain behavior, then it’s evident to you that Jenny feels pain. [Use Bx, 
Dx, Fx, and j. This exemplifies an evidential principle about knowing other minds.] 

13.6 Rationality proofs 

Deontic belief proofs, while not requiring further inference rules, often use 
complex world prefixes like “Du” or “Duu.” Here’s a proof of a conscientious-
ness principle, “You ought not to combine believing that it’s wrong for you to 
do A with acting to do A”: 

* [ ∴ O∼(u:O∼Au • u:Au) Valid 
* 1 ┌ asm: ∼O∼(u:O∼Au • u:Au) 
* 2 │ ∴ R(u:O∼Au • u:Au) {from 1} 
* 3 │ D ∴ (u:O∼Au • u:Au) {from 2} 
* 4 │ D ∴ u:O∼Au {from 3} 
* 5 │ D ∴ u:Au {from 3} 
* 6 │ Du ∴ O∼Au {from 4} 
* 7 │ Du ∴ Au {from 5} 
* 8 └ Du ∴ ∼Au {from 6} 
* 9 ∴ O∼(u:O∼Au • u:Au) {from 1; 7 contradicts 8} 

We get to line 5 using propositional and deontic rules. Lines 6 and 7 follow 
using rule B+. Here we write belief world prefix “u” after the deontic world 
prefix “D” used in lines 3 to 5; world Du is a belief world of u that depends on 
what deontic world D tells u to accept. We soon get a contradiction. 

“O∼(u:O∼Au • u:Au)” is a formal ethical principle – an ethical principle that 
can be formulated using the abstract notions of our logical systems plus 
variables (like “u” and “A”) that stand for any person and action. The next 
chapter will focus on another formal ethical principle – the golden rule. 0306 



 

 

13.6a Exercise: LogiCola O (R & M) 46. 
Say whether valid (and give a proof) or invalid (no refutation necessary). 

Ru:O(A • B) 
∴ Ru:OA 

1* 1   Ru:O(A • B) Valid 
*1 [ ∴ Ru:OA 
* 12 ┌ asm: ∼Ru:OA 
* 13 │ ∴ O∼u:OA {from 2} 
* 14 │ D ∴ u:O(A • B)—{from 1} 
* 15 │ D ∴ ∼u:OA—{from 3} 
* 16 │ Du ∴ ∼OA—{from 5} 
* 17 │ Du ∴ O(A • B)—{from 4} 
* 18 │ Du ∴ R∼A—{from 6} 
* 19 │ DuDD ∴ ∼A—{from 8} 
* 10 │ DuDD ∴ (A • B)—{from 7} 
* 11 └ DuDD ∴ A—{from 10} 
* 12 ∴ Ru:OA {from 2; 9 contradicts 11} 

(If you can follow this example, you needn’t fear proofs involving complex 
world prefixes.) 

1. ☐(A ⊃ B) 
∼Ru:B 
∴ ∼Ru:A 

2. O∼u:A 
∴ Ou:∼A 

3. R(∼u:A • ∼u:∼A) 
∴ ∼Ou:A 

4. Ru:∼A 
∴ R∼u:A 

5. Oa:(C • D) 
∴ Ob:C 

6. ∴ O∼(u:A • ∼u:◇A) 

7. ∴ (Ru:A ⊃ ◇A) 



 

8. ☐(A ⊃ B) 
∴ (R∼u:B ⊃ Ru:∼A) 

9. Ru:OAu 
∴ Ru:◇Au 

10. Ou:(A ⊃ OBu) 
∴ ∼(u:A • ∼u:Bu)

13.6b Exercise: LogiCola O (R & M) 47. 
First appraise intuitively. Then translate into logic and say whether valid (and give a 
proof) or invalid (no refutation necessary). Use G for “There is a God” and u for “you.” 
When an example says a belief is evident or reasonable, but don’t say to whom, 
assume it means evident or reasonable to you. 

1. Theism is evident. 
∴ Atheism is unreasonable. [Theism = believing G; atheism = believing not-G.] 

2. Theism isn’t evident. 
∴ Atheism is reasonable. 

3. ∴ You ought not to combine believing you ought to do A with not acting to do A. 

4. ∴ If you believe you ought to do A, then you ought to do A. 

5. “All men are endowed by their creator with certain unalienable rights” is 
evident. 
“All men are endowed by their creator with certain unalienable rights” entails 
“There is a creator.” 
∴ “There is a creator” is evident. [Use E and C. The opening lines of the US Dec-
laration of Independence claim E to be self-evident.] 0307 

6. It would be reasonable for you to believe that A is true. 
It would be reasonable for you to believe that B is true. 
∴ It would be reasonable for you to believe that A and B are both true. 

7. “If I’m hallucinating, then physical objects aren’t as they appear to me” is evi-
dent to me. 
It’s not evident to me that I’m not hallucinating. 
∴ It’s not evident to me that physical objects are as they appear to me. [Use H, P, 
and i. This argument for skepticism is essentially from Descartes.] 



 

 

8. “If I’m hallucinating, then physical objects aren’t as they appear to me” is evi-
dent to me. 
If I have no special reason to doubt my perceptions, then it’s evident to me that 
physical objects are as they appear to me. 
I have no special reason to doubt my perceptions. 
∴ It’s evident to me that I’m not hallucinating. [Use H, P, D, and i. This is John 
Pollock’s answer to the previous argument.] 

9. It’s evident to you that taking this means is needed to attain this end. 
“Attain this end” entails “If taking this means is needed to attain this end, then 
take this means.” 
∴ You ought not to combine wanting to attain this end with not acting to take this 
means. [Use N for “Taking this means is needed to attain this end,” E for “You 
attain this end,” M for “You take this means,” and u.] 

10. Al believes that Smith owns a Ford. 
It’s evident to Al that Smith owns a Ford. 
Smith doesn’t own a Ford. 
Smith owns a Chevy. 
Al believes that Smith owns a Ford or a Chevy. 
Al doesn’t know that Smith owns a Ford or a Chevy. 
∴ Al has an evident true belief that Smith owns a Ford or a Chevy; but Al doesn’t 
know that Smith owns a Ford or a Chevy. [Use a for “Al,” F for “Smith owns a 
Ford,” C for “Smith owns a Chevy,” and K for “Al knows that Smith owns a Ford or 
a Chevy.” This argument from Edmund Gettier attacks the definition of knowledge 
as evident true belief.] 

11. It’s evident to you that if it’s all right for you to hit Al then it’s all right for Al to 
hit you. 
∴ Don’t combine acting to hit Al with believing that it would be wrong for Al to hit 
you. [Use Hxy, u, and a. The premise is normally true; but it could be false if you 
and Al are in different situations (maybe Al needs to be hit to dislodge food he’s 
choking on). The conclusion resembles the golden rule.] 

12. ∴ It’s reasonable to want A to be done, only if it’s reasonable to believe that A 
would be all right. 

13. It’s evident that A is true. 
∴ A is true. 0308 



 

14. It’s reasonable to combine believing that there is a perfect God with believing 
T. 
T entails that there’s evil in the world. 
∴ It’s reasonable to combine believing that there is a perfect God with believing 
that there’s evil in the world. [Use G, T, and E. Here T (for “theodicy”) is a rea-
sonable explanation of why God permits evil, perhaps “The world has evil because 
God, who is perfect, wants us to make significant free choices to struggle to bring 
a half-completed world toward its fulfillment; moral evil comes from the abuse of 
human freedom and physical evil from the half-completed state of the world.”] 

15. It’s evident to you that if there are moral obligations then there’s free will. 
∴ Don’t combine accepting that there are moral obligations with not accepting 
that there’s free will. [M, F] 

16. Theism is reasonable. 
∴ Atheism is unreasonable. 

17. Theism is evident. 
∴ Agnosticism is unreasonable. [Agnosticism = not believing G and not believing 
not-G.] 

18. ∴ It’s reasonable for you to believe that God exists, only if “God exists” is 
consistent. [Belief logic regards a belief as “reasonable” only if in fact it’s con-
sistent. In a more subjective sense, someone could “reasonably” believe a proposi-
tion that’s reasonably but incorrectly taken to be consistent.] 

19. ∴ If A is unreasonable, then don’t believe A. 

20. You ought not to combine accepting A with not accepting B. 
∴ If you accept A, then accept B. 

21. ∴ You ought not to combine wanting A not to be done with believing that A 
would be all right. 

22. It’s reasonable not to believe that there is an external world. 
∴ It’s reasonable to believe that there’s no external world. [E] 

23. It’s reasonable to believe that A ought to be done. 
∴ It’s reasonable to want A to be done. 

24. ∴ Either theism is reasonable or atheism is reasonable. 



 

 

25. It’s evident to you that if the phone is ringing then you ought to answer it. 
It’s evident to you that the phone is ringing. 
∴ Act on the imperative “Answer the phone.” [P, Ax] 

26. A entails B. 
Believing A would be reasonable. 
∴ Believing B would be reasonable. 

27. Atheism isn’t evident. 
∴ Theism is reasonable. 0309 

28. Atheism is unreasonable. 
Agnosticism is unreasonable. 
∴ Theism is evident. 

29. A entails B. 
You accept A. 
It’s unreasonable for you to accept B. 
∴ Don’t accept A, and don’t accept B. 

30. It would be reasonable for anyone to believe A. 
∴ It would be reasonable for everyone to believe A. [Imagine a controversial 
issue where everyone has the same evidence. Could it be more reasonable for the 
community to disagree? If so, the premises of this argument might be true but the 
conclusion false.] 

13.7 A sophisticated system 

The system of belief logic that we’ve developed is oversimplified in three 
ways. We’ll now sketch a more sophisticated system. 

First, “One ought to be consistent” requires qualification. For the most part, 
we do have a duty to be consistent. But, since “ought” implies “can,” this duty 
is nullified when we’re unable to be consistent; such inability can come from 
emotional turmoil1 or our incapacity to grasp complex logical relations. And 
the obligation to be consistent can be overridden by other factors; if Dr Evil 
would destroy the world unless we were inconsistent in some respect, then 
surely our duty to be consistent would be overridden. And the duty to be 
consistent applies, when it does, only to persons; yet our principles so far 

 
1 Perhaps you see (and believe) that your wife was in a car that blew up and you believe that 
anyone in such a car would be dead – but you’re psychologically unable at the moment to 
believe that your wife is dead. Then you’re psychologically unable at the moment to be 
consistent about this. 



 

would entail that rocks and trees also have a duty to be consistent. 
For these reasons, it would be better to qualify our “You ought to be con-

sistent” principle, as in the following rough formulation:1 

If you are a person able to be consistent in certain ways, grasp (or should grasp) 
the logical relationships, and your being consistent wouldn’t have disastrous 
consequences, then you ought to be consistent in these ways. 

Let’s abbreviate the qualification in the box (“You are …”) as “Qu.” Then we 
could reformulate our inference rules by adding a “Qu” premise: 

B+ 
 

u:A, Qu → u ∴ A, 
use any string of u’s 

   

B– 
 

∼u:A, Qu → u ∴ ∼A, 
use a new string of u’s 

0310 With these changes, we’d need plentiful “Qu” provisos in the previous 
sections. 

A second problem is that our system can prove a conjunctivity principle: 

O∼((u:A • u:B) • ∼u:(A • B)) 
You ought not to combine believing A and believing B and not believing A-and-B 

This leads to questionable results in the lottery paradox. Suppose six people 
have an equal chance to win a lottery. You know that one of the six will win; 
but the probability is against any given person winning. Presumably it could 
be reasonable for you to accept statements 1 to 6 without also accepting 
statement 7 (which means “None of the six will win”): 

1. Person 1 won’t win. 
2. Person 2 won’t win. 
3. Person 3 won’t win. 
4. Person 4 won’t win. 
5. Person 5 won’t win. 

 
1 Section 2.3 of my Formal Ethics (London: Routledge, 1996) has additional qualifications. 



 

 

6. Person 6 won’t win. 

7. Person 1 won’t win, person 2 won’t win, person 3 won’t win, person 4 won’t 
win, person 5 won’t win, and person 6 won’t win. 

But multiple uses of our conjunctivity principle would entail that one ought 
not to accept statements 1 to 6 without also accepting their conjunction 7. So 
the conjunctivity principle, which is provable using our rules B+ and B–, 
sometimes leads to questionable results. 

I’m not completely convinced that it’s reasonable to accept statements 1 to 
6 but not accept 7. If it is reasonable, then we have to reject the conjunctivity 
principle and modify our consistency ideal. Let’s call the ideal of “completely 
consistent” defined in §13.2 broad consistency. Perhaps we should strive, not 
for this, but for narrow consistency. Let S be the set of indicatives and imper-
atives that X accepts; then X is narrowly consistent if and only if: 

1. every pair of items of set S is logically consistent, and 
2. X accepts whatever follows from any single item of set S. 

Believing the six lottery statements but not their conjunction is narrowly 
consistent but not broadly consistent. 

To have our rules mirror the ideal of narrow consistency, we’d add to rules 
B+ and B– that any belief world prefix used in these rules cannot have 
occurred more than once in earlier lines. With this change, only a few argu-
ments in this chapter would cease being provable. And many of these could 
be salvaged by adding an additional conjunctivity premise like the following 
(which would be true in many cases): “You ought not to combine believing A 
and believing B and not believing A-and-B.” Conjunctivity presumably fails 
only in rare lottery-type cases. 

The third problem is that we’ve been translating these two statements the 
same way, as “Ou:A,” even though they don’t mean the same thing: 0311 

“You ought to believe A” ≠ ”A is evident to you” 

Suppose you ought to trust your wife and give her the benefit of every 
reasonable doubt; you ought to believe what she says, even though the 
evidence isn’t so strong as to make this belief evident. Here there’s a differ-
ence between “ought to believe” and “evident.” And so it may be better to use 
a different symbol (perhaps “O*”) for “evident”: 

You ought to believe A 
= Ou:A 
All things considered, you ought to believe A 



 

A is evident to you 
= O*u:A 
Insofar as intellectual considerations are concerned (including your experiences), 
you ought to believe A 

“O” is an all-things-considered “ought,” while “O*” is a prima facie “ought” 
that considers only the intellectual basis for the belief. If we added “O*” to our 
system, we’d need corresponding deontic inference rules for it. Since “O*A” is 
a prima facie “ought,” it wouldn’t entail the corresponding imperative or 
commit one to action; so we’d have to weaken the rule for dropping “O*” so 
we couldn’t derive “u:A” from “O*u:A.” 

These three refinements would overcome some problems but make our 
system much harder to use. We seldom need the refinements. So we’ll keep 
the naïve belief logic of earlier sections as our “official system” and build on it 
in the next chapter. But we’ll be conscious that this system is oversimplified 
in various ways. If and when the naïve system gives questionable results, we 
can appeal to the sophisticated system to clear things up. 



 

14 A Formalized Ethical Theory 

This chapter gives a precise logical formulation of an ethical theory, one that 
builds on ideas from Immanuel Kant and R. M. Hare.1 This gives an example 
of how to use logical systems to formalize larger philosophical views. As in 
the belief-logic chapter, we’ll systematize consistency norms. But here we 
feature the golden rule (roughly, “Treat others as you want to be treated”). 

We’ll first consider practical reason, highlighting the role of consistency. 
Then we’ll focus on the golden rule. After seeing problems with the usual 
wording, we’ll give a better formulation and an intuitive argument for it. 
Then we’ll add symbols and inference rules to formalize these ideas. We’ll 
end with a formal proof of the golden rule in logical symbols. 

14.1 Practical reason 

The most important elements of practical reason are factual understanding, 
imagination, and consistency. As we decide how to act on important matters, 
and as we form related desires or moral beliefs, we ought as far as practically 
possible to be vividly aware of the relevant facts, avoid falsehoods, and be 
consistent. 

Factual understanding requires that we know the facts of the case: circum-
stances, alternatives, consequences, and so on. To the extent that we’re 
misinformed or ignorant, our moral thinking is flawed. Of course, we can 
never know all the facts; and often we have no time to research a problem 
and must act quickly. But we can act out of greater or lesser knowledge. 
Other things being equal, a more informed judgment is a more rational one. 

We also need to understand ourselves, and how our feelings and moral 
beliefs originated; we can to some extent neutralize our biases if we under-
stand their origin. Some people are hostile toward a group because they were 
brought up that way, especially through false stereotypes. Their attitudes 
might change if they understood the source of their hostility and broadened 
 
1 For fuller accounts, see my Ethics and the Golden Rule (New York: Routledge, 2013) and 
Ethics and Religion (New York: Cambridge University Press, 2016), my technical Formal Ethics 
(New York: Routledge, 1996), or my simpler Ethics: A Contemporary Introduction, 3rd ed. 
(New York: Routledge, 2018). See also Immanuel Kant’s Groundwork of the Metaphysics of 
Morals (New York: Harper & Row, 1964) and R. M. Hare’s Freedom and Reason (New York: 
Oxford University Press, 1963). 



 

their experience 0313 and knowledge; if so, then their attitudes are less 
rational, since they exist because of a lack of experience and self-knowledge. 

Imagination (role reversal) is a vivid and accurate awareness of what it 
would be like to be in the place of those affected by our actions. This differs 
from just knowing facts. So in dealing with poor people, besides knowing 
facts about them, we also need to appreciate and envision what these facts 
mean to their lives; movies, literature, and personal experience can help us to 
visualize another’s life. We also need to appreciate future consequences of 
our actions on ourselves; knowing that drugs would have harmful effects on 
us differs from being able to imagine these effects in a vivid and accurate 
way. 

Consistency (which we’ll explore in the next section) demands, among 
other things, a coherence between our beliefs, our ends and means, and our 
moral judgments and how we live. We need all the dimensions of moral 
rationality working together for our practical thinking to be fully reasonable; 
consistency is important but isn’t everything. Appeals to consistency in ethics 
are often distressingly vague; my goal here is to clarify and defend consisten-
cy norms. 

The most important part of practical reason is the golden rule. As we de-
cide how to act toward others, we ought as far as practically possible to be 
vividly aware of the relevant facts (especially about how our action affects 
the other person and what it would be like to be treated that way), avoid 
falsehoods (about this), and be consistent (so we don’t treat another as we’re 
unwilling that we be treated in the same situation). 

14.2 Consistency 

Consistency is the basis for key elements of practical reason, including 
reflective equilibrium, ends-means rationality, and the golden rule. Our 
belief-logic chapter touched on these three consistency norms:1 

• Logicality: Avoid inconsistency in beliefs. 
• Ends-means consistency: Keep your means in harmony with your ends. 
• Conscientiousness: Keep your actions, resolutions, and desires in harmony 

with your moral beliefs. 

Our belief logic contains logicality norms forbidding inconsistent beliefs: 

 
1 We noted at the end of the last chapter that consistency duties require qualifiers, like 
“insofar as you’re able to be consistent in these ways and no disaster would result from so 
doing ….” This also applies to the golden rule. We’ll regard such qualifiers as implicit through-
out. 



 

 

(∼◇(A • B) ⊃ ∼(u:A • u:B)) 
Don’t combine inconsistent beliefs. 
If A is inconsistent with B, then don’t combine believing A with believing B. 0314 

(☐(A ⊃ B) ⊃ ∼(u:A • ∼u:B)) 
Don’t believe something without believing what follows from it. 
If A logically entails B, then don’t combine believing A with not believing B. 

Consistency pushes us toward a reflective equilibrium in our thinking 
between principles and concrete judgments. Suppose I accept an appealing 
moral principle but reject an unappealing concrete judgment that it logically 
entails. Then something has to give; I have to reject the principle or accept 
the concrete judgment. Before deciding which to do, I need to investigate the 
principle further. Much moral thinking follows this reflective-equilibrium 
pattern. 

Our belief logic can prove this ends-means consistency argument (§13.4b 
#3): 

☐(E ⊃ (N ⊃ M)) 
∴ ∼((u:E • u:N) • ∼u:M) 

“Attain this end” entails “If taking this means is needed to attain this end, then 
take this means.” 
∴ Don’t combine wanting to attain this end, believing that taking this means is 
needed to attain this end, and not acting to take this means.1 

Ends and means are important to human life. We have many goals – including 
food, shelter, health, companionship, and meaningfulness. Practical reason 
has us try to understand our goals, investigate how to satisfy them, satisfy 
ends-means consistency, and reject ends or means that lead us to violate 
golden-rule consistency. 

Our belief logic also can prove conscientiousness principles that prescribe 
a harmony between our moral beliefs and how we live. Here’s an example: 

∼(u:OAu • ∼u:Au)) 
Don’t combine believing that you ought to do A with not acting to do A. 

This is a formal ethical principle – an ethical principle that can be formulated 
 
1 If we added “[c]” for causal necessity (see Arthur Burks’s Chance, Cause, Reason (Chicago: 
University of Chicago Press, 1977)) to our system, then “∼((u:E • u:[c](∼M ⊃ ∼E)) • ∼u:M)” 
could be provable by itself: “Don’t combine wanting to attain this end, believing that taking this 
means is needed to attain this end, and not acting to take this means.” 



 

using the abstract notions of our logical systems plus variables (like “u” and 
“A,” which stand for any person and action). All our consistency requirements 
are formal in this sense. 

Consistency is important in criticizing norms. Suppose I was taught to 
discriminate against short people and to believe shortism: “All short people 
ought to be beat up, just because they’re short.” Now shortism entails “If I 
were short, then I ought to be beat up”; so consistency in beliefs commits me 
to accepting this too. But then, by conscientiousness, I’m committed to 
desiring that if I were short then I be beat up. So consistency forbids this 
combination: 0315 

• I believe “All short people ought to be beat up, just because they’re short.” 
• I don’t desire that if I were short then I be beat up. 

When I understand short people (including how it feels for them to be beat 
up) and how my negative attitudes about them originated (through social 
indoctrination), and when I vividly imagine myself being beaten up in their 
place, then I likely won’t desire that if I were short then I be beat up. But then 
I’m inconsistent in accepting shortism. The same general approach – which 
may remind us of the golden rule – can be used to counter other discrimina-
tory principles (racial, religious, gender, sexual orientation, etc.). 

Here are three further formal consistency requirements: 

• Impartiality: Make similar evaluations about similar actions, regardless of the 
individuals involved.1 

• Golden rule: Treat others only as you consent to being treated in the same 
situation. 

• Formula of universal law: Act only as you’re willing for anyone to act in the 
same situation – regardless of imagined variations of time or person. 

We’ll add logical machinery for all three, but mostly focus on the golden rule. 

14.3 The golden rule 

GR says “Treat others as you want to be treated.” GR is a global standard, 
endorsed by nearly every religion and culture, important for professionals 
and families across the planet, and a key part of a growing global-ethics 

 
1 I defend only a weak impartiality, not a strong utilitarian impartiality that claims that we 
ought to promote everyone’s good equally. Weak impartiality lets us accept that we ought to 
have greater concern for our children than for strangers, so long as we accept that other 
parents also ought in similar cases to have a greater concern for their children. 



 

 

movement. 
Here’s a story to introduce GR.1 There once was a grandpa who lived with 

his family. As Grandpa grew older, he began to slobber and spill his food; so 
the family had him eat alone. When he dropped his bowl and broke it, they 
scolded him and got him a cheap wooden bowl. Grandpa was so unhappy. 
Now one day the young grandson was working with wood. “What are you 
doing?” Mom and Dad asked. “I’m making a wooden bowl,” he said, “for when 
you two get old and must eat alone.” Mom and Dad then looked sad and 
realized how they were mistreating Grandpa. So they decided to keep quiet 
when he spills his food and let him eat with the family. 

The heart of the golden rule is switching places. You step into another’s 
shoes. What you do to Grandpa, you imagine being done to you. You ask, “Am 
I willing that if I were in the same situation then I be treated that same way?” 
0316 

The golden rule seems simple. But the usual loose wordings invite objec-
tions; many academics dismiss GR as a folksy proverb that self-destructs 
when analyzed carefully. But I think that we just need to understand GR more 
clearly. I put my improved wording on a shirt.2 It has “the golden rule” with 
symbols for eight GR religions (Bahá’í, Buddhism, Christianity, Confucianism, 
Hinduism, Islam, Judaism, and Taoism). It also has my GR formula: 

 
Treat others only as you consent to being treated in the same 

situation. 

My formula is intended to help us apply GR to difficult cases. 
My GR formula commands consistency. It demands a fit between my act 

toward another and my desire about how I’d be treated in the same situation. 
It doesn’t replace other moral norms or theories, or give all the answers. It 
 
1 This traditional “The old man and his grandson” story was published by the Brothers Grimm 
in 1812 and is online (http://www.gutenberg.org/ebooks/2591). 
2 You can get your own golden-rule shirt, in many styles and colors, from my 
http://www.harryhiker.com/gr GR Web page. This popular page also has GR information, 
videos, stories, chronology, links, and so on. 

http://www.harryhiker.com/gr
http://www.gutenberg.org/ebooks/2591


 

doesn’t say specifically what to do (so it doesn’t command bad actions if we 
have flawed desires); instead, it forbids an inconsistent combination: 

• I do A to another. 
• I’m unwilling that if I were in the same situation then A be done to me.1 

GR, far from being vague, is a precise consistency test. Suppose I force 
Grandpa to eat alone. I switch places in my mind: I imagine that I am forced to 
eat alone in the same situation. Do I condemn this same act done to me? Then 
I condemn how I treat Grandpa. I condemn how I treat another, if I condemn 
the same act when I imagine it done to me in the same situation. 

People who reject GR usually understand it crudely, often as: 

Literal GR: If you want X to do A to you, then do A to X. 

The literal GR “(u:Axu ⊃ Aux)” has no same-situation clause and it commands 
a specific act (instead of forbidding an inconsistent combination). This literal 
GR often works well. Suppose you want Lucy to be kind to you; then you’re to 
be kind to her. Or suppose you want Adam not to hurt you (or rob you, or be 
rude to you); then you aren’t to do these things to him. These applications 
seem sensible. But the literal GR can lead to absurdities in two ways. 0317 

First, you may be in a different situation from the other person. Consider 
this instance of the literal GR: 

Suppose your father is hard of hearing: If you want your father not to speak more 
loudly to you (who hear well), then don’t speak more loudly to him. 

This ignores differences between you and your father. To get around the 
problem, you need a same-situation qualifier: “How do I desire that I’d be 
treated if I were in the same situation as my father (and thus hard of hear-
ing)?” You desire that if you were in his same situation then people would 
speak loudly to you; so you speak loudly to him. 

We can take “same” situation here as “exactly similar” or “relevantly simi-
lar.” In the first case, I imagine myself in my father’s exact place (with all his 
properties). In the second, I imagine myself having those properties of my 
father (such as being hard of hearing) that I think are or might be relevant to 
deciding how to speak to him. Either approach works fine. 
 
1 “Unwilling” here can be taken as “objecting to.” Then the forbidden combination is: (1) I do A 
to another and (2) I object to the idea of A being done to me in the same situation. If we’re 
playing chess, I object to the idea of your cheating to beat me (I’m unwilling that you do this) 
but I don’t object to the idea of your beating me if you do so fairly (I’m in this sense “willing” 
that you do this). (I thank Tom Carson for this clarification and example.) 



 

 

Here’s another case where the literal GR leads to problems: 

To a patient: If you want the doctor to remove your appendix, then remove the 
doctor’s appendix. 

Again, we need a same-situation qualifier. The patient clearly doesn’t desire 
that if he were in the place of his doctor (with a healthy appendix), then his 
appendix be removed by a sick patient ignorant of medicine. As you apply GR, 
ask this: 

Am I willing that if I were in the same situation then this be done to me? 

The other person’s situation includes likes and dislikes. So if you’re a waiter 
who hates broccoli, but your customer likes and orders it, then you imagine 
being served broccoli in a hypothetical situation where you like and order it. 

GR is about our present reaction to a hypothetical situation; it isn’t about 
how we’d react if we were in that situation. Suppose I have a two-year-old 
son, little Will, who puts fingers into electrical outlets. I try to discourage him 
from doing this, but nothing works. Finally, I decide that I need to punish him 
when he does it. I want to see if I can punish him without violating GR. I 
should ask this: 

Am I willing that if I were in the same situation as little Will then I be punished? 

I’d answer yes (since punishment would likely have saved my life). I might 
add, “I’m thankful that my parents punished me in such cases, even though I 
wasn’t pleased then.” So here I can punish my child without breaking GR, 
since I’m willing that if I were in the same situation then I be treated the same 
way. 0318  

I’ve been underlining “willing that if,” because this phrase guards against a 
common GR misunderstanding, one that would force us to do whatever the 
other person wants. People often ask, wrongly, “If I were in the other per-
son’s place, how would I then want to be treated?” Now if you were in little 
Will’s place (not knowing about electricity and not wanting to be punished), 
then you wouldn’t want to be punished. Misapplying GR, we’d conclude that 
we shouldn’t punish Will for putting his fingers into outlets. So it’s better to 
apply GR as explained above. I can punish little Will (to save his life), since 
I’m now willing that if I were in his situation then I be punished. In asking the 
GR question, say “willing that if”: 



 

Am I willing that if I were in the same situation then this be done to me? 

Immanuel Kant’s 1785 objection to GR rests on this confusion. Here you’re 
a judge, about to sentence a dangerous criminal to jail. The criminal protests 
and appeals (incorrectly) to GR: “If you were in my place, you wouldn’t want 
to be sent to jail; so by the golden rule you can’t send me to jail.” You should 
respond: “I can send you to jail, because I’m now willing that if I were in your 
place (as a dangerous criminal) then I be sent to jail.” You could add, “If I do 
such things, then please send me to jail too!”1 

Sometimes we need to act against what others want. We may need to stop 
a baby who wants to put fingers into outlets, refuse a salesperson who wants 
to sell us overpriced products, fail a student who doesn’t work, defend 
ourselves against an attacker, or jail a dangerous criminal. GR lets us act 
against what others want, as long as we’re now willing that if we were in their 
situation then we be treated similarly. 

Recall that the literal GR can lead to absurdities in two ways. We dealt with 
the different-circumstances problem by adding a same-situation clause. A 
second problem is that the literal GR can tell us to do bad things if we have 
flawed desires about how we’re to be treated. I’ll give three examples. 

There once was a woman named Electra. Electra wanted to follow GR, but 
she got her facts wrong; she thought electrical shocks were pleasant. Since 
she wanted others to shock her, she applied the literal GR and shocked them: 

To Electra (who thinks electrical shocks are pleasant): If you want others to give 
you electrical shocks, then give them electrical shocks. 

Given flawed desires, the literal GR can command evil actions. 0319 
We’ll use a triple strategy for dealing with flawed desires. (1) Emphasize 

that GR, instead of telling us specifically what to do, just forbids a combina-
tion: 

• I give electrical shocks to another. 
• I’m unwilling that if I were in the same situation then electrical shocks be 

given to me. 

Since the consistency GR doesn’t say specifically what to do, it doesn’t tell 
Electra to do evil things (like shock others). 

(2) Emphasize that GR consistency, to lead reliably to right action, needs to 
combine with other things, like knowledge and imagination. If we’re misin-

 
1 Groundwork of the Metaphysics of Morals, trans. H. Paton (New York: Harper & Row, 1964), 
p. 97 footnote. GR requires wide scope, roughly, “I desire that if A happened then B be done” 
“i:(A ⊃ B),” instead of “If A happened then I’d desire that B be done” “(A ⊃ i:B).” 



 

 

formed, then we might do evil things without violating GR consistency. Here 
Electra shocks others (an evil thing) but satisfies GR consistency (she’s 
willing that she be shocked in similar cases), since she’s misinformed and 
thinks these shocks are pleasurable. 

(3) Use reason against flawed desires. Here we’d show Electra that electri-
cal shocks are painful (perhaps by giving her a small one). Once she under-
stands this, GR consistency will lead her away from shocking others. 

Here’s another example. Mona hates herself and wants others to hate her; 
so, following the literal GR, she hates others. (1) Again, the correctly formu-
lated GR just forbids a combination and so doesn’t prescribe that she hate 
others. (2) GR consistency, to lead reliably to right action, needs to combine 
with other things (like knowledge, imagination, and here a healthy self-love). 
(3) We can use reason against Mona’s flawed desires. We can try to help 
Mona understand why she hates herself and how to neutralize this hatred – 
by not fixating on her negatives, by seeing herself and her good points in a 
more balanced way, and, if she’s a believer, by appreciating that God loves 
her. Once Mona regains a healthy self-love, GR consistency will lead her more 
readily to love others. 

Or suppose Adolph is a Nazi who so hates Jews that he kills them and de-
sires that he be killed if he were Jewish (or found to be Jewish). The literal GR 
would tell Adolph to kill Jews: 

To Adolph (a Jew-hating Nazi): If you want others to kill you if you were Jewish, 
then kill others who are Jewish. 

Again, we can make three points. (1) GR, properly formulated, doesn’t 
command specific actions but instead just forbids an inconsistent combina-
tion: 

• I kill others just because they’re Jewish. 
• I’m unwilling that if I were Jewish then I’d be killed just because I’m Jewish. 

Since the consistency GR doesn’t say specifically what to do, it doesn’t tell 
Adolph to kill Jews. (2) GR consistency, to lead reliably to right action, has to 
combine with other things (like knowledge, imagination, and here rational 
desires). (3) We can use reason against Adolph’s flawed desires. We can try 
to 0320 help him understand why he hates Jews so much, even desiring that 
he be killed if he were found out to be Jewish. His anti-Jewish hatred likely 
has its source in things that can be rationally criticized. Maybe Adolph thinks 
Aryans are superior to Jews and racially pure; we can criticize this on factual 
grounds. Or maybe Adolph was taught to hate Jews by his family and friends; 
maybe they hated Jews, called them names, and spread false stereotypes 
about them. And so his anti-Jewish desires likely came from false beliefs and 



 

social conditioning; such flawed desires would diminish if he understood 
their origin and broadened his experience and knowledge of Jews in an open 
and personal way. With greater rationality, Adolph wouldn’t desire that he’d 
be killed if found out to be Jewish – and GR would be a powerful tool against 
his racism. 

While this example was about a Nazi, the same idea applies to those who 
desire that they be mistreated if they were black, female, gay, or whatever. 
Such desires are likely flawed (as based on a social conditioning that uses 
false beliefs and stereotypes) and would be given up if we expanded our 
knowledge and experience of the group in an open and personal way. 

As you apply the golden rule, keep in mind that it doesn’t work alone. KITA 
(Know-Imagine-Test-Act) is an acronym to help us remember some key 
elements for using GR wisely: 

KITA: Know Imagine Test Act 
 
Know: “How would my action affect others?” 

Imagine: “What would it be like to have this done to me in the same situa-
tion?” 

Test for consistency: “Am I now willing that if I were in the same situation 
then this be done to me?” 

Act toward others only as you’re willing to be treated in the same situation. 

To lead reliably to right action, GR consistency needs to build on things like 
knowledge, imagination, creativity, rationalized desires, and a healthy self-
love. 

GR can fit many perspectives. Philosophically, GR could be a self-evident 
truth (or derivable from such), God’s will, a cultural convention, a social 
contract for mutual advantage, socially useful, reflecting our feelings, promot-
ing self- interest (since it brings self-respect and better treatment from 
others), and so on. Religiously, GR is part of Bahá’í, Buddhism, Christianity, 
Confucianism, Hinduism, Islam, Judaism, Sikhism, Taoism, Zoroastrianism, 
and so on. Diverse groups share GR. The golden rule can be a point of unity in 
a diverse world. 

14.4 Starting the GR proof 

What sort of inconsistency do we have when we violate the golden rule? 
Clearly we don’t have an inconsistency between beliefs; what clashes here 
isn’t beliefs 0321 but rather actions and desires. But why is it inconsistent to 



 

 

violate GR? 
Consistency in a broad sense includes things like ends-means consistency, 

conscientiousness, and impartiality. GR follows from conscientiousness and  
impartiality. Suppose that you’re conscientious and impartial in the required 
senses, and yet you want to steal Detra’s bicycle. Being conscientious, you 
won’t steal her bicycle unless you think this act is all right (permissible). 
Being impartial, you won’t think this act is all right unless you think that if 
you were in the same situation then it would be all right for your bike to be 
stolen. Being conscientiousness, you won’t think this unless you’re willing 
that if you were in the same situation then your bike be stolen. So if you’re 
conscientious and impartial, then you won’t steal Detra’s bicycle unless 
you’re willing that your bike be stolen in the same situation. Here’s a dia-
gram: 

You steal Detra’s bicycle 

then if you’re conscientious ⇒ 

You believe it would be all right for you to steal her bicycle 

then if you’re impartial ⇒ 

You believe that if you were in the same situation then it would be all right for 
your bicycle to be stolen 

then if you’re conscientious ⇒ 

You’re willing that if you were in the same situation then your bicycle be stolen 

So if we’re conscientious and impartial, then we’ll follow GR: we won’t do 
something to another unless we’re willing that it be done to us in the same 
situation. If we violate GR, then we violate either conscientiousness or 
impartiality or both. So if we assume that we ought to be conscientious and 
impartial, then we can deduce that we ought to follow the golden rule. 

So my GR can be based on an abstract argument; similar reasoning justifies 
many variations. We can consider someone else we care about (maybe our 
daughter) on the receiving end of the action. We can give consistency condi-
tions, not for doing something, but for wanting something to be done or for 
holding a moral belief. A multi-party GR has us satisfy GR toward each 
affected party. A future-regard form has us imagine ourselves suffering the 
future consequences of our present action. A self-regard form has us imagine 
someone we care about doing the self-destructive thing we’re doing to 
ourselves. My formula of universal law is a generalized GR that contains 
many of these: “Act only as you’re willing for anyone to act in the same 
situation, regardless of where or when you imagine yourself or others.” 

So GR follows from the requirements to be conscientious and impartial. 
But why be conscientious and impartial? Why care about consistency at all? 



 

Different views could answer differently. Maybe we ought to be consistent 
because this is inherently right; our minds see consistency as the first duty of 
a 0322 rational being. Or maybe we accept consistency because it’s command-
ed by God, useful to social life, accords with how we want to live, or promotes 
our self-interest (since inconsistency brings lowered self-respect, painful 
“cognitive dissonance,” and social sanctions). I’ll abstract from such issues 
here and assume only that there’s some strong reason to be consistent, in a 
broad sense that includes being conscientious and impartial. I won’t worry 
about the details. I’m trying to develop consistency norms that appeal to a 
wide range of approaches – even though these approaches may explain and 
justify the norms differently. 

To incorporate GR into our logical framework, we need to add require-
ments to be conscientious and impartial. Our belief logic already has part of 
the conscientiousness requirement. We already can prove the imperative 
analogue of the first step of our GR argument – “Don’t act to do A to X without 
believing that it’s all right for you to do A to X”:1 

* [ ∴ ∼(u:Aux • ∼u:RAux) 
* 1 ┌ asm: (u:Aux • ∼u:RAux) 
* 2 │ ∴ u:Aux—{from 1} 
* 3 │ ∴ ∼u:RAux—{from 1} 
* 4 │ u ∴ ∼RAux—{from 3} 
* 5 │ u ∴ O∼Aux—{from 4} 
* 6 │ u ∴ Aux—{from 2} 
* 7 └ u ∴ ∼Aux—{from 5} 
* 8 ∴ ∼(u:Aux • ∼u:RAux)—{from 1; 6 contradicts 7} 

However, we can’t yet prove the imperative analogue of our GR argument’s 
third step – which also deals with conscientiousness: 

Don’t believe that if you were in the same situation then it would be all right for X 
to do A to you, without being willing that if you were in the same situation then X 
do A to you. 

The hard part here is to symbolize “in the same situation.” If we ignore this 
for the moment, then what we need is this: “Don’t believe that it would be all 
right for X to do A to you without being willing that X do A to you.” We’ll 
interpret “being willing that A be done” as “accepting ‘A may be done.’” The 
permissive “A may be done” here isn’t another way to say “A is all right.” 
Instead, it’s a member of the imperative family, but weaker than “Do A,” 
expressing only one’s consent to the action. We’ll symbolize “A may be done” 
as “MA.” Then we can symbolize the imperative mentioned above as follows: 
 
1 See my “Acting commits one to ethical beliefs,” Analysis 42 (1983), pp. 40–3. 



 

 

∼(u:RAxu • ∼u:MAxu) 

Don’t combine believing “It would be all right for X to do A to me” with not accept-
ing “X may do A to me.” 

0323 To prove this, we need a principle like “☐(RA ⊃ MA)” – which says that a 
permissibility judgment entails the corresponding permissive. This is like the 
prescriptivity principle (“Hare’s Law”) discussed in §12.4, which says that an 
ought judgment entails the corresponding imperative: “☐(OA ⊃ A).”1 

Our biggest task is to symbolize and prove the impartiality requirement 
and the imperative analogue of our GR argument’s second step: 

∼(u:RAux • ∼u:…) 

Don’t combine believing that it would all right for you to do A to X with not believ-
ing that it if you were in the same situation then it would be all right for X to do A 
to you. 

We need to replace “…” with a formula that means “it would be all right for X 
to do A to you in the same situation.” And we need an inference rule to reflect 
universalizability – which is one of the few principles on whose truth almost 
all moral philosophers agree. 

The universalizability principle (U) says that whatever is right (wrong, 
good, bad, etc.) in one case would also be right (wrong, good, bad, etc.) in any 
exactly or relevantly similar case, regardless of the individuals involved. Here 
are three equivalent formulations for “all right” (similar forms work for 
“ought”): 

Universalizability (U) 

If it’s all right for X to do A, then it would be all right for anyone else to do A 
in the same situation. 

If act A is permissible, then there is some universal property (or conjunction 
of such properties) F, such that: (1) act A is F, and (2) in any actual or hypo-
thetical case every act that is F is permissible. 

(RA ⊃ (∃F)(FA • █(X)(FX ⊃ RX))) 

 
1 On “☐(RA ⊃ MA),” see my “How incomplete is prescriptivism?” Mind 93 (1984), pp. 103–7. 
“☐(RA ⊃ MA)” and “☐(OA ⊃ A)” affirm that violating conscientiousness is logically incon-
sistent. One who rejected this but still thought that violating conscientiousness was objection-
able, could endorse the weaker “(RA ⊃ MA)” and “(OA ⊃ A)” – and this would suffice for the GR 
proof at the end of this chapter. 



 

The second phrasing, which is more technically precise, uses the notion of a 
“universal property.” A universal property is any non-evaluative property 
describable without proper names (like “Gensler” or “Chicago”) or pointer 
terms (like “I” or “this”). Suppose that I’m tempted to steal Pat’s new com-
puter. This possible act has several properties; for example, it’s: 

• wrong (evaluative term), 
• an act of stealing Pat’s computer (proper name), and 
• something I would be doing (pointer word). 

0324 These aren’t universal, since they use evaluative terms, proper names, or 
pointer words. But the act also has universal properties; for example, it is: 

• an act of stealing a new computer from one’s neighbor, 
• an act whose agent has blue eyes, and 
• an act that would greatly distress the computer’s owner. 

U says that the morality of an act depends on its universal properties (like 
those of the second group), properties expressible without evaluative terms, 
proper names, or pointer words. Two acts with the same universal properties 
must have the same moral status, regardless of the individuals involved. 

Here’s an important corollary of universalizability: 

U* If it’s all right for you to do A to X, then it would be all right for X to do A to you 
in the exact same situation. 

If it’s all right for you to do A to X, then, for some universal property F, F is the 
complete description of your-doing-A-to-X in universal terms, and, in any actual 
or hypothetical case, if X’s-doing-A-to-you is F, then it would be all right for X to 
do A to you. 

(RAux ⊃ (∃F)(F*Aux • █(FAxu ⊃ RAxu))) 

U* relates closely to the second step in our argument for GR. 

14.5 GR logical machinery 

Now we add symbols for formulating GR: 

• letters for universal properties and for actions, 
• “M” (“may”) for permissives, 
• “█” (“in every actual or hypothetical case”) for hypothetical cases, and 



 

 

• “*” for the complete description of an act in universal terms. 

We also add inference rules. This section will get complicated; you may need 
to read it a couple of times to follow what’s happening. 

First, we’ll use letters of two new sorts (both can be used in quantifiers): 

• “F,” “G,” “H,” and these with primes stand for universal properties of actions 
(including conjunctions of such properties). 

• “X,” “Y,” “Z,” and these with primes stand for actions. 

These examples use letters for universal properties: 

0325 
FA = Act A is F (e.g., act A is an act of stealing) 
Act A has universal property F 

(FA ⊃ ∼RA) = If act A is an act of stealing, then act A is wrong 

GA = Act A is an act of a blue-eyed philosophy teacher stealing a bicycle from 
an impoverished student 

We translate “FA” as “Act A is F” (not as “Imperative ‘Do A’ is F”). This next 
example uses a universal-property quantifier: 

(F)(FA ≡ FB) = Acts A and B have all the same universal properties 

For every universal property F, act A has property F if and only if act B has 
property F 

These examples use action quantifiers: 

(∃X)FX = Some act has universal property F 
For some act X, X has universal property F 

(X)(FX ⊃ OX) = Every act that is F ought to be done 
For every act X, if act X is F, then act X ought to be done 

(X)(∃F)FX = Every act has some universal property 
For every act X there’s some universal property F, such that act X is F 

These new symbols require new formation rules: 



 

1. The result of writing “F,” “G,” “H,” or one of these with primes, and then an 
imperative wff is itself a descriptive wff. 
2. The result of writing “(x” or “(∃,” and then “F,” “G,” “H,” “X,” “Y,” “Z,” or one 
of these with primes, and then “)” is a quantifier. 

Assume expanded versions of our quantifier rules for the new quantifiers. 
We have to substitute the right sort of thing for the quantified letter: 

1. For individual variables: x, y, z, x’, …, substitute individual constants: a, b, c, d, … 
2. For universal-property variables: F, G, H, F’, …, substitute universal-property 
letters not bound to quantifiers: F, G, H, F’, …. 
3. For action variables: X, Y, Z, X’, …, substitute imperative wffs: Aa, B, Axy, ….1 
0326 

When “M” is prefixed to an imperative wff, we’ll translate it as “may”:2 

3. The result of prefixing an imperative wff with “M” is a wff. 

 
MA = Act A may be done 
MAxu = X may do A to you 

u:MAxu 
= You accept “X may do A to me” 
You consent to X’s doing A to you 
You’re willing that X do A to you 

Permissives like “MA” are weaker members of the imperative family. They 
express our consent to the act, but not necessarily our positive desire that the 
act take place. We can consistently consent both to the act and to its omission 
– saying “You may do A and you may omit A.” Here are further wffs: 

∼M∼A = Act A may not be omitted 

 
1 The last case requires two technical provisos. Suppose that we drop a quantifier containing 
an action variable and substitute an imperative wff for the variable. Then we must be sure that 
(1) this imperative wff contains no free variable that also occurs in a quantifier in the derived 
wff, and (2) if we dropped an existential quantifier, this substituted imperative wff must be an 
underlined capital letter that isn’t an action variable and that hasn’t occurred before in the 
proof. 
2 Capital letters have various uses, depending on context. In “((M • Ma) ⊃ (Mbc • MA)),” for 
example, “M” is used first for a statement, then for a property of an individual, then for a 
relation between individuals, and finally for “may.” It’s usually clearer to use different letters. 



 

 

u:∼M∼Axu 
= You accept “X may not omit doing A to me” 
You demand that X do A to you 

“MA” is weaker and “∼M∼A” is stronger than “A.”1 
Inference rule G1 is the principle that “A is all right” entails “A may be 

done.” G1 holds regardless of what imperative wff replaces “A”:2 

G1 
 

RA → MA 

Given this and the rules for “M,” “O,” and “R,” we also can prove the reverse 
entailment from “MA” to “RA.” Then either logically entails the other; so 
accepting one commits us to accepting the other. But the distinction between 
the two doesn’t vanish. “RA” is true or false; to accept “RA” is to believe that 
something is true. But “MA” isn’t true or false; to accept “MA” isn’t to believe 
something but to will something, to consent to the idea of something being 
done. 

Some of our inference rules for “M” (and later “█”) involve new kinds of 
world. A world prefix is now any string of zero-or-more instances of letters 
from 0327 the set <W, D, H, P, a, b, c, …> – where <a, b, c, …> is the set of 
small letters. Here “P,” “PP,” “PPP,” and so on are “permission worlds,” much 
like deontic worlds. A permission world that depends on a given world W1 is 
a possible world that contains the indicative judgments of W1 and some set 
of imperatives prescribing actions jointly permitted by the permissives of 
W1. 

Inference rules G2 to G4 (which won’t be used in our GR proof) govern 
permissions and are much like the deontic rules. G2 and G3 hold regardless of 
what pair of contradictory imperative wffs replaces “A” / “∼A”: 

 
1 For more on permissives, see my Formal Ethics (London: Routledge, 1996), pp. 185–6, and 
my “How incomplete is prescriptivism?” Mind 93 (1984), pp. 103–7. 
2 Thinking that an act is all right commits one to consenting to the idea of it being done (being 
willing that it be done). We also could use words like “approve,” “accept,” “condone,” or “toler-
ate” – in one sense of these terms. The sense of “consent” that I have in mind refers to an inner 
attitude incompatible with inwardly objecting to (condemning, disapproving, forbidding, 
protesting, objecting to) the act. Consenting here is a minimal attitude and needn’t involve 
favoring or advocating or welcoming the act. It’s consistent to both consent to the idea of A 
being done and also consent to the idea of A not being done. 



 

G2 
 

∼MA → P ∴ ∼A, 
use a blank or any string of P’s 

In G2, the world prefix of the derived line must be either the same as that of 
the earlier line or else the same except that it adds one or more P’s at the end. 

G3 
 

MA → P ∴ A, 
use a new string of P’s 

In G3, the world prefix of the derived line must be the same as that of the 
earlier line except that it adds a new string (a string not occurring in earlier 
lines) of one or more P’s at the end. G4 mirrors the deontic indicative transfer 
rule; it holds regardless of what descriptive or deontic wff replaces “A”: 

G4 
 

P ∴ A → A 

In G4, the world prefixes in the derived and deriving lines must be identical 
except that one ends in one or more additional P’s. 

“█” is a modal operator somewhat like “☐”: 

4. The result of prefixing any wff with “█” is a wff. 

“█” translates as “in every actual or hypothetical case” or “in every possible 
world having the same basic moral principles as those true in the actual 
world.” Here’s a wff using “█”: 

█(FA ⊃ OA) 
= If act A is or were F, then act A ought to be done 
In every actual or hypothetical case, if act A is F, then act A ought to be done 

Suppose that, while act A may or may not have property F (e.g., it may or may 



 

 

not maximize pleasure), still, if it did, then it would be what ought to be done. 
We’ll use “█(FA ⊃ OA)” for this idea. “(FA ⊃ OA)” is too weak to express this 
0328 (since this wff is trivially true if “FA” is false); “☐(FA ⊃ OA)” is too strong 
(because there’s no such entailment). So we’ll use “█” to formulate claims 
about what would be right or wrong in hypothetical situations (such as 
imagined exactly reversed situations). 

We can now symbolize the universalizability principle: 

U If act A is permissible, then there’s some universal property (or 
conjunction of such properties) F, such that: (1) act A is F, and (2) in any 
actual or hypothetical case every act that is F is permissible. 

(RA ⊃ (∃F)(FA • █(X)(FX ⊃ RX))) 

G5 and G6 are the “all right” and “ought” forms of the corresponding infer-
ence rules. These hold regardless of what imperative wff replaces “A,” what 
universal-property variable replaces “F,” and what action variable replaces 
“X”: 

G5 & G6 
 

RA → (∃F)(FA • █(X)(FX ⊃ RX)) 
OA → (∃F)(FA • █(X)(FX ⊃ OX)) 

In G5 and G6, the world prefix of the derived and deriving lines must be 
identical and must contain no “W.” The proviso prevents us from being able 
to prove the controversial idea that violations of universalizability are self-
contradictory. 

The rules for “█” resemble those for “☐.” Recall that our expanded world 
prefixes can use “H,” “HH,” and “HHH”; these represent hypothetical situation 
worlds, which are possible worlds having the same basic moral principles as 
those of the actual world (or whatever world the H-world depends on). G7 
and G8 hold regardless of what pair of contradictory wffs replaces “A” / “∼A”: 

G7 
 

█A → H ∴ A, 
use a blank or any string of H’s 

In G7, the world prefixes in the derived and deriving lines must either be the 



 

same or be the same except that one adds one or more H’s at the end. 

G8 
∼█A → H ∴ ∼A, 

use a new string of H’s 

In G8, the derived line’s world prefix must be the same as that of the earlier 
line except that it adds a new string (a string not occurring in earlier lines) of 
one or more H’s at the end. Rule G9 (which won’t be used in our GR proof) 
says that 0329 “☐” and “█” are equivalent when prefixed to descriptive wffs; 
this holds regardless of what descriptive wff replaces “A”: 

G9 
 

█A ↔ ☐A 

Our final symbol is “*”; this is used with universal-property letters to rep-
resent the complete description of an action in universal terms. Here’s the 
rule for constructing wffs with “*,” with an example: 

5. The result of writing “F,” “G,” “H,” or these with primes, then “*,”and then 
an imperative wff is itself a descriptive wff. 

 
F*A = F is the complete description of act A in universal terms 
F is the description of act A in universal terms which includes all the universal 
properties of act A 

“F*A” means the same as this longer wff: 

(FA • (G)(GA ⊃ ☐(X)(FX ⊃ GX))) 
Act A is F, and every universal property G that A has is included as part of F 
Act A is F, and, for every universal property G that A has, it’s logically necessary 
that every act that’s F also is G 

We adopt the corresponding inference rule G10, which lets us go back and 
forth between “F*A” and this longer wff. G10 holds regardless of what distinct 
universal-property letters replace “F” and “G,” what imperative wff replaces 
“A,” and what action variable replaces “X”: 



 

 

G10 
 

F*A ↔ (FA • (G)(GA ⊃ ☐(X)(FX ⊃ GX))) 

Rule G11, our final inference rule, says that every act has a complete descrip-
tion in universal terms (even though it may be too long to write down). G11 
is an axiom; it lets us put wff “(X)(∃F)F*X” on any line of a proof: 

G11 
 

(X)(∃F)F*X 

We’ll use “*” in symbolizing “exactly similar situation.” Let “Amx” represent 
the act of my attacking X and “F” be its complete description: 

F*Amx = My-attacking-X has complete universal description F 

Let’s flesh this out. Let “G,” “G’,” … be my universal properties; these include 
0330 properties like being a logician. Let “H,” “H’,” … be X’s universal proper-
ties; these might include being an impoverished student. Let “R,” “R’,” … be 
the relationships between X and me; these might include X’s being my 
student. Now property F would look like this, which describes the actual 
situation: 

FAmx = My-attacking-X is an act of someone who is G, G’, … attacking some-
one who is H, H’, … and related to me in ways R, R’, …. 

Now we imagine an exactly similar situation if we imagine the situation 
where X’s-attacking-me has this same description F: 

FAxm = X’s-attacking-me is an act of someone who is G, G’, … attacking some-
one who is H, H’, … and related to X in ways R, R’, …. 

In this imagined exactly similar situation, X is in my exact place – and I am in 
X’s exact place. All our universal properties and relationships are switched. 

We can now symbolize the reversed-situation corollary of universalizabil-
ity: 

U*. If it’s all right for you to do A to X, then it would be all right for X to do A to you 



 

in the exact same situation. 

If it’s all right for you to do A to X, then, for some universal property F, F is the 
complete description of your-doing-A-to-X in universal terms, and, in any actual 
or hypothetical case, if X’s-doing-A-to-you is F, then it would be all right for X to 
do A to you. 

(RAux ⊃ (∃F)(F*Aux • █(FAxu ⊃ RAxu))) 

Also, and most importantly, we can symbolize the golden rule: 

GR. Treat others only as you consent to being treated in the same situation. 

Don’t combine acting to do A to X with being unwilling that if you were in the 
same situation then A be done to you. 

Don’t combine (1) accepting “Do A to X” with (2) not accepting “For some univer-
sal property F, F is the complete description in universal terms of my-doing-A-to-
X, and, in any actual or hypothetical situation, if X’s-doing-A-to-me is F, then X 
may do A to me.” 

∼(u:Aux • ∼u:(∃F)(F*Aux • █(FAxu ⊃ MAxu))) 

Here are symbolizations of two related ideas (§14.2): 0331 

Impartiality: Make similar evaluations about similar actions, regardless of the 
individuals involved. 

Don’t accept “Act A is permissible” without accepting “Any act exactly or relevant-
ly similar to act A is permissible.” 

Don’t accept “Act A is permissible” without accepting “For some universal proper-
ty F, act A is F and, in any actual or hypothetical situation, any act that is F is 
permissible.” 

∼(u:RA • ∼u:(∃F)(FA • █(X)(FX ⊃ RX))) 

Formula of universal law: Act only as you’re willing for anyone to act in the same 
situation – regardless of imagined variations of time or person.1 

Don’t combine acting to do A with not being willing that any similar action be 
done in the same situation. 

Don’t combine (1) accepting “Do A” with (2) not accepting “For some universal 
property F, F is the complete description in universal terms of my doing A, and, in 
any actual or hypothetical situation, any act that is F may be done.” 

 
1 My “formula of universal law” resembles Immanuel Kant’s principle. His wording went, “Act 
only on that maxim through which you can at the same time will that it should be a universal 
law.” I’m not claiming that Kant explicitly intended his principle in exactly my sense. 



 

 

∼(u:Au • ∼u:(∃F)(F*Au • █(X)(FX ⊃ MX))) 

This “formula of universal law” is a generalized GR. It applies, for example, to 
multi-party cases or to cases where my present action can harm my future 
self. 

14.6 The symbolic GR proof 

Before we do our GR proof, let’s review the larger picture. 
We began this chapter by sketching various dimensions of ethical rational-

ity. Then we narrowed our focus, first to consistency, and then to a single 
consistency principle – the golden rule. We had to formulate GR carefully to 
avoid absurd implications. We defended this wording: 

Golden rule 
 

Treat others only as you consent to being treated in the same situation. 
 

GR forbids this combination: 

• I do A to another. 
• I’m unwilling that if I were in the same situation then A be done to me. 

We sketched an intuitive GR proof, using the example of stealing Detra’s 
bicycle. 0332 Then we noted that incorporating GR and its proof into our 
logical framework requires adding impartiality and strengthening conscien-
tiousness. And so now we’re ready to give a formal proof of the golden rule. 

Our proof goes as follows (where justifications that use our new inference 
rules are in bold type): 

1 [ ∴ ∼(u:Aux • ∼u:(∃F)(F*Aux • █(FAxu ⊃ MAxu))) 
11 ┌ asm: (u:Aux • ∼u:(∃F)(F*Aux • █(FAxu ⊃ MAxu))) 
12 │ ∴ u:Aux {from 1} 
13 │ ∴ ∼u:(∃F)(F*Aux • █(FAxu ⊃ MAxu)) {from 1} 
14 │ u ∴ ∼(∃F)(F*Aux • █(FAxu ⊃ MAxu)) {from 3} 
15 │ u ∴ Aux {from 2} 
16 │ ┌ u asm: ∼RAux {we need to derive “RAux”} 
17 │ │ u ∴ O∼Aux {from 6} 
18 │ └ u ∴ ∼Aux {from 7} 
19 │ u ∴ RAux {from 6; 5 contradicts 8} 
10 │ u ∴ (∃F)(FAux • █(X)(FX ⊃ RX)) {from 9 by G5} 
11 │ u ∴ (GAux • █(X)(GX ⊃ RX)) {from 10} 
12 │ u ∴ GAux {from 11} 
13 │ u ∴ █(X)(GX ⊃ RX) {from 11} 
14 │ u ∴ (X)(∃F)F*X {rule G11} 



 

15 │ u ∴ (∃F)F*Aux {from 14} 
16 │ u ∴ H*Aux {from 15} 
17 │ u ∴ (HAux • (F)(FAux ⊃ ☐(X)(HX ⊃ FX))) {from 16 by G10} 
18 │ u ∴ HAux {from 17} 
19 │ u ∴ (F)(FAux ⊃ ☐(X)(HX ⊃ FX)) {from 17} 
20 │ u ∴ (GAux ⊃ ☐(X)(HX ⊃ GX)) {from 19} 
21 │ u ∴ ☐(X)(HX ⊃ GX) {from 12 and 20} 
22 │ u ∴ (F)∼(F*Aux • █(FAxu ⊃ MAxu)) {from 4} 
23 │ u ∴ ∼(H*Aux • █(HAxu ⊃ MAxu)) {from 22} 
24 │ u ∴ ∼█(HAxu ⊃ MAxu) {from 16 and 23} 
25 │ uH ∴ ∼(HAxu ⊃ MAxu) {from 24 by G8} 
26 │ uH ∴ HAxu {from 25} 
27 │ uH ∴ ∼MAxu {from 25} 
28 │ uH ∴ (X)(HX ⊃ GX) {from 21} 
29 │ uH ∴ (HAxu ⊃ GAxu) {from 28} 
30 │ uH ∴ GAxu {from 26 and 29} 
31 │ uH ∴ (X)(GX ⊃ RX) {from 13 by G7} 
32 │ uH ∴ (GAxu ⊃ RAxu) {from 31} 
33 │ uH ∴ RAxu {from 30 and 32} 
34 └ uH ∴ MAxu {from 33 by G1}  
35 ∴ ∼(u:Aux • ∼u:(∃F)(F*Aux • █(FAxu ⊃ MAxu))) {from 1; 27 contradicts 34} 

While this is a difficult proof, you should be able to follow the individual lines 
and see that everything follows correctly. 

Our proof begins as usual; we assume the opposite of what we want to 
prove and then try to derive a contradiction. Soon we get lines 4 and 5 
(where 5 is 0333 addressed to yourself): 

4 X may not do A to me in an exactly similar situation. 
5 Do A to X. 

Using line 4, we get these key lines: 

16 Let H be the complete description of my doing A to X. 
26 In our imagined situation, X’s-doing-A-to-me is H. 
27 In our imagined situation, X may not do A to me. 

We use line 5 to get “It’s all right for me to do A to X”: 

5 Do A to X. (This is addressed to yourself.) 
6 ┌ Assume that it’s not all right for me to do A to X. 
7 │ ∴ I ought not to do A to X. 
8 └ ∴ Don’t do A to X. (This is addressed to yourself.) 
9 ∴ It’s all right for me to do to X. {8 contradicts 5} 

Then we use universalizability on “It’s all right for me to do A to X” to get 
“Any act relevantly or exactly similar to my-doing-A-to-X would be all right.” 
We specify that G is the morally relevant complex of properties here; so: 



 

 

12 My-doing-A-to-X has property G. 
13 Any act that has property G would be all right. 

We get a contradiction between lines 27 and 34: 

16 H is the complete description of my doing A to X. {above} 
12 My-doing-A to-X has property G. {above} 
21 ∴ G is part of H – so every act that is H is G. {from 16 & 12} 
26 In our imagined situation, X’s-doing-A-to-me is H. {above} 
30 ∴ In our imagined situation, X’s-doing-A-to-me is G. {from 21 & 26} 
13 Any act that has property G would be all right. {above} 
33 ∴ In our imagined situation, X’s-doing-A-to-me is all right. {from 30 & 13} 
34 ∴ In our imagined situation, X may do A to me. {from 33} 

Thus ends our proof of the golden rule:1 

Always treat others as you want to be treated; that is the summary of the Law and 
the Prophets. (Mt 7:12) 

 
1 For a challenging exercise, prove the impartiality and universal law formulas, as formulated 
at the end of the previous section. Answers are in the back of the book. 



15 Metalogic 

Metalogic studies logical systems. It focuses on proving things about the 
systems themselves, not on testing concrete arguments. This chapter gives a 
brief introduction to metalogic. 

15.1 Metalogical questions 

Metalogic is the study of logical systems and tries to prove things about them. 
Recall our first two rules in §6.1 for forming propositional wffs: 

1. Any capital letter is a wff. 
2. The result of prefixing any wff with “∼” is a wff. 

It follows from these that there’s no longest wff – since, if there were a 
longest wff, then we could make a longer one by adding another “∼.” This 
simple proof is about a logical system, so it’s part of metalogic. 

Consider our system of propositional logic. Metalogic asks questions like: 
Do we need all five symbols (“∼,” “•,” “∨,” “⊃,” and “≡”)? Could we define 
some symbols in terms of others? Did we set up our proof system right? Are 
any of the inference rules defective? Can we prove self-contradictions or 
invalid arguments? Do we have enough inference rules to prove all valid pro-
positional arguments? What other approaches could systematize proposi-
tional logic? 

15.2 Symbols 

We don’t need all five propositional symbols (“∼,” “•,” “∨,” “⊃,” and “≡”). We 
could symbolize and test the same arguments if we had just “∼” and “•”; then, 
instead of writing “(P ∨ Q),” we could write “∼(∼P • ∼Q)”: 

(P ∨ Q) = ∼(∼P • ∼Q) 
At least one is true = Not both are false 



 

 

These are equivalent (true or false under the same conditions); truth tables 
can 0335 show this. Similarly, we can express “⊃” and “≡” using “∼” and “•”: 

(P ⊃ Q) = ∼(P • ∼Q) 
If P then Q = We don’t have P true and Q false 

(P ≡ Q) = (∼(P • ∼Q) • ∼(Q • ∼P)) 
P if and only if Q = We don’t have P true and Q false, and we don’t have Q true 
and P false 

Or we might translate the other symbols into “∼” and “∨”: 

(P • Q) = ∼(∼P ∨ ∼Q) 
(P ⊃ Q) = (∼P ∨ Q) 
(P ≡ Q) = (∼(P ∨ Q) ∨ ∼(∼P ∨ ∼Q)) 

Or we might use just “∼” and “⊃”: 

(P • Q) = ∼(P ⊃ ∼Q) 
(P ∨ Q) = (∼P ⊃ Q) 
(P ≡ Q) = ∼((P ⊃ Q) ⊃ ∼(Q ⊃ P)) 

It’s possible to get by using just “|” for NAND; “(P | Q)” means “not both P and 
Q.” We can define “∼P” as “(P | P)” and “(P • Q)” as “((P | Q) | (P | Q)).” 

Systems with only one or two symbols are more elegantly simple but 
harder to use. But logicians are sometimes more interested in proving results 
about a system than in using it to test arguments; and it may be easier to 
prove these results if we use fewer symbols. 

Another approach uses all five symbols but divides them into undefined 
(primitive) symbols and defined ones. We could take “∼” and either “•” or “∨” 
or “⊃” as undefined, and then define the others using these. We’d then view 
the defined symbols as abbreviations; whenever we liked, we could eliminate 
them and use only undefined symbols. 

How do we know that our five symbols suffice to formulate wffs for every 
possible truth table? Suppose we have a truth table for two letters that comes 
out as below and we want to replace “??” with a wff that gives this table: 

A B 
0 0 
0 1 
1 0 
1 1 

?? 
0 
1 
1 
0 



 

How do we know that some wff gives this truth table? To construct a wff with 
this truth table, we can put an OR between the true cases (rows 2 and 3): A-
is-false-and-B-is-true (row 2) OR A-is-true-and-B-is-false (row 3): 

((∼A • B) ∨ (A • ∼B)) 0336 

So we can, using just NOT, AND, and OR, mechanically construct a wff that 
expresses any specific truth table. (If the formula is always false, use a wff 
like “(A • ∼A),” which is always false.) 

There are further options about notation. While we use capital letters for 
statements, some logicians use small letters (often just “p,” “q,” “r,” and “s”) 
or Greek letters. Some use “-” or “¬” for negation, “&” or “∧” for conjunction, 
“→” for conditional, or “↔” for equivalence. Various conventions are used for 
dropping parentheses. It’s easy to adapt to these differences. 

Polish notation avoids parentheses and has shorter formulas. “K,” “A,” “C,” 
and “E” go in place of the left-hand parentheses for “•,” “∨,” “⊃,” and “≡”; and 
“N” is used for “∼.” Here are four examples: 

∼(P • Q) = NKpq 
(∼P • Q) = KNpq 
((P • Q) ⊃ R) = CKpqr 
(P • (Q ⊃ R)) = KpCqr 

Some people can actually understand these formulas. 

15.3 Soundness 

The most important metalogical questions are about whether a proof system 
is sound (won’t prove bad things – so every argument provable in the system 
is valid) and complete (can prove every good thing – so every valid argument 
expressible in the system is provable in the system). 

Could the following happen? A student named Logicus found a flaw in our 
proof system. Logicus did a formal proof of a propositional argument and 
then showed by a truth table that the argument was invalid; so some argu-
ments provable using our proof system are invalid. People have found such 
flaws in proof systems. How do we know that our system is free from such 
flaws? How can we prove soundness? 

Soundness: Any propositional argument for which we can give a formal proof is 
valid (on the truth-table test). 



 

 

To show this, we could first show that all the propositional inference rules 
are truth preserving (when applied to true wffs, they yield only further true 
wffs). We have 13 inference rules: 6 S-rules, 6 I-rules, and RAA. It’s easy (but 
tedious) to use the truth-table method of §6.6 to show that S- and I-rules are 
truth preserving. All these rules pass the test (as you could check for your-
self); when applied to true wffs, they yield only further true wffs. 

RAA is more difficult to check. First we show that the first use of RAA in a 
proof is truth preserving. Suppose all previous not-blocked-off lines in a 
proof are true, and we use RAA to derive a further line; we have to show that 
this further line is true: 0337 

. . . . . . . . . . . . 
┌  asm: ∼A 
│ . . . . . . . . . 
│ ∴ B 
└ ∴ ∼B 
∴ A 

From previous true lines plus assumption “∼A,” we derive contradictory wffs 
“B” and “∼B” using S- and I-rules. We just saw that S- and I-rules are truth 
preserving. So if the lines used to derive “B” and “∼B” were all true, then both 
“B” and “∼B” would have to be true, which is impossible. Hence the lines used 
to derive them can’t all be true. So if the lines before the assumption are all 
true, then assumption “∼A” has to be false. So its opposite (“A”) has to be 
true. So the first use of RAA in a proof is truth preserving. 

We can similarly show that if the first use of RAA in a proof is truth pre-
serving, then the second is too. And we can show that if the first n uses of 
RAA are truth preserving, then the n + 1 use is too. Then we can apply the 
principle of mathematical induction: “Suppose that something holds in the 
first case, and that, if it holds in the first n cases, then it holds in the n + 1 
case; then it holds in all cases.” From this, it follows that all uses of RAA are 
truth preserving. 

Now suppose an argument is provable in our propositional system. Then 
there’s some proof that derives the conclusion from the premises using truth-
preserving rules. So if the premises are true, then the conclusion also must be 
true – and so the argument is valid. So if an argument is provable in our 
propositional system, then it’s valid. This establishes soundness. 

Isn’t this reasoning circular? Aren’t we just assuming principles of proposi-
tional inference (like modus ponens) as we defend our propositional system? 
Of course we are. Nothing can be proved without assuming logical rules. We 
aren’t attempting the impossible task of proving things about a logical system 
without assuming any logical rules. Instead, we’re doing something more 
modest. We’re trying to show, relying on ordinary reasoning, that we didn’t 
make errors in setting up our system. 



 

The consistency of our system is an easy corollary of its soundness. Let’s 
say that a wff is a theorem if it’s provable from zero premises. “(P ∨ ∼P)” is a 
theorem; we can prove it by assuming its opposite and deriving a contradic-
tion: 

* [ ∴ (P ∨ ∼P) Valid 
* 1 ┌ asm: ∼(P ∨ ∼P) 
* 2 │ ∴ ∼P {from 1} 
* 3 └ ∴ P {from 1} 
* 4 ∴ (P ∨ ∼P) {from 1; 2 contradicts 3} 

By our soundness result, since “∴ (P ∨ ∼P)” is provable it must be valid on the 
truth-table test. So then it must be impossible for “(P ∨ ∼P)” to be false. So 
then “(P ∨ ∼P)” must have an all-1 truth table. And the more general result 
follows, 0338 that all theorems of our system must have all-1 truth tables. 

A proof system is consistent provided that no two contradictory formulas 
are both theorems. We showed that all theorems of our system have all-1 
truth tables. But no two contradictory formulas both have all-1 truth tables 
(since if a formula has all 1’s then its contradictory has all 0’s). So no two 
contradictory formulas are both theorems. So our propositional system is 
consistent. 

15.4 Completeness 

Our soundness proof shows that our propositional system won’t prove 
invalid arguments. You probably didn’t doubt this. But you may have had 
doubts about whether our system is strong enough to prove all valid proposi-
tional arguments. After all, the single-assumption method of doing proofs 
wasn’t strong enough; Section 7.3 uncovered valid arguments that require 
multiple assumptions. How do we know that our expanded method is 
enough? Maybe Logicus will find a further propositional argument that’s 
valid but not provable; then we’d have to strengthen our system still further. 
To calm these doubts, we’ll show that our propositional system is complete: 

Completeness: Every valid propositional argument is provable. 

Our completeness proof will show that if we correctly apply the proof stra-
tegy of §7.3 to a valid propositional argument then we get a proof. Our 
strategy has five steps: 1-START, 2-S&I, 3-RAA, 4-ASSUME, and 5-REFUTE. 
Assume that we correctly apply this strategy to a propositional argument. 
Then: 



 

 

We’ll end in the RAA step with all assumptions blocked off, or end in the REFUTE 
step, or keep going endlessly. 
If we end in the RAA step with all assumptions blocked off, then we’ll get a proof. 
If we end in the REFUTE step, then the argument is invalid. 
We won’t keep going endlessly. 
∴ If the argument is valid, then we’ll get a proof. 

((A ∨ F) ∨ E) 
(A ⊃ P) 
(F ⊃ ∼V) 
∼E 
∴ (V ⊃ P) 

Premise 1 is true because our proof strategy has only two stopping points; so 
we’ll stop at one or the other or we won’t stop. Premise 2 is true because our 
proof strategy (especially the S&I and RAA steps) mirrors the §7.1 definition 
of “proof.” Now we have to argue for premises 3 and 4. 

Premise 3 says “If we end in the REFUTE step, then the argument is inva-
lid.” This is true because, when we reach the REFUTE step, all the complex 
wffs are dissolved into smaller parts and eventually into simple wffs, the 
larger forms are true if the smaller parts are true, and the simple wffs we end 
up with are consistent and thus give truth conditions making all the other 
wffs true – thus 0339 making the premises of the original argument true while 
its conclusion is false – thus showing that the original argument is invalid. 

Here’s a chart (where α and β represent wffs) about how complex wff 
forms would dissolve into simpler wff forms: 

∼∼α dissolves into α [S-rule] 
 (α • β) dissolves into α and β [S-rule] 

∼(α • β) dissolves into ∼α or ∼β [I-rule or assumption] 
(α ∨ β) dissolves into α or β [I-rule or assumption] 

∼(α ∨ β) dissolves into ∼α and ∼β [S-rule] 
(α ⊃ β) dissolves into ∼α or β [I-rule or assumption] 

∼(α ⊃ β) dissolves into α and ∼β [S-rule] 
(α ≡ β) dissolves into (α ⊃ β) and (β ⊃ α) [S-rule] 

∼(α ≡ β) dissolves into (α ∨ β) and ∼(α • β) [S-rule] 
 

The original formula is true if the parts it dissolves into are true. 

The chart covers the nine complex wff forms possible in our system and the 
smaller parts that these complex wff forms will have dissolved into when we 
reach the REFUTE step. Forms that dissolve using an S-rule always dissolve 
into the same smaller parts. Other forms can dissolve in two ways. Consider 
“∼(A • B).” We might be able to use an I-rule on this to derive “∼A” or “∼B.” If 



 

not, then we can break “∼(A • B)” by assuming one part or its negation, which 
will (immediately or after using an I-rule) give us “∼A” or “∼B.” So when we 
reach the REFUTE step, all not-blocked-off complex wffs will be starred or 
broken,1 and thus dissolved into the parts given above. 

Each complex wff is true if the parts it dissolves into are true. We can check 
this by checking the nine cases in the box. So ∼∼α dissolves into α, and is true 
if α is true. (α • β) dissolves into α and β, and is true if both of these are true. 
Similarly, ∼(α • β) goes into ∼α or ∼β, and is true if either of these is true. 

Our refutation is the set of all the simple not-blocked-off wffs and is con-
sistent (or else we’d have applied RAA). This refutation gives truth condi-
tions making all the other not-blocked-off wffs true too (since these other 
wffs dissolved into the simple parts that make up the refutation). So our 
refutation gives truth conditions making all the not-blocked-off lines true. But 
these lines include the premises and the denial of the conclusion (of the 
original argument). So our refutation gives truth conditions making the 
premises and the denial of the conclusion all true. So the argument is invalid. 
So if we correctly apply our strategy to a propositional argument and end in 
the REFUTE step, then the argument is invalid. This establishes premise 3. 

Now we argue for premise 4: “We won’t keep going endlessly.” This is a 
concern, since the proof strategy for some systems can go into an endless 
loop (§9.5). 0340 That won’t happen in propositional logic, since here the 
complexity of the wffs that are neither starred nor blocked off nor broken 
keeps decreasing as we go on, and eventually, if we don’t get a proof, goes to 
zero, at which point we get a refutation. For the tedious details, study the 
next paragraph. 

Let the complexity level of a wff be the number of instances of “•,” “∨,” “⊃,” 
and “∼∼” (double negation) that the wff would have if every wff in it of the 
form “(α ≡ β)” were replaced with “((α ⊃ β) • (β ⊃ α)).” So simple wffs “A” 
and “∼A” have complexity 0, “(P • Q),” “∼(P ∨ Q),” “∼(∼P ⊃ ∼Q),” and “∼∼P” 
have complexity 1, “((P • Q) ⊃ R)” has complexity 2, and “(P ≡ (Q ∨ R))” has 
complexity 5. The complexity level of a stage of a proof is the sum of the 
complexity levels of the lines to that point that aren’t either starred or 
blocked off or broken. When we START by assuming the conclusion’s oppo-
site, the argument has a certain complexity level; the sample problem at the 
start of Chapter 7 has complexity 3. Each S&I step (for example, going from 
“(P ⊃ Q)” and “P” to “Q” – or from “(P ≡ Q)” to “(P ⊃ Q)” and “(Q ⊃ P)”) 
decreases the complexity level by at least one.2 Any further ASSUME will 
immediately or in the next step (through an application of an I-rule) reduce 

 
1 A wff is broken if we already have one side or its negation but not what we need to conclude 
anything new (§7.3). 
2 One rare occasions, an S&I step can reduce the complexity level by more than one. Suppose 
that we have “(A • B)” and “(B • A)” and simplify one of them into “A” and “B.” The conjunction 
we simplify is starred and the other one is broken, so the complexity level is reduced by two. 



 

 

the complexity level by at least one.1 RAA is trickier. If we apply RAA on the 
initial assumption, then the proof is done and there’s no endless loop. If we 
apply RAA on a non-initial assumption, then the complexity level may tempo-
rarily increase (due to our having to erase multiple stars); but the overall 
effect is to decrease the complexity from what it was before we made the 
non-initial assumption in question.2 So the complexity level keeps decreasing. 
Since the proof starts with a finite complexity level which keeps going down, 
then, if we don’t get a proof, then we’ll eventually end with a complexity level 
of 0 – which (if we can derive nothing further) will move us to the REFUTE 
step which ends the strategy. So we won’t get an endless loop. 

So if we correctly apply our strategy to a propositional argument and the 
argument is valid, then we’ll get a proof. This establishes completeness. So 
we’ve proved both soundness (every provable propositional argument is 
valid) and completeness (every valid propositional argument is provable) for 
our system. 0341 

15.5 An axiomatic system 

Our propositional system is an inferential system, since it uses mostly 
inference rules (these let us derive formulas from earlier formulas). It’s also 
possible to systematize propositional logic as an axiomatic system, which 
uses mostly axioms (formulas that can be put on any line, regardless of 
earlier lines). Both approaches can be equally powerful: anything provable 
with one is provable with the other. Axiomatic systems have a simpler 
structure while inferential systems are easier to use. Symbolic logic’s pio-
neers used axiomatic systems. 

I’ll now sketch a version of an axiomatic system from Principia Mathemati-
ca.3 We’ll use our earlier definitions of “wff,” “premise,” and “derived line.” 
But now a proof is a vertical sequence of zero or more premises followed by 
one or more derived lines, where each derived line is an axiom or follows 
from earlier lines by the inference rule or the substitution of definitional 
equivalents. There are four axioms; these axioms, and the inference rule and 

 
1 Suppose we need to break “(A ⊃ B)” and so we assume “A”; then we can conclude “B” and 
star “(A ⊃ B),” which will reduce the complexity by one. Suppose that instead we assume “∼A”; 
then “(A ⊃ B)” is broken, which immediately reduces the complexity by one. 
2 Suppose we make an additional assumption to break a complex wff. For example, we assume 
“A” to break “(A ⊃ B).” If this assumption dies, we conclude “∼A” and then “(A ⊃ B)” is broken 
(which reduces the complexity level). If instead we assumed “∼A,” then when this assumption 
dies then we derive “A”; we then can use this with “(A ⊃ B)” to get “B” – and then star “(A ⊃ 
B)” (which reduces the complexity level). So when an additional assumption dies, then the 
complexity level is decreased from what it was before we made the assumption. 
3 Bertrand Russell and Alfred North Whitehead (Cambridge: Cambridge University Press, 
1910). 



 

definitions, hold regardless of which wffs uniformly replace “A,” “B,” and “C”: 

Axiom 1. ((A ∨ A) ⊃ A) 
Axiom 2. (A ⊃ (A ∨ B)) 
Axiom 3. ((A ∨ B) ⊃ (B ∨ A)) 
Axiom 4. ((A ⊃ B) ⊃ ((C ∨ A) ⊃ (C ∨ B))) 

The system has one inference rule (modus ponens): “(A ⊃ B), A → B.” It 
takes “∨” and “∼” as undefined; it defines “⊃,” “•,” and “≡” as follows: 

Definition 1. (A ⊃ B) = (∼A ∨ B) 
Definition 2. (A • B) = ∼(∼A ∨ ∼B) 
Definition 3. (A ≡ B) = ((A ⊃ B) • (B ⊃ A)) 

The inferential proof of “(P ∨ ∼P)” in our system is trivially simple (§15.3). 
The axiomatic proof is difficult: 

1 ∴ (((P ∨ P) ⊃ P) ⊃ ((∼P ∨ (P ∨ P)) ⊃ (∼P ∨ P))) {from axiom 4, substituting “(P ∨ P)” 
for “A,” “P” for “B,” and “∼P” for “C”} 
2 ∴ ((P ∨ P) ⊃ P) {from axiom 1, substituting “P” for “A”} 
3 ∴ ((∼P ∨ (P ∨ P)) ⊃ (∼P ∨ P)) {from 1 and 2} 
4 ∴ (P ⊃ (P ∨ P)) {from axiom 2, substituting “P” for “A” and “P” for “B”} 
5 ∴ (∼P ∨ (P ∨ P)) {from 4, substituting things equivalent by definition 1} 
6 ∴ (∼P ∨ P) {from 3 and 5} 
7 ∴ ((∼P ∨ P) ⊃ (P ∨ ∼P)) {from axiom 3, substituting “∼P” for “A” and “P” for “B”} 
8 ∴ (P ∨ ∼P) {from 6 and 7} 0342 

Since there’s no automatic strategy, creating such proofs requires guesswork 
and intuition. And we might work for hours trying to prove an argument 
that’s actually invalid. Axiomatic systems tend to be painful to use. 

15.6 Gödel’s theorem 

Now we’ll consider metalogic’s most surprising discovery: Gödel’s theorem. 
Let’s define a formal system (or calculus) to be an artificial language with 

notational grammar rules and notational rules for determining validity, 
where these rules can be applied in a mechanical way to give a definite result 
about wffhood and validity in a finite amount of time. Many formal systems 
are inferential (our approach) or axiomatic. 

Propositional logic can be put into a sound and complete formal system. 
Our inferential system does the job – as does the axiomatic system we just 
considered. In either, an argument is valid if and only if it’s provable. 



 

 

You might think that arithmetic could similarly be put into a sound and 
complete system. If we succeeded, we’d have an inferential or axiomatic 
system that could prove any truth of arithmetic but no falsehood. Then a 
statement of arithmetic would be true if and only if it’s provable in the 
system. 

But this is impossible. Gödel’s theorem shows that we can’t systematize 
arithmetic in this way. For any attempted formalization, one of two bad 
things will happen: some true statements of arithmetic won’t be provable 
(making the system incomplete), or some false statements of arithmetic will 
be provable (making the system unsound). Gödel’s theorem shows that any 
formal system of arithmetic will be incomplete or unsound. 

You may find Gödel’s theorem hard to believe. Arithmetic seems to be an 
area where everything can be proved one way or the other. But Kurt Gödel in 
1931 showed that this was wrong. The reasoning behind his theorem is 
difficult; here I’ll just try to give a glimpse of what it’s about.1 

What is this “arithmetic” that we can’t systematize? “Arithmetic” here is 
roughly like high-school algebra, but limited to positive whole numbers. It 
includes truths like these three: 

2 + 2 = 4 
If x + y = z, then y + x = z. 
If xy = 18 and x = 2y, then x = 6 and y = 3. 

More precisely, arithmetic is the set of truths and falsehoods that can be 
expressed using symbols for the vocabulary items in these boxes: 0343 

Mathematical vocabulary 
  

positive numbers: 1, 2, … 
plus, times, to the power of 

parentheses, equals 

Logical vocabulary 
  

not, and, or, if-then 
variables (x, y, …), all, some 

parentheses, equals 

Gödel’s theorem claims that no formal system with symbols for all the items 
in these two boxes can be both sound and complete. 
 
1 My little Gödel’s Theorem Simplified (Langham, Md.: University Press of America, 1984) tries 
to explain the theorem. Refer to this book for further information. 



 

The notions in our mathematical box can be reduced to a sound and com-
plete formal system; we’ll call it the “number calculus.” And the notions in our 
logical box can be reduced to a sound and complete formal system: our 
quantificational system. But combining these two systems produces a mon-
ster that can’t be put into a sound and complete formal system. 

We’ll now construct a number calculus (NC) that uses seven symbols: 

/ + • ^ ( ) = 

“/” means “one” (“1”). We’ll write 2 as “//” (“one one”), 3 as “///” (“one one 
one”), and so on. “+” is for “plus,” “•” for “times,” and “^” for “to the power 
of.” Our seven symbols express all the notions in our mathematical box. 

Meaningful sequences of NC symbols are numerals, terms, and wffs: 

1. Any string consisting of one or more instances of “/” is a numeral. 
2. Every numeral is a term. 
3. The result of joining any two terms by “+,” “•,” or “^” and enclosing the 
result in parentheses is a term. 
4. The result of joining any two terms by “=a” is a wff. 

Here are examples (with equivalents): 

• 2, 4 (numerals):  // //// 
• 2, 2 • 2, (1 + 1)2 (terms):  // (// • //) ((/ + /) ^ //) 
• 4 = 4, 2 + 2 = 4 (wffs):  //// = //// (// + //) = //// 

Our NC can prove the true wffs. NC uses one axiom and six inference rules; 
here’s our axiom (in which any numeral can replace “a”): 

Axiom: a = a 

Any instance of this (any self-identity using the same numeral on both sides) 
is an axiom: “/=/,” “//=//,” “///=///,”and so on. 

Our inference rules let us substitute one string of symbols for another. 
We’ll use “↔” to say that we can substitute the symbols on either side for 
those on the other side. We have two rules for “plus” (where “a” and “b” in 
our inference 0344 rules stand for any numerals): 

R1. (a+/) ↔ a/ 
R2. (a+/b) ↔ (a/+b) 



 

 

R1 lets us interchange “(///+/)”and “////.” R2 lets us interchange 
“(//+//)”and “(///+/)” – moving the “+” one “/” to the right. We’ll see R3 to 
R6 in a moment. 

An NC proof is a vertical sequence of wffs, each of which is either an axiom 
or else follows from earlier members by one of the inference rules R1 to R6. A 
theorem is any wff of a proof. 

Using our axiom and inference rules R1 and R2, we can prove any true wff 
of NC that doesn’t use “•” or “^.” Here’s a proof of “(//+//)=////” [“2 + 2 = 
4”]: 

1. ////=//// {from the axiom} 
2. (///+/)=//// {from 1 using R1} 
3. (//+//)=//// {from 2 using R2} 

We start with a self-identity. We get line 2 by substituting “(///+/)” for 
“////” (as permitted by rule R1). We get line 3 by further substituting 
“(//+//)” for “(///+/)” (as permitted by rule R2). So “(//+//)=////” is a 
theorem. 

Here are our rules for “times” and “to the power of”: 

R3. (a • /) ↔ a 
R4. (a • /b) ↔ ((a • b) + a) 
R5. (a ^ /) ↔ a 
R6. (a ^ /b) ↔ ((a ^ b) • a) 

Our NC is sound and complete; any wff of NC is true if and only if it’s provable 
in NC. This is easy to show, but we won’t do the proof here. 

Suppose we take our number calculus, add the symbols and inference rules 
of our quantificational logic, add a few more axioms and inference rules, and 
call the result the “arithmetic calculus” (AC). We could then symbolize any 
statement of arithmetic in AC. So we could symbolize these: 

If x + y = z, then y + x = z. 
((x+y)=z ⊃ (y+x)=z) 

If xy = 8 and x = 2y, then x = 4 and y = 2. 
(((x•y)=//////// • x=(//•y)) ⊃ (x=//// • y=//)) 

x is even. 
For some number y, x = 2 times y. 
(∃y)x=(// • y) 



 

x is prime. 
For every number y and z, if x = y times z, then y = 1 or z = 1. 
(y)(z)(x=(y • z) ⊃ (y=/ ∨ z=/)) 0345 

Here’s Goldbach’s conjecture (which is still neither proved nor disproved): 

Every even number is the sum of two primes. 

(x)((∃y)x=(2 • y) ⊃ (∃x’)(∃x’’)(x=(x’+x’’) • ((y)(z)(x’=(y • z) ⊃ (y=/ ∨ z=/)) • 
(y)(z)(x’’=(y • z) ⊃ (y=/ ∨ z=/))))) 

Gödel’s theorem shows that any such arithmetic calculus has a fatal flaw: 
either it can’t prove some arithmetic truths or it can prove some arithmetic 
falsehoods. This flaw comes not from an accidental defect in our choice of 
axioms and rules, but from the fact that any such system can encode messag-
es about itself. 

To show how this works, it’s helpful to use a version of AC with minimal 
vocabulary. The version that we’ve sketched so far uses these symbols: 

/ + • ^ ( ) = ∼ ∨ ⊃ ∃ x, y, z, x’, … 

We’ll now economize. Instead of writing “^” (“to the power of”), we’ll write 
“••.” We’ll drop “∨” and “⊃,” and express the same ideas using “∼” and “•” 
(§15.2). We’ll use “n,” “nn,” “nnn,” “nnnn,” … for our variables (instead of “x,” 
“y,” “z,” “x’,” …). We’ll drop “∃,” and write “∼(n)∼” instead of “(∃n).” Our 
minimal-vocabulary version of AC uses only eight symbols: 

/ + • ( ) = ∼ n 

Any statement of arithmetic can be symbolized by combining these symbols. 
Our strategy for proving Gödel’s theorem goes as follows. First we give ID 

numbers to AC formulas. Then we see how AC formulas can encode messages 
about other AC formulas. Then we construct a special formula, called the 
Gödel formula G, that encodes this message about itself: “G isn’t provable.” G 
asserts its own unprovability; this is the key to Gödel’s theorem. 

It’s easy to give ID numbers to AC formulas. Let’s assign to each of the eight 
symbols a digit (an ID number) from 1 to 8: 

/ + • ( ) = ∼ n 

1 2 3 4 5 6 7 8 



 

 

Thus “/” has ID # 1 and “+” has ID # 2. To get the ID number for a formula, 
we replace each symbol by its one-digit ID number. So we replace “/” by “1,” 
“+” by “2,” and so on. Here are two examples: 

/=/ 
161 

(//+//) 
4112115 

The ID numbers follow patterns. For example, each numeral has an ID 
number consisting of all 1’s: 0346 

/ // /// //// 

1 11 111 1111 

So we can say: 

Formula # n is a numeral if and only if n consists of all 1’s. 

We can express the right side as the equation “(nine-times-n plus one) equals 
some power of ten,” or “(∃x)9n+1=10x,” which can be symbolized in an AC 
formula.1 This AC formula is true of any number n if and only if formula # n is 
a numeral. This is how system AC encodes messages about itself. 

An AC theorem is any formula provable in AC. The ID numbers for the-
orems follow definite but complex patterns. It’s possible to find an equation 
that’s true of any number n if and only if formula # n is a theorem. If we let “n 
is …” represent this equation, we can say: 

Formula # n is a theorem if and only if n is …. 

The equation on the right side would be very complicated. 
To make things more intuitive, let’s pretend that all and only theorems 

have odd ID numbers. Then “n is odd” encodes “Formula # n is a theorem”: 

Formula # n is a theorem if and only if n is odd. 
 
1 The AC formula for this equation is “∼(nn)∼(((///////// • n) + /) = (////////// •• nn)).” 
This formula has ID # 748857444111111111385215641111111111338855. It’s important 
that our right-hand bold formulas can be symbolized in AC formulas with definite ID numbers. 
It’s not important that we write out the formulas or their ID numbers. 



 

For example, “161 is odd” encodes the message that formula # 161 (which is 
“/=/”) is a theorem: 

Formula # 161 is a theorem if and only if 161 is odd. 

Then “n is even” would encode the message that formula # n is a non-
theorem: 

Formula # n is a non-theorem if and only if n is even. 

Imagine that “485…” is some specific very large number. Let “485… is even” 
represent the AC formula that says that 485… is even: 

485… is even. 

This formula would encode the following message: 

Formula # 485… is a non-theorem. 0347 

So the AC formula is true if and only if formula # 485… is a non-theorem. 
Now suppose this formula itself happens to have ID number 485…. Then the 
formula would talk about itself, declaring that it itself is a non-theorem. This 
is what the Gödel formula G does. G, with a certain ID number, encodes the 
message that the formula with this ID number is a non-theorem. G in effect 
says this: 

G G is not a theorem. 

So G encodes the message “G is not a theorem.” But this means that G is true 
if and only if it’s not a theorem. 

So G is true if and only if it’s not provable. Now G, as a formula of arithme-
tic, is either true or false. Is G true? Then it’s not provable – and our system 
contains unprovable truths. Or maybe G is false? Then it’s provable – and our 
system contains provable falsehoods. In either case, system AC is flawed. 

We can’t remove the flaw by adding further axioms or inference rules. No 
matter what we add to the arithmetic calculus, we can use Gödel’s technique 
to find a formula of the system that’s true-but-unprovable or false-but-
provable. Hence arithmetic can’t be reduced to any sound and complete 
formal system. 

This completes our sketch of the reasoning behind Gödel’s proof. To fill in 
the details would require answering two further questions: 



 

 

• Consider the equation that’s true of any number n if and only if formula # n is 
a theorem. This equation would have to be much more complicated than “n is 
odd.” How can we produce this equation? 

• If we have this equation, how do we then produce a formula with a given 
number that says that the formula with that number is a non-theorem? 

The answers to these questions are too complicated to go into here. While 
the details can be worked out, we won’t here worry about how to do this.1 

Most people find the last two chapters surprising. We tend to think that 
everything can be proved in math, and that nothing can be proved in ethics. 
But Gödel’s theorem shows that not everything can be proved in math. And 
our golden-rule formalization shows that some important ideas (like the 
golden rule) can be proved in ethics. Logic can surprise us. 

 
1 My Gödel’s Theorem Simplified (Langham, Md.: University Press of America, 1984) has 
details. 



16 History of Logic 

Logic was born in ancient Greece and reborn a century ago. Logic keeps 
growing and expanding, and has contributed to the birth of the computer age. 
We can better understand and appreciate logic by studying its history. 

16.1 Ancient logic 

The formal study of valid reasoning began with Aristotle (384–322 BC) in 
ancient Greece. An unprecedented emphasis on reasoning prepared for 
Aristotle’s logic. Greeks used complex reasoning in geometry, to prove results 
like the Pythagorean theorem. Sophists taught rich young men to gain power 
by arguing effectively (and often by verbal trickery). Parmenides and Heracli-
tus reasoned about being and non-being, anticipating later disputes about the 
law of non-contradiction, and Zeno reasoned about paradoxes. Socrates and 
Plato gave models of careful philosophical reasoning; they tried to derive 
absurdities from proposed views and sought beliefs that could be held 
consistently after careful examination. 

Reasoning is an important human activity, and it didn’t begin in ancient 
Greece. Is this ability biologically based, built into our brains by evolution 
because it aids survival? Or does it have a divine origin, since we’re made in 
the “image and likeness” of God? Or do both explanations have a place? Logic 
raises fascinating issues for other disciplines. 

Aristotle began the study of logic. He was the first to formulate a correct 
principle of inference, to use letters for terms, and to construct an axiomatic 
system. He created syllogistic logic (Chapter 2), which studies arguments like 
these (using “all A is B,” “no A is B,” “some A is B,” or “some A is not B”): 



 

 

All humans are mortal. 
All Greeks are humans. 
∴ All Greeks are mortal. 

all H is M Valid 
all G is H 
∴ all G is M 

This is valid because of its formal structure, as given by the formulation on 
the right; any argument having this same structure will be valid. If we change 
the structure, we may get an invalid argument, like this one: 0349 

All Romans are mortal. 
All Greeks are mortal. 
∴ All Greeks are Romans. 

all R is M Invalid 
all G is M 
∴ all G is R 

This is invalid because its form is wrong. Aristotle defended valid forms by 
deriving them from self-evidently valid forms; he criticized invalid forms by 
showing that they sometimes give true premises and a false conclusion. His 
logic of syllogisms is about logic in a narrow sense, since it deals with what 
follows from what. He also pursued other topics that connect with appraising 
arguments, such as definitions and fallacies; these are about logic in a broad-
er sense. 

Aristotle proposed two principles of thought. His law of non-contradiction 
states that the same property cannot at the same time both belong and not 
belong to the same object in the same respect. So “S is P” and “S is not P” can’t 
both be true at the same time, unless we take “S” or “P” differently in the two 
statements. Aristotle saw this law as so certain that it can’t be proved by 
anything more certain; not all knowledge can be demonstrated, since other-
wise we’d need an infinite series of arguments that prove every premise by a 
further argument. Deniers of the law of non-contradiction assume it in their 
practice; to drive this point home, we might bombard them with contradic-
tions until they plead for us to stop. Aristotle also supported the law of 
excluded middle, that either “S is P” or “S is not P” is true. Some deviant logics 
today dispute both laws (Chapter 17). 

Aristotle also studied the logic of “necessary” and “possible” (see modal 
logic, Chapters 10 and 11). He discussed future contingents (events that may 
or may not happen). Consider a possible sea battle tomorrow. If “There will 
be a sea battle tomorrow” (“S” below) is now either true or false, this seems 
to make necessary whether the battle occurs: 



 

Either it’s true that S or it’s false that S. 
If it’s true that S, then it’s necessary that S. 
If it’s false that S, then it’s necessary that not-S. 
∴ Either it’s necessary that S or it’s necessary that not-S. 

Aristotle rejected the conclusion, saying that there was no necessity either 
way. He seemed to deny the first premise and thus the universal truth of the 
law of excluded middle (which he elsewhere defends); if we interpret him 
this way, then he anticipated many-valued logic in using a third truth value 
besides true and false (§17.1). Another solution is possible. Many think 
premises 2 and 3 have a box-inside/box-outside ambiguity (§10.1): taking 
them as “(A ⊃ ☐B)” makes them doubtful while taking them as “☐(A ⊃ B)” 
makes the argument invalid. 

After Aristotle, Stoics and others developed a logic that focused on “if-
then,” “and,” and “or,” like our propositional logic (Chapters 6 and 7). Stoic 
logicians defended, for example, an important inference form that came to be 
called modus tollens (denying mode): 0350 

If your view is correct, then such and such is true. 
Such and such is false. 
∴ Your view isn’t correct. 

If C then S Valid 
Not-S 
∴ Not-C 

Stoics also studied modal logic. Unlike logicians today, they took “neces-
sary” and “possible” in a temporal sense, like “true at all times” and “true at 
some times.” They disputed whether there was a good modal argument for 
fatalism, the view that all events happen of inherent necessity (see §10.3b 
#10). They also disputed how to understand “If A then B” (§17.4). Philo of 
Megara saw it as true if and only if it’s not now the case that A is true and B is 
false; this fits the modern truth table for “if-then.” Diodorus Chronos saw it as 
true if and only if A is never at any time true while B is false. 

Aristotelian and Stoic logic were first seen as rivals, differing in three 
ways: 

• Aristotle focused on “all,” “no,” and “some.” Stoics focused on “if-then,” “and,” 
and “or.” 

• Aristotle used letter variables and expressed arguments as long conditionals, 
like “If all A is B, and all C is A, then all C is B.” Stoics used number variables 
and expressed arguments as sets of statements, like “If 1 then 2. But not-2. 
Therefore, not-1.” 

• Aristotle saw logic not as part of philosophy but rather as a tool for all think-



 

 

ing. Stoics saw logic as one of philosophy’s three branches (the other two be-
ing physics and ethics). But both agreed that students should study logic early, 
before going deeply into other areas. 

Later thinkers combined these approaches into traditional logic. For the next 
two thousand years, Aristotle’s logic with Stoic additions ruled in the West. 

At the same time, another tradition of logic rose up in India, China, and 
Tibet. We call it Buddhist logic even though Hindus and others pursued it too. 
It studied many topics important in the West, including inference, fallacies, 
and language. This is a common pattern in Buddhist logic: 

Here there is fire, because there is smoke. 
Wherever there is smoke there is fire, as in a kitchen. 
Here there is smoke. 
∴ Here there is fire. 

The last three lines are deductively valid: 

All cases of smoke are cases of fire. 
This is a case of smoke. 
∴ This is a case of fire. 

This omits “as in a kitchen,” which suggests inductive reasoning (Chapter 5); 
in our experience of smoke and fire, smoke always seems to involve fire. 0351 

The Eastern logic tradition is poorly understood in the West; this tradition 
covers many centuries, and many texts are difficult or untranslated. Some 
commentators emphasize similarities between East and West; they see 
human thinking as essentially the same everywhere. Others emphasize 
differences and caution against imposing a Western framework on Eastern 
thought. And some deviant logicians see the Eastern tradition as congenial to 
their views. 

Many see the East as more mystical than logical; Zen Buddhism delights in 
using paradoxes (like the sound of one hand clapping) to move us beyond 
logical thinking toward a mystical enlightenment. But East and West both 
have logical and mystical elements. Sometimes these come together in the 
same individual; Ludwig Wittgenstein in the early 20th century invented 
truth tables but also had a strongly mystical side. 

16.2 Medieval logic 

Medieval logicians carried on the basic framework of Aristotle and the Stoics, 



 

as logic became important in higher education. 
The Christian thinker Boethius (480–524) helped the transition to the 

Middle Ages. He wrote on logic, including commentaries; he explained the 
modal box-inside/box-outside ambiguity as he defended the compatibility of 
divine foreknowledge and human freedom (§10.3b #4 and #14). He translat-
ed Aristotle’s logic into Latin. Many of his translations were lost; but his 
Categories and On Interpretation became the main source for the logica vetus 
(old logic). 

The Arab world dominated in logic from 800–1200. Some Arab logicians 
were Christian, but most were Muslim; both groups saw logic as important 
for theology and medicine. They translated Aristotle into Arabic and wrote 
commentaries, textbooks, and original works. They pursued topics like 
syllogisms, modal logic, conditionals, universals, predication, and existence. 
Baghdad and Moorish Spain were centers of logic studies. 

In Christian Europe, logic was reborn in the 11th and 12th centuries, with 
Anselm, Peter Abelard, and Latin translations of Aristotle’s Prior Analytics, 
Posterior Analytics, Topics, and Sophistical Refutations; the logica nova (new 
logic) was based on these. There was interest in universals and in how terms 
signify. Peter of Spain and William of Sherwood wrote logic textbooks. 

The clever Barbara-Celarent verse was a tool for teaching syllogisms: 

Barbara, Celarent, Darii, Ferioque, prioris; 
Cesare, Camestres, Festino, Baroco, secundae; 
tertia, Darapti, Disamis, Datisi, Felapton, 
Bocardo, Ferison, habet; quarta insuper addit 
Bramantip, Camenes, Dimaris, Fesapo, Fresison. 

Capitalized names are valid syllogisms. Vowels are sentence forms: 0352 

A = “all … is …” 
I = “some … is …” 

Aff-Irm universal/particular 
 

E = “no … is …” 
O = “some … is not …” 

nE-gO universal/particular 

So “Barbara,” with AAA vowels, has three “all” statements: 



 

 

all M is P 
all S is M 
∴ all S is P 

Figure 1 (MP / SM in premises) 

Aristotelian syllogisms have two premises. Middle term “M” is common to 
both premises; predicate “P” occurs in the first premise, while subject “S” 
occurs in the second. There are four figures (arrangements of premise 
letters): 

1 2 3 4  

prioris secundae tertia quarta 

MP 
SM 

PM 
SM 

MP 
MS 

PM 
MS 

Aristotle’s four axioms are valid first-figure forms: 

Barbara  

all M is P 
all S is M 
∴ all S is P 

Celarent 

no M is P 
all S is M 
∴ no S is P 

Ferio 

all M is P 
some S is M 
∴ some S is P 

Darii 

no M is P 
some S is M 
∴ some S is not P 

The other 15 forms can be derived as theorems. The consonants give clues on 
how to do this; for example, “m” says to switch the order of the premises. 

Thomas Aquinas (1224–74), the most influential medieval philosopher, 



 

had little impact on logic’s development; but he made much use of logic. Since 
he emphasized reasoning and wrote so much, he likely produced more 
philosophical arguments than anyone else who has ever lived. 

Fourteenth-century logicians include William of Ockham and Jean Buridan. 
Ockham’s razor says “Accept the simplest theory that adequately explains the 
data.” Ockham developed modal logic and tried to avoid metaphysics when 
analyzing language. Buridan’s ass was a fictional donkey whose action was 
paralyzed when he was placed exactly midway between two food bowls. 
Buridan also formulated the standard rules for valid syllogisms; one version 
says that a syllogism is valid just if it satisfies all of these conditions: 

• Every term distributed in the conclusion must be distributed in the premises. 
(A term is distributed in a statement just if the statement makes some claim 
about every entity that the term refers to.) 

• The middle term must be distributed in at least one premise. (The middle 
term is the one common to both premises; if we violate this rule, we commit 
the 0353 fallacy of the undistributed middle.) 

• If the conclusion is negative, exactly one premise must be negative. (A state-
ment is negative if it contains “no” or “not”; otherwise it’s positive.) 

• If the conclusion is positive, both premises must be positive. 

In the Middle Ages, logic was important in philosophy and in higher educa-
tion. Even today, logic, like biology, uses many Latin terms (modus ponens, a 
priori/a posteriori, de re/de dicto, and so on). 

16.3 Enlightenment logic 

Aristotelian logic dominated until the end of the 19th century. Several 
logicians contributed to syllogistic logic; for example, Leonhard Euler dia-
grammed “all A is B” by putting an A-circle inside a larger B-circle, Lewis 
Carroll entertained us with silly syllogisms and points about logic in Alice in 
Wonderland, and John Venn gave us diagrams for testing syllogisms (§2.6). 
But most logicians would have agreed with Immanuel Kant, who said that 
Aristotle invented and perfected logic; nothing else of fundamental im-
portance could be added, although we might improve teaching techniques. 
Kant would have been shocked to learn about the revolution in logic that 
came about a hundred years later. 

The German thinkers Georg Hegel and Karl Marx provided a side current. 
Hegel proposed that logic should see contradictions as explaining how 
thought evolves historically; one view provokes its opposite, and then the 
two come together in a higher synthesis. Marx saw contradictions in the 
world as real; he applied this to political struggles and revolution. While 



 

 

some saw this dialectical logic as an alternative to traditional logic, critics 
objected that this confuses conflicting properties in the world (like hot/cold 
or capitalist/proletariat) with logical self-contradictions (like the same object 
being both white and, in the same sense and time and respect, also non-
white). 

The philosopher Gottfried Leibniz, the co-inventor of calculus, anticipated 
future developments. He proposed the idea of a symbolic language that 
would reduce reasoning to calculation. If controversies arose, the parties 
could take up their pencils and say, “Let us calculate.” Leibniz created a 
logical notation much like that of Boole (and much earlier); but his work was 
published after Boole. 

Many thinkers tried to invent an algebraic notation for logic. Augustus De 
Morgan proposed symbolizing “all A is B” as “A))B” and “some A is B” as 
“A()B”; a letter on the concave side of the parenthesis is distributed. He 
became known for his De Morgan laws for propositional logic: 

Not both A and B = Either not-A or not-B 
Not either A or B = Both not-A and not-B 

He complained that current logic couldn’t handle relational arguments like 
“All 0354 dogs are animals; therefore all heads of dogs are heads of animals” 
(§9.5b #25). 

The Boolean algebra of George Boole (1815–64) was a breakthrough, since 
it used math to check the correctness of inferences. Boole used letters for 
sets; so “M” might be the set of mortals and “H” the set of humans. Putting 
two letters together represents the intersection of the sets; so “HM” is the set 
of those who are both human and mortal. Then “All humans are mortal” is “H 
= HM,” which says that the set of humans = the set of those who are both 
human and mortal. A syllogism is a series of equations: 

All humans are mortal. 
All Greeks are humans. 
∴ All Greeks are mortal. 

H = HM Valid 
G = GH 
∴ G = GM 

We can derive the conclusion by substituting equals for equals. In premise 2, 
G = GH, replace “H” with “HM” (premise 1 says H = HM) to get G = GHM. 
Then replace “GH” with “G” (premise 2 says G = GH) to get G = GM. 

Boolean formulas, like those below (which use a later symbolism), can be 
interpreted to be about sets or about statements: 



 

“-A” can mean “the set of non-As” or “not-A” 

“A∩B” can mean “the intersection of sets A and B” or “A and B” 

“A∪B” can mean “the union of sets A and B” or “A or B” 

So if “A” is the set of animals, then “-A” is the set of non-animals; but if “A” is 
“Aristotle is a logician,” then “-A” is “Aristotle isn’t a logician.” The same laws 
cover both; for example, “A∩B = B∩A” works for either sets or statements. 
Boolean operators (like “and,” “or,” and “not”) use the statement interpreta-
tion. 

Boole, the father of mathematical logic, thought that logic belonged with 
mathematicians instead of philosophers. But both groups came to have an 
interest in logic, each getting the slice of the action that fits it better. While 
Boole was important, a greater revolution in logic was to come. 

16.4 Frege and Russell 

Gottlob Frege (1848–1925) created modern logic with his 1879 Be-
griffsschrift (“Concept Writing”). Its 88 pages introduced a symbolism that, 
for the first time, let us combine in every way Aristotle’s “all,” “no,” and 
“some” with the Stoic “if-then,” “and,” and “or.” So we can symbolize “If 
everything that’s A or B is then C and D, then everything that’s non-D is 
non-A.” Thus the gap between Aristotle and the Stoics was overcome in a 
higher synthesis. Frege also showed how to analyze arguments with relations 
(like “x loves y”) and multiple quantifiers; so we can show that “There is 
someone that everyone loves” entails “Everyone loves someone” – but not 
conversely. Frege presented logic as a 0355 formal system, with purely 
notational rules for determining the grammaticality of formulas and the 
correctness of proofs. 

Frege’s work was ignored until Bertrand Russell (1872–1970) praised it in 
the early 20th century. Frege’s difficult symbolism alienated people. He used 
lines for “not,” “if-then,” and “all”: 

Not-A 

 

If A then B 

 



 

 

For all x 

 

These can combine to symbolize “Not all A is non-B” (our “∼(x)(Ax ⊃ ∼Bx)”): 

 

This was also his way to write “Some A is B” (our “(∃x)(Ax • Bx)”); he had no 
simpler notation for “some” or “and.” 

Frege developed logic to help show that arithmetic is reducible to logic; he 
wanted to define all basic concepts of arithmetic (like numbers and addition) 
in purely logical terms and prove all basic truths of arithmetic using just 
logical axioms and inference rules. Frege used a seemingly harmless axiom 
that every condition on x picks out a set containing just those elements that 
satisfy that condition; so the condition “x is a cat” picks out the set of cats. But 
consider that some sets are members of themselves (the set of abstract 
objects is an abstract object) while other sets aren’t (the set of cats isn’t a 
cat). By Frege’s axiom, “x is not a member of itself” picks out the set contain-
ing just those things that are not members of themselves. Call this “set R.” So 
any x is a member of R, if and only if x is not a member of x (here “∈” means 
“is a member of” and “∉” means “is not a member of”): 

For all x, x ∈ R if and only if x ∉ x. 

Russell asked in a 1902 letter to Frege: What about set R itself? By the above 
principle, R is a member of R, if and only if R is not a member of R: 

R ∈ R if and only if R ∉ R. 

So is R a member of itself? If it is, then it isn’t – and if it isn’t, then it is; either 
way we get a contradiction. Since this contradiction, called Russell’s paradox, 
was provable in Frege’s system, that system was flawed. Frege was crushed, 
since his life work collapsed. His attempts to fix the problem weren’t success-
ful. 

Russell greatly admired Frege and his groundbreaking work in logic; the 
two minds worked along similar lines. But the paradox showed that Frege’s 
work needed fixing. So Russell, with his former teacher Alfred North White-
head, 0356 worked to develop logic and set theory in a way that avoided the 



 

contradiction. They also developed a more intuitive symbolism (much like 
what we use in this book), based on the work of Giuseppe Peano. The result 
was their massive Principia Mathematica, which was published in 1910–
1913. Principia had a huge influence and became the standard formulation of 
the new logic. 

16.5 After Principia 

Classical symbolic logic includes propositional and quantificational logic 
(Chapters 6 to 9). A logic is “classical” if it accords with Frege and Russell 
about which arguments are valid, regardless of differences in symbolization 
and proof techniques. Classical symbolic logic gradually became the new 
orthodoxy, replacing the older Aristotelian logic. 

Much work was done to solidify classical symbolic logic. Different proof 
techniques were developed; while Frege and Russell used an axiomatic 
approach, later logicians invented inferential and truth-tree methods that 
were easier to use. Different ways of symbolizing arguments were developed, 
including the Polish notation of a school of logic that was strong in Poland 
between the world wars. Ludwig Wittgenstein and Emil Post independently 
invented truth tables, which clarified our understanding of logical connec-
tives (like “if-then,” “and,” and “or”) and led to a criterion of validity based on 
semantics – on the meaning of the connectives and how they contribute to 
truth or falsity; Alfred Tarski and others expanded the semantic approach to 
quantificational logic. 

Much work was done in metalogic, the study of logical systems (Chapter 
15). Kurt Gödel showed that Russell’s axiomatization of classical logic was, 
given certain semantic assumptions, correct: just the right things were 
provable. But he also showed, against Frege and Russell, that arithmetic 
cannot be reduced to any formal system: no consistent set of axioms and 
inference rules would suffice to prove all arithmetic truths; this result, called 
Gödel’s theorem, is perhaps the most striking and surprising result of 20th-
century logic. Alonzo Church showed that the problem of determining 
validity in quantificational logic cannot be reduced to an mechanical algo-
rithm (a result called Church’s theorem). There was also much activity in set 
theory, which after Russell’s paradox became increasingly complex and 
controversial. 

There was also much work in philosophy of logic (Chapter 18), which deals 
with philosophical questions about logic, such as these: Are logical truths 
dependent on human conventions (so different conventions might produce 
different logical truths) or on the objective nature of reality (perhaps giving 
us the framework of any possible language that would be adequate to de-
scribe reality)? Can logic help us clarify metaphysical issues, such as what 



 

 

kinds of entity ultimately exist? Should we assume abstract entities (like 
properties and propositions) when we do logic? How can we resolve logical 
paradoxes (such as Russell’s 0357 paradox and the liar paradox)? Are logical 
truths empirical or a priori? Does logic distort ordinary beliefs and ordinary 
language, or does it correct them? What is the definition and scope of logic? 

Logic was important in the development of computers. The key insight 
here was that logical functions like “and” and “or” can be simulated electrical-
ly by logic gates; this idea goes back to the American logician Charles Sanders 
Peirce in the 1880s and was rediscovered by Claude Shannon in 1938. A 
computer contains logic gates, plus memory and input-output devices. 
Logicians like John von Neumann, Alan Turing, and Arthur Burks helped 
design the first large-scale electronic computers. Since logic is important for 
computers, in both hardware and software, it’s studied today in computer 
science departments. So now three main departments study logic – philoso-
phy, math, and computer science. 

Logic today is also an important part of cognitive science, an interdiscipli-
nary approach to thought that includes linguistics, psychology, biology (brain 
and sensory systems), computers (especially artificial intelligence), and other 
branches of philosophy (especially epistemology and philosophy of mind). 

As classical symbolic logic became the orthodoxy, it started to be ques-
tioned. Two types of non-classical logic came to be. Supplementary logics 
accepted that classical logic was fine as far as it went but needed to be 
supplemented to deal, for example, with “necessary” and “possible.” Deviant 
logics thought that classical logic was wrong on some points and needed to be 
changed. 

The most important supplementary logic is modal logic, which deals with 
“necessary” and “possible” (Chapters 10 and 11). Ancient and medieval 
logicians pursued modal logic; but 20th-century logicians mostly ignored it 
until C. I. Lewis’s work in the 1930s. Modal logic then became controversial. 
Willard Quine argued that it was based on a confusion; he thought logical 
necessity was unclear and quantified modal logic led to an objectionable 
metaphysics of necessary properties. There was lively debate on modal logic 
for many years. In 1959, Saul Kripke presented a possible-worlds way to 
explain modal logic; this made more sense of it and gave it new respect 
among logicians. Possible worlds have proved useful in other areas and are 
now a common tool in logic; and several philosophers (including Alvin 
Plantinga) have defended a metaphysics of necessary properties. Today, 
modal logic is a well-established extension of classical logic. 

Other extensions apply to ethics (“A ought to be done” or “A is good”), 
theory of knowledge (“X believes that A” or “X knows that A”), the part–
whole relationship (“X is a part of Y”), temporal relationships (“It will be true 
at some future time that A” and “It was true at some past time that A”), and 
other areas (Chapters 12 to 14). Most logicians would agree that classical 
logic needs to be supplemented in order to cover certain kinds of argument. 



 

Deviant logics say that classical symbolic logic is wrong on some points 
and needs to be changed (Chapter 17). Some propose using more than two 
truth values. Maybe we need a third truth value for “half-true.” Or maybe we 
need a fuzzy-logic range of truth values, from completely true (1.00) to 
completely false (0.00). Or perhaps “A” and “not-A” can both be false (intui-
tionist logic) or both 0358 be true (paraconsistent logic). Or perhaps the 
classical approach to “if-then” is flawed; some views even reject modus 
ponens (“If A then B, A ∴ B”) and modus tollens (“If A then B, not-B ∴ not-A”). 
These and other deviant logics have been proposed. Today there is much 
questioning of basic logical principles. 

This brief history of logic has focused on deductive logic and related areas. 
There has also been much interest in informal logic (Chapters 3 and 4), 
inductive logic (Chapter 5), and history of logic (this chapter). 

So logic has a complex history – from Aristotle and the Stoics in ancient 
Greece, through the Middle Ages and the Enlightenment, to the turmoil of the 
19th century and logic’s transformation with Frege and Russell, and into 
recent classical and non-classical logics and the birth of the computer age.1 

 
1 For more on the history of logic, I suggest P. H. Nidditch’s The Development of Mathematical 
Logic (London: Routledge & Kegan Paul, 1962) and, for primary sources, Irving Copi and James 
Gould’s Readings on Logic (New York: Macmillan, 1964). Also useful are William and Martha 
Kneale’s The Development of Logic (Oxford: Clarendon, 1962) and Joseph Bocheński’s A 
History of Formal Logic, trans. Ivo Thomas (Notre Dame, Ind.: University of Notre Dame, 
1961). 



 

17 Deviant Logics 

Deviant logics reject standard assumptions. Most logicians have assumed that 
statements are either true or false, but not both, and that true and false are 
the only truth values. Deviant logics question such ideas. Maybe we need 
more than two truth values (many-valued logic). Or maybe “A” and “not-A” 
can both be true (paraconsistent logic) or both be false (intuitionist logic). Or 
maybe standard IF-THEN inferences are mistaken (relevance logic). 

Deviant logics are controversial. Some are happy that logic is becoming, in 
some circles, as controversial as other areas of philosophy. Others defend 
standard logic and see deviant logic as promoting intellectual chaos; they fear 
what would happen if thinkers couldn’t assume that modus ponens and 
modus tollens are valid and that contradictions are to be avoided. 

17.1 Many-valued logic 

Most logicians assume that there are only two truth values: true and false. 
Our propositional logic in Chapter 6 accepts this bivalence, symbolizing true 
as “1” and false as “0.” This is consistent with there being truth-value gaps for 
sentences that are meaningless (like “Glurklies glurkle”) or vague (like “Her 
shirt is white,” when it’s between white and gray). Logic needn’t worry about 
such sentences, since arguments using them are already defective; so we can 
just stipulate that capital letters stand for statements that are true or false. 

Many-valued logics accept more than two truth values. Three-valued logic 
might use “1” for true, “0” for false, and “½” for half-true. This last category 
might apply to statements that are unknowable, or too vague to be true-or-
false, or plausible but unproved, or meaningless, or about future events not 
yet decided. A three-valued truth table for NOT looks like this: 

P ∼P 

0 
½ 
1 

1 
½ 
0 

If P is false, then ∼P is true. 
If P is half-true, then ∼P is half-true. 



 

If P is true, then ∼P is false. 

This table shows how the other connectives work: 0360 

P Q (P • Q) (P ∨ Q) (P ⊃ Q) (P ≡ Q) 
0  
0 
0  
½ 
½ 
½ 
1 
1 
1 

0 
½ 
1 
0 
½ 
1 
0 
½ 
1 

0 
0 
0 
0 
½ 
½ 
0 
½ 
1 

0 
½ 
1 
½ 
½ 
1 
1 
1 
1 

1 
1 
1 
½ 
1 
1 
0 
½ 
1 

1 
½ 
0 
½ 
1 
½ 
0 
½ 
1 

AND takes the value of the lower conjunct, and OR takes the value of the 
higher disjunct. IF-THEN is true if the consequent is at least as true as the 
antecedent and is half-true if its truth is a little less. IF-AND-ONLY-IF is true if 
both parts have the same truth value and is half-true if they differ a little. 

Given these truth tables, some standard logical laws fail. “(P ∨ ∼P)” (the 
law of excluded middle) and “∼(P • ∼P)” (the law of non-contradiction) 
sometimes are only half true. “(P ⊃ Q)” isn’t equivalent to “∼(P • ∼Q),” since 
they differ in truth value if P and Q are both ½. We can avoid these results by 
making “(½ ∨ ½)” true and “(½ • ½)” false; but then “P” strangely isn’t 
logically equivalent to “(P ∨ P)” or “(P • P).” 

Fuzzy logic proposes an infinity of truth values; these can be represented 
by real numbers between 0.00 (fully false) and 1.00 (fully true). We might 
define a “valid argument” as one in which, if the premises have at least a 
certain truth value (perhaps .9), then so does the conclusion; modus ponens 
then fails (since if “A” and “(A ⊃ B)” are both .9, then “B” might be less than 
.9) as do some other logical principles. Some propose an even fuzzier logic 
with vaguer truth values like “very true” or “slightly true.” 

Fuzzy logic is used in devices like clothes dryers to permit precise control. 
A crisp-logic dryer might have a rule that if the shirts are dry then the heat is 
turned off; a fuzzy-logic dryer might say that if the shirts are dry to degree n 
then the heat is turned down to degree n. We could get the same result using 
standard logic and a relation “Dxn” that means “shirt x is dry to degree n” – 
thus using degrees-of-dryness instead of degrees-of-truth. 

Opponents say many-valued logic is weird and arbitrary and has little 
application to real-life arguments. Even if this is so, the many-valued ap-
proach has other applications. It can be used, for example, in computer 
memory systems with more than two states. And it can be used to show the 
independence of axioms for propositional logic (§15.5); an axiom can be 
shown to be independent of the other axioms of a certain system if, for 



 

 

example, the other axioms (and theorems derived from these) always have a 
value of “7” on a given truth-table scheme, while this axiom sometimes has a 
value of “6.” 0361 

17.2 Paraconsistent logic 

Aristotle’s law of non-contradiction states that the same property cannot at 
the same time both belong and not belong to the same object in the same 
respect. So “S is P” and “S is not P” cannot both be true at the same time, 
unless we take “S” or “P” differently in the two statements. Aristotle saw this 
law as certain but unprovable. Deniers of the law assume it in their practice; 
wouldn’t they complain if we bombarded them with contradictions? 

Aristotle mentions Heraclitus as denying the law of non-contradiction. The 
19th-century thinkers Georg Hegel and Karl Marx also seemed to deny it and 
are often seen as proposing an alternative dialectical logic in which contra-
dictions are real. Critics object that such a logic would confuse conflicting 
properties in the world (like hot/cold or capitalist/proletariat) with logical 
self-contradictions (like the same object being both white and, in the same 
sense and time and respect, also non-white). 

In standard propositional logic, the law of non-contradiction is “∼(P • ∼P)” 
and is a truth-table tautology – a formula true in all possible cases: 

P ∼(P • ∼P) 

0 
1 

1 
1 

“This is false: I went to Paris and I didn’t go to Paris.” 

“P and not-P” is always false in standard logic, which presupposes that “P” 
stands for the same statement throughout. English is looser and lets us shift 
the meaning of a phrase in the middle of a sentence. “I went to Paris and I 
didn’t go to Paris” may express a truth if it means “I went to Paris (in that I 
landed once at the Paris airport) – but I didn’t really go there (in that I saw 
almost nothing of the city).” Because of the shift in meaning, this would better 
translate as “(P • ∼Q),” which wouldn’t violate the law of non-contradiction. 

Some recent logicians, like Graham Priest, claim that sometimes a state-
ment and its contradictory are both true. Such dialethist logicians don’t say 
that all statements and their denials are true – but just that some are. Here 
are examples where “A and not-A” might be claimed to be true: 

• “We do and don’t step into the same river.” (Heraclitus) 



 

• “God is spirit and isn’t spirit.” (the mystic Pseudo-Dionysius) 
• “The moving ball is here and not here.” (Hegel and Marx) 
• “The round square is both round and not-round.” (Meinong) 
• “The one hand claps and doesn’t clap.” (Eastern paradox) 
• “Sara is a child and not a child.” (paradoxical speech) 
• “What I am telling you now is false.” (liar paradox) 
• “The electron did and didn’t go in the hole.” (quantum physics) 

Most logicians contend that these aren’t genuine cases of “A and not-A,” at 
least 0362 if they’re taken in a sensible way, since we must take the two 
instances of “A” to represent different ideas. For example, “Sara is a child and 
not a child” can be sensible only if it really means something like “Sara is a 
child-in-age but not a child-in-sophistication.” Paradoxical speech, although 
sometimes nicely provocative, doesn’t make sense if taken literally. Diale-
thists try to show that some of their allegedly true self-contradictions resist 
such analyses. 

In standard propositional logic we can from a single self-contradiction 
deduce the truth of every statement and its denial. But then, if we believed a 
self-contradiction and also all its logical consequences, we’d contract the 
dreaded disease of contradictitis – whereby we’d believe every statement 
and also its contradictory – bringing chaos to human speech and thought. 
Here’s an intuitive derivation showing how, given the contradictory premises 
“A is true” and “A is not true,” we can deduce any arbitrary statement “B” 
(this “A, ∼A ∴ B” inference is called the explosion principle): 

1  A is true. {premise} 
2  A is not true. {premise} 
3  ∴ At least one of these two is true: A or B. {from 1: if A is true then at least one 
of the two, A or B, is true} 
4  ∴ B is true. {from 2 and 3: if at least one of the two, A or B, is true and it’s not 
A, then it’s B} 

Dialethists respond by rejecting standard logic. They defend a paraconsistent 
logic that rejects the explosion principle; this lets them contain an occasional 
self-contradiction without leading to an “anything goes” logical nihilism. In 
the above argument, they reject line 4 and thus the “(A ∨ B), ∼A ∴ B” infer-
ence (disjunctive syllogism). Suppose, they say, B is false and A is both-true-
and-false (!); then, they say, “(A ∨ B)” is true (since “A” is true), “∼A” is true 
(since “A” is also false), but “B” is false – and so disjunctive syllogism is 
invalid. 

Paraconsistent logicians have developed their own truth tables. One option 
lets “A” and “not-A” have any combination of true or false, independently of 
each other; so we have four possibilities: 



 

 

P ∼P 
0  0 
0  1 
1  0 
1  1 

P and not-P are both false. 
P is false and not-P is true. 
P is true and not-P is false. 
P and not-P are both true. 

This approach rejects the usual understanding of “not,” whereby “not-A” has 
the opposite truth value as “A.” In paraconsistent logic, disjunctive syllogism 
is invalid, since it can have true premises and a false conclusion: 

A ∼A B (A ∨ B), ∼A ∴ B 

1 1 0 1 1  0 

0363 Similarly, the explosion principle, which permits us to deduce any 
arbitrary statement from a self-contradiction, is invalid: 

A ∼A B A, ∼A ∴ B 

1 1 0 1 1  0 

Paraconsistent logic lets logic go on normally for the most part – so most of 
the arguments in this book that are valid/invalid on standard logic would 
come out the same as before; but it also permits an occasional self-
contradiction to be true. Thus it denies that a strict adherence to the law of 
non-contradiction is necessary for coherent thought. 

Critics object that it makes no sense to permit “A” and “not-A” to both be 
true, at least if we take “not” in anything close to its normal sense. If we reject 
the usual truth table for “not,” which makes “not-A” always have the opposite 
truth value of “A,” then what is left of the meaning of “not”? 

Critics also object that permitting “A” and “not-A” to both be true lets irra-
tional people off too easily. Imagine politicians or students who regularly 
contradict themselves, asserting “A” and then a few breaths later asserting 
“not-A,” and yet defend themselves using the “new logic,” which lets both be 
true at once. Surely this is lame and sophistical. 

Some who accept the law of non-contradiction see value in paraconsistent 
logic, since people or computers may have to derive conclusions from incon-
sistent data. Suppose that our best data about a crime is flawed and incon-
sistent; we still might want to derive the best conclusions we can from this 



 

data. The “anything and its opposite follows from inconsistent data” ap-
proach of classical logic is unhelpful. Paraconsistent logic claims to do better. 

Critics question whether paraconsistent logic can do better. If our data is 
inconsistent, then it has errors and can’t provide reliable conclusions. So we 
need to clear up the inconsistency first, perhaps by rejecting the least solidly 
based statements. We need to see what follows (using standard logic) from 
the most probable consistent subset of the original data. 

Critics also claim that rejecting disjunctive reasoning lessens the real-
world usefulness of paraconsistent logic. Suppose we know that either A or B 
committed the murder, and then we find out that A didn’t do it. We need to 
conclude that B then did it; but paraconsistent logic says that this is invalid! 

Logicians defend the law of non-contradiction in different ways. Some see 
it as a useful language convention. We could imagine a tribe where vague 
statements (like “This shirt is white”) in borderline cases are said to be both 
true and false (instead of neither true nor false). Some might speak this way; 
and we could easily translate between this and normal speech. If so, then 
perhaps a strict adherence to the law of non-contradiction is at least partly 
conventional. But, even so, it’s a convention that’s less confusing than the 
paraconsistent alternative. 

Others see the law of non-contradiction as a deep metaphysical truth about 
reality. They see paraconsistent logicians as offering, not an alternative way 
of 0364 speaking, but rather an incoherent metaphysics. Regardless of our 
verdict here, dialethism and paraconsistent logic do offer interesting chal-
lenges that make us think more deeply about logic. 

17.3 Intuitionist logic 

Aristotle held the law of excluded middle, that either “S is P” or “S is not P” is 
true. Standard propositional logic expresses this as “(A ∨ ∼A)” (“A or not-A”), 
which has an all-1 truth table and is true in all possible cases. Intuitionist 
logicians, like the mathematicians Luitzen Brouwer and Arend Heyting, reject 
this law when applied to some areas of math. They similarly reject the law of 
double negation “(∼∼A ⊃ A)” (“If not-not-A, then A”). They think “A” and 
“∼A” are sometimes both false in cases involving infinite sets. To emphasize 
these differences, intuitionists use “¬a” for negation instead of “∼.” 

Intuitionist mathematicians see the natural numbers (0, 1, 2, . . .) as 
grounded in our experience of counting. Mathematical formulas are human 
constructs; they shouldn’t be considered true unless the mind can prove their 
truth. Goldbach’s conjecture says “Every even number is the sum of two 
primes.” This seems to hold for every even number we pick: 2 (1 + 1), 4 (3 + 
1), 6 (5 + 1), 8 (7 + 1), and so on. But no one has proved or disproved that it 
holds for all even numbers. Most think Goldbach’s conjecture must be true or 



 

 

false objectively, even if a proof either way may be impossible. Intuitionists 
disagree. They say truth in mathematics is provability; if neither Goldbach’s 
conjecture nor its negation is provable, then neither is true. So intuitionists 
think that, in some cases involving infinite sets (like the set of even numbers), 
neither “A” nor “∼A” is true, and so both are false. The law of excluded middle 
does apply if we use finite sets; so “Every even number under 1,000,000,000 
is the sum of two primes” is true or false, and we could write a computer 
program that could in principle eventually tell us which it is. 

Some non-realists reject the law of excluded middle in other areas. Sup-
pose you think the only basic objective truths are ones about your individual 
experience, like “I feel warmth” or “I sense redness.” You might accept 
objective truths about material objects (like “I’m holding a red pen”), but only 
if these can be verified by your experience. But often your experience can 
verify neither “A” nor “not-A”; then neither would be true, and both would be 
false. So you might reject the law of excluded middle on the basis of a non-
realist metaphysics. 

Realists think this is bad metaphysics. Goldbach’s conjecture about math-
ematics is objectively true or false; and our experience supports (but doesn’t 
conclusive prove) that it’s true. It’s wrong to identity “true” with “verified,” 
since we may imagine unverifiable truths; there may be a whole world of 
truths and falsehoods that aren’t accessible to our finite minds. 0365 

17.4 Relevance logic 

Classical propositional logic analyzes “If P then Q” as simply denying that we 
have P-true-and-Q-false: 

(P ⊃ Q) = ∼(P • ∼Q) 

If P is true, then Q is true = We don’t have P true and Q false 

An IF-THEN understood this way is a material implication and is automatical-
ly true if the antecedent is false or the consequent is true. This leads to the so-
called paradoxes of material implication: 

• From “not-A” we can infer “If A then B.” So from “Pigs don’t fly” we can infer “If 
pigs fly, then I’m rich.” 

• From “B” we can infer “If A then B.” So from “Pigs don’t fly” we can infer “If I’m 
rich, then pigs don’t fly.” 

While many logicians see such results as odd but harmless, relevance logi-
cians see them as wrong and want to reconstruct logic to avoid them. 



 

Relevance logicians oppose evaluating the truth of “If A then B” just by the 
truth values of the parts; they say an IF-THEN can be true only if the parts are 
relevant to each other. While they’re vague on what this means, they insist 
that logic shouldn’t prove theorems like “If A-and-not-A, then B,” where 
antecedent and consequent share no letters. Since paraconsistent logic 
(§17.2) rejects the related explosion principle that a self-contradiction entails 
every statement, there’s a natural affinity between the approaches; many 
relevance logics are also paraconsistent. Relevance logics often symbolize 
relevant implication as “→a,” to contrast with the “⊃” of material implication. 

Defenders of material implication appeal to conversational implication to 
diffuse objections based on the paradoxes of material implication. Paul Grice 
claims that what is true may not be sensible to assert in ordinary speech. 
When we speak, we shouldn’t make a weaker claim rather than a stronger 
one unless we have a special reason. Suppose you tell your five children, “At 
least three of you will get Christmas presents” – while you know that all five 
will. The weaker statement suggests or insinuates that not all five will get 
presents. This is due to speech conventions, not logical entailments. “At least 
three will get presents” doesn’t logically entail “Not all five will get presents”; 
but saying the first insinuates the second. Similarly, there’s little point in 
saying “If P then Q” on the basis of knowing not-P or knowing Q – since it’s 
better to say straight off that not-P or that Q. There’s generally a point to 
saying “If P then Q” only if there’s a special connection between the two, 
some way of going from one to the other. But, again, this has to do with 
speech conventions, not with truth conditions for “If P then Q.” 0366 

Some defenders of material implication claim that the so-called paradoxes 
of material implication are perfectly correct and can be defended by intuitive 
arguments. We can derive “If not-A then B” from “A”: 

1  A is true. (Premise) 
2  ∴ Either A is true or B is true. {from 1} 
3  ∴ If A isn’t true, then B is true. {from 2} 

Relevance logic must reject this plausible derivation; it must deny that 2 
follows from 1, that 3 follows from 2, or that deducibility is transitive (if 3 fol-
lows from 2, and 2 from 1, then 3 follows from 1). Doing any of these violates 
our logical intuitions at least as much as do the material-implication para-
doxes. So relevance logics, although they try to avoid unintuitive results 
about conditionals, cannot achieve this goal; they all result in oddities at least 
as bad as the ones they’re trying to avoid. Another problem is that a wide 
range of conflicting relevance logics have been proposed; these disagree 
much on which arguments involving conditionals are valid. 

Relevance logicians have found other conditional arguments that, while 
valid on the traditional view, seem to them to be invalid. Some even question 



 

 

the validity of modus ponens (“If A then B, A ∴ B”). One allegedly questionable 
modus ponens inference involves measles: 

If you have red spots, then you have measles. 
You have red spots. 
∴ You have measles. 

(R ⊃ M) 
R 
∴ M 

This is claimed to be invalid because you might have red spots for some other 
reason. Another objection, from Vann McGee, is more complex. In 1980, three 
main candidates ran for US president: two Republicans (Ronald Reagan, who 
won with over 50 percent of the vote, and John Anderson, who got about 7 
percent of the vote and was thought to have no chance to win) and a Demo-
crat (Jimmy Carter, who got just over 40 percent). Consider this argument, 
given just before the election: 

If a Republican will win, then if Reagan does not win then Anderson will win. 
A Republican will win. 
∴ If Reagan does not win, then Anderson will win. 

(W ⊃ (∼R ⊃ A)) 
W 
∴ (∼R ⊃ A) 

Here it seems right to believe the premises but not the conclusion (since 
clearly if Reagan doesn’t win, then Carter will win, not Anderson). Again, this 
instance of modus ponens is claimed to be invalid. 

Defenders of modus ponens think such examples confuse a genuine IF-
THEN with other things. Compare these three ways of taking “If you have red 
spots, then you have measles”: 0367 

1. Genuine IF-THEN: “If you have red spots, then you have measles.” 
2. Conditional Probability: “The probability is high that you have measles, given 
that you have red spots.” 
3. Qualified IF-THEN: “If you have red spots and other causes can be excluded, 
then you have measles.” 

The premise about measles, if a genuine IF-THEN, has to mean 1, and not 2 or 
3; but then its truth excludes your having red spots but no measles. The truth 
of this IF-THEN doesn’t entail that we’re certain that there are no other 



 

causes; but if in fact there are other causes (so you have red spots but no 
measles), then the IF-THEN is false. A similar analysis takes care of the 
Reagan argument. 

Even if we reject relevance logic, still we have to admit that some condi-
tionals, or their near relatives, cannot plausibly be interpreted as material 
implications. We already mentioned conversational implication (where 
saying A suggests or insinuates a further statement B) and conditional 
probability (where fact A would make fact B probable to a given degree). 
There are also logical entailments (“B logically follows from A” – which 
Chapter 10 symbolizes as “☐(A ⊃ B)”) and counterfactuals (“If A had hap-
pened then B would have happened” – often symbolized as “(A ☐→ B)”). So 
conditionals and their near relatives form a diverse family, going from very 
strong logical entailments, through standard IF-THENs, down to probability 
or to mere suggestion or insinuation. Even apart from relevance logic, 
conditionals raise many logical issues. 

It shouldn’t surprise us that central logical principles raise controversies. 
Even “I see a chair” raises controversies if we push it far enough. But not all 
alternative views are equally reasonable. I’d contend that, despite controver-
sies, I really do see a chair. And I’d contend that most assumptions about logic 
that have been held since Aristotle’s time are solid.1 

 
1 I do think, however, that in quantified modal logic there’s much to be said for free logic 
(§11.4), which is somewhat deviant. For more on deviant logics, see Graham Priest’s An 
Introduction to Non-Classical Logic, 2nd ed. (Cambridge: Cambridge University Press, 2008) 
and J. C. Beall and Bas van Fraassen’s Possibilities and Paradox (Oxford: Oxford University 
Press, 2003). 



 

18 Philosophy of Logic 

Philosophy of logic deals with issues about logic that are broadly philosophi-
cal, especially metaphysical (about reality) or epistemological (about how we 
know). Here are examples: Are there abstract entities, and does logic presup-
pose them? Is logic the key to understanding the structure of reality? How do 
we know logical laws – are they empirical or true by convention? What is 
truth, and how do different views on truth affect logic? What is the scope of 
logic? 

18.1 Abstract entities 

Metaphysics studies the nature of reality. It considers broad views like 
materialism (only the physical is ultimately real), idealism (only the mental is 
ultimately real), and dualism (both the physical and the mental are ultimately 
real). Another issue is whether there are abstract entities – entities, roughly, 
that are neither physical (like apples) nor mental (like feelings); alleged 
examples include numbers, sets, and properties. 

Logic can quickly bring up issues about abstract entities. Take this argu-
ment: 

This is green. 
This is an apple. 
∴ Some apple is green. 

In discussing this argument, we may talk about abstract entities: 

• The set of green things; this set seems to be not physical or mental, but rather 
an abstract entity. 

• The property of greenness, which can apply either to the color as experienced 
or to its underlying physical basis; in either case, greenness seems to be not a 
concrete mental or physical entity, but rather something more abstract that 
has physical or mental instances. 

• The concept of greenness (what terms for “green” in various languages mean). 
• The word “green” and the sentence “This is green,” which are abstract pat-

terns with written and auditory instances. 



 

• The proposition that this is green, which is the truth claim that we assert using 
“This is green” in English or similar things in other languages. 0369 

Platonists, as logicians use the term, are those who straightforwardly accept 
the existence of such abstract objects. Nominalists, in contrast, are unhappy 
about such entities and want to restrict what exists to concrete physical or 
mental entities; they try to make sense of logic while rejecting abstract enti-
ties. Intermediate views are possible; maybe we should accept abstract 
entities, not as independently real entities that we discover, but rather as 
mental creations or fictions. Disputes about such matters go back to ancient 
and medieval debates about forms and universals, and continue to rage 
today. 

18.2 Metaphysical structures 

Does logic give us the key to understand reality’s metaphysical structure? 
Ludwig Wittgenstein, in his Tractatus Logico-Philosophicus (1922), argued 
that it does. He saw the world as the totality of facts. If we state all the facts, 
we completely describe reality. Facts are about simple objects. An atomic 
statement pictures a fact by having its elements mirror the simple objects of 
the world. Language, when completely analyzed, breaks down into such 
atomic statements. Complex statements are built from atomic ones using 
logical connectives like “and,” “or,” and “not.” Wittgenstein invented truth 
tables to show how this works. Some complex statements, like “It’s raining or 
not raining,” are true in all cases, regardless of which atomic statements are 
true; such statements are certain but lack content. 

While Wittgenstein thought atomic statements were the simplest truths, 
he didn’t say whether these were about physical facts or experiences. In 
either case, complex statements are constructible out of atomic statements 
using the logical connectives of propositional logic (Chapter 6). Statements 
not so constructible are nonsensical. Wittgenstein thought that most philo-
sophical issues (for example, about values or God) were nonsensical. Para-
doxically, he thought his own theory (starting with his claim that the world is 
the totality of facts) is nonsensical too. He ended on a mystical note: the most 
important things in life (his own theory, values, God, the meaning of life) 
cannot be put into words. 

Bertrand Russell, while impressed by Wittgenstein’s views, tried to make 
them more sensible and less paradoxical. Russell’s logical atomism held that 
an ideal language – one adequate to describe reality completely – must be 
based on quantificational logic (Chapters 8 and 9) and thus must include 
quantifiers like “all” and “some.” It must also include terms that refer to the 
ultimately simple elements of reality – which include objects, properties, and 



 

 

relations. He debated whether the basic entities of the world were physical, 
or mental, or perhaps something neutral between the two. 

Russell thought ordinary language can lead us into bad metaphysics (§9.6). 
Suppose you say “There’s nothing in the box.” Some might see “nothing” as 
the name of a mysterious object in the box. This is wrong. Instead, the 
sentence just 0370 means “It’s false that there’s something in the box.” Or 
suppose you say “The average American has 2.4 children.” While “the average 
American” doesn’t refer to an actual entity, the sentence is meaningful; it 
asserts that the average number of children that Americans have is 2.4. 
“Nothing” and “the average American” are logical constructs; they’re mere 
ways of speaking and don’t directly refer to objects. Russell went on to ask 
whether sets, numbers, material objects, persons, electrons, and experiences 
were real entities or logical constructs. Logical analysis is the key to answer-
ing such questions. We must see, for example, whether statements about 
material objects can be reduced to sensations, or whether statements about 
minds can be analyzed as about behavior. 

In a similar spirit, Willard Quine pursued ontology, about what kinds of 
entity ultimately exist. His slogan, “To be is to be the value of a bound varia-
ble,” tried to clarify ontological disputes. It means that the entities our theory 
commits us to are those that our quantified variables (like “for all x” and “for 
some x”) must range over for our statements to be true. So if we say, “There’s 
some feature that Shakira and Britney have in common,” then we must accept 
features (properties) as part of our ontology – unless we can show that we’re 
using an avoidable way of speaking (a “logical construct” in Russell’s sense). 
Quine accepted sets in his ontology, because he thought they were needed for 
math and science; in picking an ontology, he appealed to pragmatic consider-
ations. He rejected properties, concepts, and propositions because he thought 
they were less clear. 

Wittgenstein later supported an ordinary language approach and rejected 
his earlier basing of metaphysics on logic. His Philosophical Investigations 
(1953) saw his earlier work as mistakenly imposing ideas on reality instead 
of fairly investigating it. His slogan became “Don’t think, but look!” Don’t say 
that reality has to be such and such, because that’s what your preconceptions 
demand; instead, look and see how it is. He now contended that few concepts 
had strict analyses. His main example was “game,” which has no strict 
definition. Games typically involve a competition between sides, winning and 
losing, a combination of skill and luck, and so forth. But none of these family 
resemblances is essential; solitaire drops competition, ring-around-the-rosie 
drops winning or losing, throwing dice drops skill, and chess drops luck. Any 
strict analysis of “game” is easily refuted by giving examples of games that 
violate the analysis. We distort language if we think that all statements must 
be analyzable into simple concepts that reflect metaphysically simple ele-
ments of reality. There’s no ideal language that perfectly mirrors reality; 
instead, there are various language games that humans construct for various 



 

purposes. Logic is a language game, invented to help us appraise the correct-
ness of reasoning; we distort logic if we see it as giving us a special key to 
understand the metaphysical structure of reality. 

So we see a range of views about the connection of logic with metaphysics, 
with Wittgenstein holding different views at different times.1 0371 

18.3 The basis for logical laws 

Let’s consider logical laws like modus ponens and non-contradiction: 

• Modus ponens: If A then B, A, therefore B. 
• Non-contradiction: A and not-A cannot both be true, unless A is taken differ-

ently in both instances. 

Why are such logical laws correct, and how do we know that they’re correct? 
Thinkers have proposed a range of answers. Here we’ll consider five: super-
naturalism, psychologism, pragmatism, conventionalism, and realism. 
(§§17.2–17.4 discussed deviant logics that reject these two laws.) 

1. Supernaturalism holds that all laws of every sort – whether about phy-
sics, morality, math, or logic – depend on God. Radical supernaturalists say 
that God creates the logical laws or at least makes them true. God could make 
a world where modus ponens and the law of non-contradiction fail; and he 
could violate the law of non-contradiction – for example, by making “You’re 
reading this sentence” and “You’re not reading this sentence” both true. So 
logical laws are contingent: they could have been false. Moderate supernatu-
ralists, on the other hand, say that logical laws express God’s perfect nature. 
God’s perfection require that he be consistent, that his created world follow 
the laws of logic, and that he desire that we be consistent and logical. Since 
these aspects of God’s nature are necessary, the laws of logic are also neces-
sary. Supernaturalists of both sorts hold that God builds the laws of logic into 
our minds, so these laws appear to us to be “self-evident” when adequately 
reflected upon. 

Critics object that the laws of logic hold for every possible world, including 
ones where there’s no God; so God cannot provide the basis for these laws. 
Others say that, since beliefs about logic are more certain than beliefs about 
God, it’s wrong to base logic on God. Still others say that God accepts logical 
laws because they’re inherently valid; logical laws aren’t valid just because 
God chooses to accept them (radical supernaturalism) or because they 
accord with his nature (moderate supernatualism).2 
 
1 For more on logic and metaphysics, see §3.4 (the logical positivist critique of metaphysics), 
§9.2 (mind and the substitution of identicals), and §§11.2–11.4 (Aristotelian essentialism). 
2 The parallel view in ethics claims that basic moral principles depend on God’s will. See my 



 

 

2. Psychologism holds that logical laws are based on how we think. Logic is 
part of our biology and natural history. Humans evolved to walk on two feet, 
have hand-eye coordination, communicate by speech, and think logically; 
these promote survival and are part of our genetic and biological makeup. 
Radical psychologism says that logic describes how we think; logical laws are 
psychological laws about thinking. Moderate psychologism, in contrast, sees 
logic as built into us in a more subtle way; we’re so built that at reflective 
moments we see inconsistency and illogicality as defects – even though at 
other times our thinking may suffer from such defects. When we reflect on 
our inconsistencies, we tend to 0372 develop an uncomfortable anxiety that 
psychologists call “cognitive dissonance”; this is as much a part of our biology 
and natural history as is thirst. So the laws of logic are built into our instincts. 

Critics object that radical psychologism, which claims that logical laws 
describe our thinking, makes it impossible for us to be illogical or incon-
sistent. But people often reason invalidly or express inconsistent ideas; so 
logical laws don’t necessarily reflect how we think. Moderate psychologism 
recognizes this; it sees logical laws as reflecting norms about thinking that 
are built into us and that we recognize at reflective moments. This approach 
gives a plausible evolutionary and biological explanation of how logic can be 
instinctive in us; but it fails if it’s taken to explain what makes logical laws 
true or solidly based. Suppose evolution gave us an instinctive belief in the 
flatness of the earth; it wouldn’t follow that the earth actually was flat – or 
that this belief was so solidly based that we couldn’t criticize it. Similarly, the 
instinctiveness of the laws of logic wouldn’t make these logical laws correct 
or solidly based; maybe our instincts on these matters are right or maybe 
they’re wrong – we’d have to investigate further. 

There’s also a problem with basing our knowledge of logical laws on evolu-
tionary theory. We need logic to appraise the correctness of scientific theo-
ries like evolution; so our knowledge of logic cannot without circularity rest 
on our knowledge of evolutionary theory. In addition, our knowledge of logic 
is more solidly based than our knowledge of scientific theories. 

3. Pragmatism holds that logical laws are based on experience. The broad 
consensus of humanity is that logic works; when we think things out in a 
logical and consistent way, we’re more apt to find the truth and satisfy our 
needs. This pragmatic test gives the only firm basis for logic or any other way 
of thinking. 

Critics agree that, yes, logical thinking does work. But logic works because 
its laws hold of inherent necessity; so logical laws cannot be based on experi-
ence. Our experience can show us that something is true (for example, that 
this flower is red); but it cannot show us that something must be true (that 
its opposite is impossible). Compare logic to mouse traps. We can test various 
mouse traps to see how well they work; a given trap might catch a mouse or 
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might not – both are possible. But it’s not possible for a logical law to fail – for 
example, for “If A then B” and “A” to both be true while “B” was false. The 
necessity of logical laws shows that they cannot be based on experience. 

Besides, we cannot know that logic works unless we appeal to observation 
and reasoning – where the reasoning presupposes logical laws. So the 
pragmatist defense of logical laws is ultimately circular. 

4. Conventionalism holds that logical laws are based on verbal conventions. 
We use logical words like “and,” “or,” “if-then,” and “not” according to rules 
that can be expressed in basic truth tables (§§6.2–6.6). Given these basic 
truth tables, we can show modus ponens to be valid (since its truth table 
never gives true premises and a false conclusion); we can similarly show the 
law of non- contradiction to be true (since its truth table comes out as true in 
all cases). So we can justify logical laws using conventions about what the 
logical words mean. 0373 Conventionalism explains why logical laws are 
necessary; if we deny them, we contradict ourselves, since we violate the 
meaning of words like “and,” “or,” “if-then,” and “not.” It also explains how we 
can know logical laws in an a priori manner, independently of sense experi-
ence; logical laws are true by virtue of the meaning of words (§§3.6–3.7), and 
so we can grasp their truth by becoming clear on what they mean. Conven-
tionalism explains the necessity of logical laws without appealing to contro-
versial beliefs about God, evolution, abstract entities, or our ability to grasp 
abstract truths. Logic’s conventionality also allows for alternative logics that 
are equally correct but follow different conventions. 

Critics raise objections to conventionalism. First, the attempt to prove 
modus ponens using truth tables is circular: 

If the truth table for modus ponens never gives true premises and a false conclu-
sion, then modus ponens is valid. 
The truth table for modus ponens never gives true premises and a false conclu-
sion. 
∴ Modus ponens is valid. 

If A then B 
A 
∴ B 

This argument itself uses modus ponens; so it’s circular, since it assumes 
from the start that modus ponens is valid. Second, conventionalism confuses 
the logical laws (which are necessary truths) with how we express them 
(using language conventions). If we changed our language, the logical laws 
would still be true, but we’d have to express them using different words. 
Third, conventionalism makes logical laws too arbitrary, since they could fail 
if we changed our conventions; for example, both modus ponens and the law 
of non-contradiction fail on some many-valued conventions (§17.1). But 



 

 

logical laws seem to have an inherent correctness that doesn’t depend on 
which language conventions we adopt. 

5. Realism holds that logical laws are objective, independent, abstract 
truths. We discover logical laws; we don’t construct or create them. Logical 
laws aren’t reducible to the mental, the physical, usefulness, or conventions. 
Logical laws govern our world, and every possible world, because violating 
them is impossible; it cannot be, for example, that A and not-A are both true. 
Logical laws become self-evident to us when adequately reflected upon. This 
doesn’t mean that logical intuitions are infallible; beginning logic students 
tend to have poor intuitions about whether an argument is valid. But logical 
intuitions can be trained; we can test proposed inference forms through 
concrete examples where the validity or invalidity is more obvious. The best 
evidence for a logical principle is that a well-trained mind finds it evident and 
can’t find counterexamples. 

Critics object that realism makes logical laws too mysterious. Suppose 
you’re a materialist: you hold that all facts are expressible in the language of 
physics and chemistry. How do objective, irreducible logical facts fit into such 
a universe? Are logical facts composed of chemicals, or what sort of weird 
thing are they? And how could we ever know such mysterious logical facts? 
In addition, objective, abstract logical laws seem to presuppose abstract 
entities (§18.1), which 0374 have no place in a materialistic world. A dualist 
view that accepts only mind and matter would have similar doubts about 
realism. 

Logicians for the most part (except for deviant logicians – see Chapter 17) 
agree on the logical laws. But logicians differ widely on what these laws are 
based on and how we can know them to be correct. 

18.4 Truth and paradoxes 

Truth is important to logic. A valid argument is often defined as one in which 
it’s impossible to have the premises all true and conclusion false. Truth 
comes up further in propositional logic (with truth tables and the truth-
assignment test) and in refutations of invalid arguments (which are possible 
situations making the premises all true and conclusion false). 

There are many issues about truth. For example, is classical logic right in 
assuming that statements are true or false, but not both, and that true and 
false are the only truth values? Some deviant logics deny these assumptions 
(Chapter 17). 

What do “true” and “false” apply to? Suppose you point to a green apple 
and say “This is green.” Is what is true the sentence “This is green,” or per-
haps the sentence as used on this occasion (where you point to a certain 
object)? If so, then is this sentence concrete physical marks or sounds, or is it 



 

a more abstract pattern that has written or auditory instances? Or perhaps 
what is true-or-false is not sentences, but rather propositions, which are 
assertions that we use language to make. But then are propositions some-
thing mental, or are they abstract entities, like the meaning of “This is green”? 

What does “true” mean? On different views, being “true” is: 

• corresponding to the facts (correspondence theory), 
• cohering with our other beliefs (coherence theory), 
• being useful to believe (pragmatist theory), 
• being verified (verification theory), or 
• being what we’d agree to under cognitively ideal conditions (ideal consensus 

theory); or perhaps 
• “It’s true that A” is just a wordy way to assert A (redundancy theory). 

The pragmatist and verification analyses reject the law of excluded middle, 
since it can happen that neither a statement nor its negation is useful or 
verified. These two analyses could also support many-valued logic (§17.1), 
since a statement can be useful or verified to various degrees. Thus different 
answers to “What is truth?” can support different logics. 

Alfred Tarski proposed an adequacy condition, called “convention T,” that 
any definition of truth must satisfy; here’s an example: 0375 

The sentence “Snow is white” is true, if and only if snow is white. 

This equivalence raises problems for definitions that water down truth’s 
objectivity. For example, the view that “true” just means “accepted in our 
culture” leads to an absurdity. Imagine a tropical island where snow is white 
(in high-mountain cracks that are never visited or seen) but yet people don’t 
believe that it’s white; on the proposed view, snow could be white while 
“Snow is white” wasn’t true – which is absurd. A similar objection works 
against the pragmatist and verification views. Imagine that “Snow is white” 
was neither useful to believe nor verified; then, on pragmatism or verifica-
tionism, snow could be white while “Snow is white” wasn’t true – which is 
absurd. 

Further issues are raised by the liar paradox, a statement that asserts its 
own falsity (and so appears to be both true and false). Consider claim P: 

(P) P is false. 

Is P true? Then things must be as P says they are, and thus P has to be false. Is 
P false? Then things are as P says they are, and thus P has to be true. So if P is 
either true or false, then it has to be both true and false. 



 

 

Graham Priest and others claim that P is both true and false, which re-
quires rejecting Aristotle’s law of non-contradiction (§17.2). The more com-
mon view is that P is neither true nor false, which requires rejecting or 
qualifying Aristotle’s law of excluded middle. Bertrand Russell proposed a 
theory of types that outlaws certain forms of self-reference. Very roughly, 
there are ordinary objects (type 0), properties of these (type 1), properties of 
these properties (type 2), and so on. Any meaningful statement can talk only 
about objects of a lower type; so no speech can talk meaningfully about itself. 
P violates this condition, and so is meaningless – and thus neither true nor 
false. 

But Russell’s view seems to refute itself. “Any meaningful statement can 
talk only about objects of a lower type,” to be useful, has to restrict all state-
ments, of every type; but then it violates its own rule and declares itself 
meaningless. 

Tarski, to deal with the paradox, proposed that no language can contain its 
own truth predicate; to ascribe truth or falsity to a statement in a given 
language, we must ascend to a higher-level language, called the metalan-
guage. P violates this condition and so is meaningless – and thus neither true 
nor false. 

Opponents say Tarski’s view is too restrictive. English and other languages 
do contain their own truth predicates, and they need to do this for many 
purposes. So it would be better to have a less sweeping restriction to take 
care of the liar paradox. But there’s little agreement about what this re-
striction should be. 

Epimenides of Crete in the sixth century BC proposed the liar paradox, and 
St Paul mentioned it in his letter to Titus (1:12). It has been widely discussed 
ever since. While most logicians think that a theory of truth must deal with 
the paradox, how best to do this is still unclear. 0376 

18.5 Logic’s scope 

“Logic” is often defined in ways like “the analysis and appraisal of arguments” 
or “the study of valid reasoning.” The term “logic” can be used in a narrow 
and a broad sense. Logic in the narrow sense is the study of deductive 
reasoning, which is about what logically follows from what. Logic in the 
broad sense includes also various other studies that relate to the analysis and 
appraisal of arguments, like informal logic, inductive logic, metalogic, and 
philosophy of logic (Chapters 3–5, 15, and 18). 

Even taking “logic” in this narrow deductive sense, there’s still some un-
clarity on what it includes. Suppose you say, “I have $30; therefore I have 
more than $20.” Is this part of logic, part of math, or both? 

Willard Quine suggested that we limit “logic” to classical propositional and 



 

quantificational logic (Chapters 6 to 9), which he saw as fairly uncontrover-
sial and as focusing on topic-neutral terms like “and” and “not” that arise in 
every area of study. Modal and deontic logic (Chapters 10 to 12) focus on 
terms like “necessary” and “ought” that are too colorful and topic-specific to 
be part of logic; these areas, if legitimate at all (and he had doubts) are part of 
philosophy in general, not part of logic. Mathematical extensions, like set 
theory and axiomatizations of arithmetic, belong to math. And deviant logics 
(Chapter 17) are illegitimate. 

Most logicians today tend to use “(deductive) logic” in a broader way that’s 
hard to pin down. Deductive logic is commonly taken to include, besides 
syllogisms and classical symbolic logic, extensions like modal and deontic 
logic, deviant logics, and sometimes even mathematical extensions like set 
theory. Logic is part of at least three disciplines – philosophy, math, and 
computer science – which approach it from different angles. Any attempt to 
give sharp and final boundaries to the term “logic” would be artificial.1 
 

 
1 For more on philosophy of logic, see Willard Quine’s Philosophy of Logic, 2nd ed. (Cam-
bridge, Mass.: Harvard University Press, 1986), which is a good introduction from an influen-
tial and controversial thinker, and Colin McGinn’s Logical Properties: Identity, Existence, 
Predication, Necessity, Truth (Oxford: Clarendon, 2000), which gives an opposing view. 



If you’ve mastered this book and want more, consult my Historical Dictionary 
of Logic (Lanham, Md.: Scarecrow Press, 2006). This brief encyclopedia of 
logic has nontechnical, alphabetized articles on branches of logic, figures and 
historical periods, specialized vocabulary, controversies, and relationships to 
other disciplines – and a 13-page chronology of major events in the history of 
logic. It also has a 52-page bibliography of readings in logic, a list of 63 
recommended works in various categories, and this smaller list of very 
helpful works: 

• P. H. Nidditch’s The Development of Mathematical Logic (London: Routledge & 
Kegan Paul, 1962): the history of logic from Aristotle onward. 

• Willard Quine’s Philosophy of Logic, 2nd ed. (Cambridge, Mass.: Harvard 
University Press, 1986): a contentious introduction from a major thinker. 

• Colin McGinn’s Logical Properties: Identity, Existence, Predication, Necessity, 
Truth (Oxford: Clarendon, 2000): an opposing view from Quine’s. 

• Graham Priest’s An Introduction to Non-Classical Logic, 2nd ed. (Cambridge: 
Cambridge University Press, 2008) a defense of deviant logic by its most elo-
quent defender (technical parts may be skipped). 

• Ian Hacking’s An Introduction to Probability and Inductive Logic (Cambridge: 
Cambridge University Press, 2001): a solid introduction. 

• George Boolos and Richard Jeffrey’s Computability and Logic, 3rd ed. (Cam-
bridge: Cambridge University Press, 1989): topics like Turing machines, un-
computable functions, the Skolem-Löwenheim theorem, and Gödel’s theorem 
– technical but clear and doesn’t assume much math. 

If you’re just starting, you might pick one or two of these that interest you. 
For further suggestions, consult my Historical Dictionary of Logic. 

As advanced students go through various chapters, they might want to 
pursue further readings in this book. Chapter 6 (basic propositional logic) 
goes well with metalogic §§15.1–2, deviant logic Chapter 17, and philosophy 
of logic §18.4. Chapter 7 (propositional proofs) goes well with metalogic 
§§15.3–5 and perhaps informal and inductive Chapters 3 to 5. Chapters 8 and 
9 (quantificational logic) go well with metalogic §15.6, history of logic 
Chapter 16, philosophy of logic §§18.1–3, and syllogisms Chapter 2. And 
Chapters 10 to 14 (modal/deontic/belief logic and a formalized ethical 
theory) go well with history of logic §16.5 and philosophy of logic §18.5. 
  

Reading



 

Answers to Selected Problems 

For each exercise set in the book, answers are given for problems 1, 3, 5, 10, 
15, 20, 25, and so on. The teachers manual (see Preface) has answers to the 
other problems. 

Chapter 2 answers 

2.1a 
1. t is S 
3. no L is B 
5. all D is H 
10. a is s 
15. m is A 

2.2a 
1. This isn’t a syllogism, because “D” and “E” occur only once. 
3. This isn’t a syllogism, because “Y” occurs three times and “G” occurs only once. 
5. This isn’t a syllogism, because “Z is N” isn’t a wff. 

2.2b 
1. w is not s 
3. no R is S 
5. all P is B 

2.2c 
1. no P* is B* Invalid 
some C is not B* 
∴ some C* is P* 

3. no H* is B* Invalid 
no H* is D* 
∴ some B* is not D 

5. ∴ g* is g* Valid 

10. all D* is A Invalid 
∴ all A is D* 



 

2.3a 
1. all S* is D Valid 
all D* is U 
∴ all S is U* 

3. all T* is C Valid 
no C* is R* 
∴ no T is R 

5. all M* is R Valid 
some P is M 
∴ some P* is R* 

10. all S* is Y Invalid 
m is Y 
∴ m* is S* 

15. all N* is L Valid 
m is N 
∴ m* is L* 

20. b is W Invalid 
u is W 
∴ u* is b* 

25. some S is W Valid 
all S* is L 
all L* is H 
∴ some W* is H* 

2.3b 
1. We can’t prove either “Bob stole money” or “Bob didn’t steal money.” 2 & 6 
yield no valid argument with either conclusion. 
3. 4 & 8 & 9 prove David stole money: “d is W, all W is H, all H is S ∴ d is S.” 
5. This would show that our data was inconsistent and so contains false infor-
mation. 0379 

2.4a 
1. all J is F 
3. all S is R 
5. some H is L 
10. no S is H 
15. all M is B 
20. some H is not G 



 

 

2.5a 
1. “No human acts are free” or “No free acts are human acts.” 
3. “Some free acts are determined” or “Some determined acts are free.” 
5. No conclusion validly follows. 
10. “No culturally taught racial feelings are rational” or “No rational thing is a 
culturally taught racial feeling.” 
15. “Some who like raw steaks like champagne” or “Some who like champagne 
like raw steaks.” 
20. “No basic moral norms are principles based on human nature” or “No princi-
ples based on human nature are basic moral norms.” 
25. “No moral judgments are objective truths” or “No objective truths are moral 
judgments.” 

2.6a 
1. no B is C Valid 
all D is C 
∴ no D is B 

  

3. all E is F Valid 
some G is not F 
∴ some G is not E 

 

5. all A is B Valid 
all B is C 
∴ all A is C 



 

 

10. some V is W  Invalid 
some W is Z 
∴ some V is Z 

 

2.7a 
1. all R* is G Valid 
all G* is T 
all T* is V 
all V* is U 
∴ all R is U* 

3. g is A Valid 
all A* is R 
no R* is C* 
∴ g* is not C 

5. no S* is A* Valid 
all W* is A 
∴ no S is W 

Premise 2 (implicit but false) is “All garments that should be worn next to the 
skin while skiing are garments that absorb moisture.” 

10. all P* is O Valid 
all O* is E 
no M* is E* 
∴ no M is P 



 

 

15. e is C Invalid 
all S* is C 
∴ e* is S* 

20. all N* is C Valid 
no E* is C* 
g is E 
∴ g* is not N 

Premise 3 (implicit) is “‘God exists’ is an existence claim.” 

25. all D* is F Valid 
some P is not F* 
∴ some P* is not D 

Chapter 3 answers 

3.1a 
1. “Cop” is negative. “Police” is more neutral. 
3. “Heroic” is positive. These are negative: “reckless,” “foolhardy,” “brash,” “rash,” 
“careless,” “imprudent,” and “daredevil.” 
5. “Elderly gentleman” is positive. “Old man” is negative. 0380 
10. “Do-gooder” is negative. “Person concerned for others” and “caring human 
being” are positive. 
15. “Booze” is negative or neutral. “Cocktail” is positive, while “alcohol,” “liquor,” 
and “intoxicant” are neutral. 
20. “Babbling” is negative. “Talking,” “speaking,” and “discussing” are neutral. 
25. “Bribe” is negative. “Payment” and “gift” are neutral or positive. 
30. “Whore” is negative. “Prostitute” is more neutral. 

3.2a 
1. A false statement that you think is true isn’t a lie. 
3. (1) One who believes in God may not make God his or her ultimate concern. (2) 
One may have an ultimate concern (such as making money) without believing in 
God. (3) “Object of ultimate concern” is relative in a way that “God” isn’t: “Is there 
an object of ultimate concern?” invites the question “For whom?” – while “Is there 
a God?” doesn’t. 
5. Since “of positive value” is no more clearly understood than “good,” this defini-
tion does little to clarify what “good” means. And there’s the danger of circularity 
if we go on to define “of positive value” in terms of “good.” 
10. (1) If I believe that Michigan will beat Ohio State next year, it still might not be 
true. (2) If “true” means “believed,” then both these statements are true (since 
both are believed by someone): “Michigan will beat Ohio State next year” and 
“Michigan won’t beat Ohio State next year.” (3) “Believed” is relative in a way that 
“true” isn’t: “Is this believed?” invites the question “By whom?” – while “Is this 



 

true?” doesn’t. 
15. This set of definitions is circular. 

3.2b 
1. This is true according to cultural relativism. Sociological data can verify what is 
“socially approved,” and this is the same as what is “good.” 
3. This is true. The norms set up by my society determine what is good in my 
society, so these norms couldn’t be mistaken. 
5. This is undecided. If our society approves of respecting the values of other 
societies, then this respect is good. But if our society disapproves of respecting 
the values of other societies, then this respect is bad. 
10. This is true according to CR. 
15. This is false (and self-contradictory) according to cultural relativism. 
20. This is undecided, since cultural relativism leaves unspecified which of these 
various groups is “the society in question.” 

3.4a 
1. This is meaningful on LP (it could be verified) and PR (it could make a practical 
difference in terms of sensations or choices). 
3. This is meaningful on both views. 
5. This is probably meaningless on both views (unless the statement is given 
some special sense). 
10. This is meaningless on LP (at least on the version that requires public verifia-
bility). It’s meaningful on PR (since its truth could make a practical difference to 
Manuel’s experience). 
15. Since this (LP) isn’t able to be tested empirically, it’s meaningless on LP. [To 
avoid this result, a positivist could claim that LP is true by definition and hence 
analytic (§3.6). Recall that LP is qualified so that it applies only to synthetic 
statements. But then the positivist has to use “meaningless” in the unusual sense 
of “synthetic but not empirical” instead of in the intended sense of “true or false.” 
This shift takes the bite out of the claim that a statement is “meaningless.” A 
believer can readily agree that “There is a God” is “meaningless” if all this means 
is that “There is a God” isn’t synthetic-but-not-empirical.] It’s meaningful on PR 
(its truth could make a difference to our choices about what we ought to believe). 

3.5a 
(These answers were adapted from those given by my students) 

1. “Is ethics a science?” could mean any of the following: 
• Are ethical judgments true or false independently of human feelings and 

opinions? Can the truth of some ethical judgments be known? 0381 
• Can ethics be systematized into a set of rules that will tell us unambiguously 

what we ought to do in all (or most) cases? 
• Can ethical principles be proved using the methods of empirical science? 
• Is there some rational method for arriving at ethical judgments that would 



 

 

lead people to agree on their ethical judgments? 
• Can a system of ethical principles be drawn up in an axiomatic form, so that 

ethical theorems can be deduced from axioms accessible to human reason? 

3. “Is this belief part of common sense?” could mean any of the following: 
• Is this belief accepted instinctively or intuitively, as opposed to being the 

product of reasoning or education? 
• Is this belief so entrenched that subtle reasoning to the contrary, even if it 

seems flawless, has no power to convince us? 
• Is this belief something that people of good “horse sense” will accept regard-

less of their education? 
• Is this belief obviously true? 
• Is this belief universally accepted? 
[In each case we could further specify the group we are talking about – for exam-
ple, “Is this belief obviously true to anyone who has ever lived (to all those of our 
own country, or to practically all those of our own country who haven’t been 
exposed to subtle reasoning on this topic)?”] 

5. “Are values relative (or absolute)?” could mean any of the following: 
• Do different individuals and societies disagree (and to what extent) on values? 
• Do people disagree on basic moral principles (and not just on applications)? 
• Are all (or some) values incapable of being proved or rationally argued? 
• Is it wrong to claim that a moral judgment is correct or incorrect rather than 

claiming that it’s correct or incorrect relative to such and such a group? Do 
moral judgments express social conventions rather than truths that hold inde-
pendently of such conventions? 

• Do right and wrong always depend on circumstances (so that no sort of action 
could be always right or always wrong)? 

• In making concrete moral judgments, do different values have to be weighed 
against each other? 

• Are all things that are valued only valued as a means to something else (so 
that nothing is valued for its own sake)? 

10. “Is that judgment based on reason?” could be asking whether the judgment is 
based on the following: 
• Self-evident truths, the analysis of concepts, and logical deductions from these 

(reason versus experience). 
• The foregoing plus sense experience, introspection, and inductive arguments 

(reason versus faith). 
• Some sort of thinking or experience or faith (as opposed to being based on 

mere emotion). 
• The thinking and experience and feelings of a sane person (as opposed to 

those of an insane person). 
• An adequate and impartial examination of the available data. 
• A process for arriving at truth in which everyone correctly following it would 

arrive at the same conclusions. 
• What is reasonable to believe, or what one ought to believe (or what is per-



 

missible to believe) from the standpoint of the seeking of truth. 
[We could be asking whether a given person bases his or her judgment on one of 
the foregoing, or whether the judgment in question could be based on one of the 
foregoing.] 

15. “Do you have a soul?” could mean any of the following: 
• Do you have a personal identity that could in principle survive death and the 

disintegration of your body? 
• Are you capable of conscious thinking and doing? 
• Would an exhaustive description of your material constituents and observable 

behavior patterns fail to capture important elements of what you are? 
• Are you composed of two quite distinct beings – a thinking being without 

spatial dimensions and a material being incapable of thought? 
• Are you capable of caring deeply about anything? 
• Are you still alive? 

3.6a 
1. Analytic. 
3. Synthetic. 
5. Analytic. 
10. Analytic. 
15. Analytic. 
20. Most philosophers think this is synthetic. St Anselm, Descartes, and Charles 
0382 Hartshorne argued that it was analytic. See examples 3 and 4 of §6.7b, and 
examples 9 and 26 of §10.3b. 
25. Most say synthetic, but some say analytic. 

3.7a 
1. A priori. 
3. A posteriori. 
5. A priori. 
10. A priori. 
15. A priori. 
20. Most philosophers think this could only be known a posteriori. Some philoso-
phers think it can be known a priori (see comments on problem 20 of the last 
section). 
25. Most philosophers think this could only be known a priori, but a few think it 
could be known a posteriori. 

Chapter 4 answers 

4.2a 
1. Complex question (like “Are you still beating your wife?”). 



 

 

3. Pro–con. The candidate might be a crook. Or an opposing candidate might be 
even more intelligent and experienced. 
5. Appeal to the crowd. 
10. Genetic. 
15. Appeal to authority. 
20. None of the labels fit exactly. This vague claim (what is a “discriminating 
backpacker”?) is probably false (discriminating backpackers tend to vary in their 
preferences). The closest labels are “appeal to authority,” “appeal to the crowd,” 
“false stereotype,” or perhaps “appeal to emotion.” There’s some “snob appeal” 
here too, but this isn’t one of our categories. 
25. Post hoc ergo propter hoc. 
30. Appeal to opposition. 
35. Appeal to emotion. 
40. Post hoc ergo propter hoc. 
45. Ad hominem or false stereotype. 
50. Post hoc ergo propter hoc. The conclusion might still be true, but we’d need a 
longer argument to show this; many argue, for example, that Bush’s deregulation 
of banking caused the financial crisis. 
55. Ambiguous. 
60. Black and white, or complex question. 

4.2b 
1. Complex question. 
3. Ambiguity. 
5. False stereotype. 
10. Appeal to authority. 
15. Pro–con. 
20. Genetic. 
25. Black and white. 
30. Ad hominem. 
35. Appeal to the crowd. 
40. Part–whole. 
45. Appeal to authority, ad hominem, or appeal to emotion. 
50. Circular. 
55. Complex question. 
60. Circular (but it still might be true). 

4.3a 
(The answers for 3 and 5 are representative correct answers; other answers may 
be correct.) 

1. There are no universal duties. 
If everyone ought to respect the dignity of others, then there are universal duties. 
∴ Not everyone ought to respect the dignity 0of others. 

3. If we have ethical knowledge, then either ethical truths are provable or there 
are self-evident ethical truths. 



 

We have ethical knowledge. 
Ethical truths aren’t provable. 
∴ There are self-evident ethical truths. 

5. All human concepts derive from sense experience. 
The concept of logical validity is a human concept. 
∴ The concept of logical validity derives from sense experience. 

10. If every rule has an exception, then there’s an exception to this idea too; but 
then some rule doesn’t have an exception. Statement 10 implies its own falsity 
and hence is self-refuting. 

15. If it’s impossible to express truth in human concepts, then statement 15 is 
false. Statement 15 implies its own falsity and hence is self-refuting. 

4.4a 
(These are examples of answers and aren’t the only “right answers.”) 

1. If the agent will probably get caught, then offering the bribe probably isn’t in 
the agent’s self-interest. 
The agent will probably get caught. (One might give inductive reasoning for this.) 
0383 
∴ Offering the bribe probably isn’t in the agent’s self-interest. 

3. Some acts that grossly violate the rights of some maximize good consequences 
(in the sense of maximizing the total of everyone’s interests). 
No acts that grossly violate the rights of some are right. 
∴ Some acts that maximize good consequences aren’t right. 

5. Any act that involves lying is a dishonest act (from the definition of “dishon-
est”). 
Offering the bribe involves lying (falsifying records, and the like). 
∴ Offering the bribe is a dishonest act. 

10. Science adequately explains our experience. 
If science adequately explains our experience, then the belief that there is a God is 
unnecessary to explain our experience. 
∴ The belief that there is a God is unnecessary to explain our experience. 

Or: Science doesn’t adequately explain certain items of our experience (why these 
scientific laws govern our universe and not others, why our universe exhibits 
order, why there exists a world of contingent beings at all, moral obligations, and 
so on). 
If science doesn’t adequately explain certain items of our experience, then the 
belief that there is a God is necessary to explain our experience. 
∴ The belief that there is a God is necessary to explain our experience. 

15. The idea of logical validity is an idea gained in our earthly existence. 



 

 

The idea of logical validity isn’t derived from sense experience. 
∴ Some ideas gained in our earthly existence don’t derive from sense experience. 

Chapter 5 answers 

5.2a 
1. There are 32 such cards out of the 103 remaining cards. So your probability is 
32/103 (about 31.1 percent). 
3. Coins have no memory. The probability of heads is 50 percent. 
5. The probability that Michigan will win the Rose Bowl is 80 percent times 60 
percent times 30 percent, or 14.4 percent. 
10. You get a number divisible by three 12 out of 36 times. You don’t get it 24 out 
of 36 times. Thus, mathematically fair betting odds are 2 to 1 (24 to 12) against 
getting a number divisible by three. 
15. In 100 such cases, Ohio State would pass 60 times and run 40 times. If we set 
up to stop the pass, we’d stop them 58 times out of 100 [(60 • 70 percent) + (40 • 
40 percent)]. If we set up to stop the run, we’d stop them 62 times out of 100 [(60 
• 50 percent) + (40 • 80 percent)]. So we should set up to stop the run. 

5.3a 
1. You shouldn’t believe it. It’s only 12.5 percent (50 • 50 • 50 percent) probable. 
3. You shouldn’t believe it. It’s 37.5 percent probable, since it happens in 3 of the 8 
possible combinations. 
5. You shouldn’t believe it. It’s not more probable than not; it’s only 50 percent 
probable. 
10. You should buy the Enormity Incorporated model. If you buy the Cut-Rate 
model, there’s an expected replacement cost of $360 ($600 times 60 percent) in 
addition to the $600 purchase price. This makes the total expected cost $960. The 
expected cost on the Enormity Incorporated model is $900. 

5.4a 
1. This is a poor argument, since the sample has little variety. 
3. This is a poor argument, since the sample is very small and lacks variety. 
5. This is a good inductive argument (if you aren’t in the polar regions where the 
sun doesn’t come up at all for several weeks in the winter). In standard form, the 
argument goes: “All examined days are days when the sun comes up; a large and 
varied group of days has been examined; tomorrow is a day; so probably tomor-
row is a day when the sun comes up.” 
10. This weakens the argument. Some students cram logic mainly for the Law 
School Admissions Test (since this test contains many logic problems). You might 
not have known this, however. 



 

5.5a 
1. This doesn’t affect the strength of the argument, since the color of the book has 
little to do with the contents. 0384 
3. This weakens the argument. It’s less likely that a course taught by a member of 
the math department would include a discussion of analogical reasoning. 
5. This weakens the argument. An abstract approach that stresses theory is less 
likely to discuss analogical reasoning. 
10. This weakens the argument. A book with only 10 pages on inductive reason-
ing is less likely to include analogical reasoning. 
15. This weakens the argument, since it’s a significant point of difference between 
the two cases. 

5.7a 
1. Using the method of agreement, we conclude that either having a few drinks 
causes a longer reaction time, or having a longer reaction time causes a person to 
have a few drinks. The second alternative is less likely in terms of our background 
information. So we conclude that having a few drinks probably causes a longer 
reaction time. 
3. The method of agreement seems to lead to the conclusion that the soda caused 
the hangover. However, we know that scotch, gin, and rum all contain alcohol. So 
soda isn’t the only factor common to all four cases; there’s also the alcohol. So the 
method of agreement doesn’t apply here. To decide whether the soda or the 
alcohol caused the hangover, Michelle would have to experiment with drinking 
soda but no alcohol, and drinking alcohol but no soda. 
5. Using the method of agreement, we’d conclude that either factor K caused 
cancer or cancer caused factor K. If we found some drug to eliminate factor K, 
then we could try it and see whether it eliminates cancer. If eliminating factor K 
eliminated cancer, then it’s likely that factor K caused cancer. But if factor K came 
back after we eliminated it, then it’s likely that cancer caused factor K. 
10. Using the method of disagreement, we’d conclude that eating raw garlic 
doesn’t by itself necessarily cause mosquitoes to stop biting you. 
15. Using the method of agreement, we’d conclude that either the combination of 
factors (heating or striking dry matches in the presence of oxygen) causes the 
match to light, or else the lighting of the match causes the combination of factors. 
The latter is implausible (it involves a present fire causing a past heating or 
striking). So probably the combination of factors causes the match to light. 
20. By the method of variation, it’s likely that an increase in the electrical voltage 
is the cause of the increase in the electrical current, or the electrical current is the 
cause of the electrical voltage, or something else caused them both. We know (but 
perhaps little Will doesn’t) that we can have a voltage without a current (such as 
when nothing is plugged in to our electrical socket) but we can’t have a current 
without a voltage. So we’d think that voltage causes current (and not vice versa) 
and reject the “electrical current is the cause of the electrical voltage” alternative. 
So we’d conclude that probably an increase in the electrical voltage is the cause of 
the increase in the electrical current, or else some other factor (Will’s curiosity, 
for example) caused both increases. 
25. By the method of difference, wearing a single pair of socks probably is (or is 



 

 

part of) the cause of the blisters, or the blisters are (or are part of) the cause of 
wearing a single pair of socks. The latter is impossible, since a present event can’t 
cause a past event. So probably wearing a single pair of socks is (or is part of) the 
cause of the blisters. Since we know that we don’t get blisters from wearing a 
single pair of socks without walking, we’d conclude that wearing a single pair of 
socks is only part of the cause of the blisters. 

5.8a 
1. The problem is how to do the experiment so that differences in air resistance 
won’t get in the way. We could build a 100-foot tower on the moon (or some 
planet without air), drop a feather and a rock from the top, and see if both strike 
the ground at the same time. Or we might go to the top of a high building and drop 
rocks of different weights to see if they land at about the same time (with perhaps 
very minor time differences dues to minor differences in air resistance between 
rocks). 
3. We could study land patterns (hills, rock piles, eccentric boulders, and so on) 
left by present-day glaciers in places like Alaska, compare land patterns of areas 
that we are fairly sure weren’t covered by glaciers, and compare both with those 
of Wisconsin. Mill’s method of agreement might lead us 0385 to conclude that 
glaciers probably caused the land patterns in Wisconsin. To date the glacier, we’d 
have to find some “natural calendar” (such as the yearly rings in tree trunks, 
yearly sediment layers on the bottoms of lakes, corresponding layers in sedimen-
tary rocks, or carbon breakdown) and connect it with Wisconsin climatic changes 
or land patterns. 
5. We could give both groups an intelligence test. The problem is that the first 
child might test higher, not because of greater innate intelligence, but because of 
differences in how the first and the last child are brought up. (The last child, but 
not the first, is normally brought up with other children around and by older 
parents.) To eliminate this factor, we might test adopted children. If we find that a 
child born first and one born last tend to test equally (or unequally) in the same 
sort of adoptive environment, then we could conclude that the two groups tend 
(or don’t tend) to have the same innate intelligence. 
10. See the answer to problem 3. Any data making statement 3 probable would 
make 10 improbable. In addition, if we found any “natural calendar” that gives a 
strong inductive argument concerning any events occurring over 5,000 years ago, 
this also would make 10 unlikely. [Of course, these are only inductive arguments; 
it’s possible for the premises to be all true and conclusion false.] 

Chapter 6 answers 

6.1a 
1. ∼(A • B) 
3. ((A • B) ∨ C) 
5. ((A ⊃ B) ∨ C) 
10. (A ⊃ ∼(∼B • ∼C)) 



 

15. (∼(E ∨ P) ⊃ ∼R) 
20. E [“(M ∨ F)” is wrong, since the English sentence doesn’t mean “Everyone is 
male or everyone is female.”] 

6.2a 
1. 1 
3. 1 
5. 0 
10. 1 
15. 0 

6.3a 
1. ∼(1 • 0) = ∼0 = 1 
3. ∼(∼1 • ∼0) = ∼(0 • 1) = ∼0 = 1 
5. (∼0 ≡ 0) = (1 ≡ 0) = 0 
10. (∼1 ∨ ∼(0 ⊃ 0)) = (0 ∨ ∼1) = (0 ∨ 0) = 0 
15. ∼((1 ⊃ 1) ⊃ (1 ⊃ 0)) = ∼(1 ⊃ 0) = ∼0 = 1 

6.4a 
1. (? • 0) = 0 
3. (? ∨ ∼0) = (? ∨ 1) = 1 
5. (0 ⊃ ?) = 1 
10. (? ⊃ ∼0) = (? ⊃ 1) = 1 

6.5a 
1. P Q (P ≡ ∼Q) 
0 0 0 

0 1 
1 0 
1 1 

0 
1 
1 
0 

 
3. P Q R (P ∨ (Q • ∼R)) 
0 0 0 0 

0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

0 
0 
1 
0 
1 
1 
1 
1 

 
5. P Q ((P ≡ Q) ⊃ Q) 



 

 

0 0 0 
0 1 
1 0 
1 1 

0 
1 
1 
1 

6.6a 
01. Invalid: second row has 110. 

C D (C ⊃ D), D ∴ C 
0 0 
0 1 
1 0 
1 1 

1 
1 
0 
1 

0 
1 
0 
1 

 0 
0 
1 
1 

03. Valid: no row has 110. 
T B (T ⊃ B), (T ⊃ ∼B) ∴ ∼T 
0 0 
0 1 
1 0 
1 1 

1 
1 
0 
1 

1 
1 
1 
0 

 1 
1 
0 
0 

5. Invalid: row 4 has 1110. (I once got a group together but couldn’t get Grand 
Canyon backcountry reservations. So we instead explored canyons near Es-
calante, Utah. This made R = 0, T = 1, and E = 1.) 0386 

R T E ((R • T) ⊃ E), T ∼R ∴ ∼E 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

1 
1 
1 
1 
1 
1 
0 
1 

0 
0 
1 
1 
0 
0 
1 
1 

1 
1 
1 
1 
0 
0 
0 
0 

 1 
0 
1 
0 
1 
0 
1 
0 

10. Invalid: row 1 has 110. 
S E R (S ⊃ (E • ∼R)), ∼E ∴ R 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 

1 
1 
1 
1 
0 
0 
1 
0 

1 
1 
0 
0 
1 
1 
0 
0 

 0 
1 
0 
1 
0 
1 
0 
1 

6.7a 
1. ∼(N1 ≡ H1) ≠ 1—Valid 
N1 = 1 
∴ ∼H1 = 0 

3. ((T ∨ M1) ⊃ Q0) ≠ 1—Valid 



 

M1 = 1 
∴ Q0 = 0 

5. ((L0 • F1) ⊃ S1) = 1—Invalid 
S1 = 1 
F1 = 1 
∴ L0 = 0 

10. (∼T0 ⊃ (P1 ⊃ J0)) ≠ 1—Valid 
P1 = 1 
∼J0 = 1 
∴ T0 = 0 

15. A1 = 1—Valid 
∼A1 ≠ 1 
∴ B0 = 0 

(An argument with inconsistent premises is always valid: if the premises can’t all 
be true, we can’t have premises all true and conclusion false. But such an argu-
ment can’t be sound, since the premises can’t all be true. This argument is contro-
versial – see §17.2.) 

6.7b 
1. C—Valid 
A 
((C • A) ⊃ (F ∨ I)) 
∼I 
∴ F 

3. ((U • ∼R) ⊃ C)—Valid 
∼C 
U 
∴ R 

5. ((S • ∼M) ⊃ D)—Valid 
∼D 
S 
∴ M 

10. (I ⊃ (U ∨ ∼P))—Invalid 
∼U 
∼P 
∴ I 

15. ((M • S) ⊃ G)—Valid 
S 
∼G 



 

 

∴ ∼M 

20. ((I • ∼D) ⊃ R)—Valid 
∼D 
I 
∴ R 

6.8a 
1. (S ⊃ (Y • I)) 
3. (Q ∨ R) 
5. (∼T ⊃ ∼P) 
10. (A ⊃ E) or, equivalently, (∼E ⊃ ∼A) 
15. (S ⊃ W) 

6.9a 
1. (S ⊃ ∼K)—Valid 
K 
∴ ∼S 

The implicit premise 2 is “We can know something that we aren’t presently 
sensing.” 

3. ((B • ∼Q) ⊃ O)—Invalid 
∼B 
∴ ∼O 

5. (S ⊃ A)—Valid 
∼A 
∴ ∼S 

The implicit premise 2 is “The basic principles of ethics aren’t largely agreed upon 
by intelligent people who have studied ethics.” 

10. (K ⊃ (P ∨ S))—Valid 
∼P 
∼S 
∴ ∼K 

15. (O ⊃ (H ∨ C))—Valid 
∼C 
O 
∴ H 0387 

20. G—Valid 
∼S 
((M • G) ⊃ S) 



 

∴ ∼M 

6.10a 
1. P, U 
3. no conclusion 
5. ∼R, ∼S 
10. H, I 
15. no conclusion 
20. no conclusion 

6.11a 
1. ∼T 
3. ∼B 
5. no conclusion, 
10. no conclusion 
15. F 
20. Y 

6.12a 
1. ∼U 
3. no conclusion 
5. P, ∼Q 
10. ∼A 
15. no conclusion 

Chapter 7 answers 

7.1a 

1. Valid 

* 1   (A ⊃ B) 
* [ ∴ (∼B ⊃ ∼A) 
* 2 ┌ asm: ∼(∼B ⊃ ∼A) 
* 3 │ ∴ ∼B—{from 2} 
* 4 │ ∴ A—{from 2} 
* 5 └ ∴ ∼A—{from 1 and 3} 
* 6 ∴ (∼B ⊃ ∼A)—{from 2; 4 contradicts 5} 

3. Valid 

* 1   (A ⊃ B) 
* 2   (∼A ⊃ B) 
* [ ∴ B 
* 3 ┌ asm: ∼B 
* 4 │ ∴ ∼A—{from 1 and 3} 



 

 

* 5 └ ∴ A—{from 2 and 3} 
* 6 ∴ B—{from 3; 4 contradicts 5} 

5. Valid 

* 11   (A ∨ B) 
* 12   (A ⊃ C) 
* 13   (B ⊃ D) 
* 1 [ ∴ (C ∨ D) 
* 14 ┌ asm: ∼(C ∨ D) 
1* 5 │ ∴ ∼C—{from 4} 
1* 6 │ ∴ ∼D—{from 4} 
1* 7 │ ∴ ∼A—{from 2 and 5} 
1* 8 │ ∴ B—{from 1 and 7} 
1* 9 └ ∴ ∼B—{from 3 and 6} 
* 10 ∴ (C ∨ D)—{from 4; 8 contradicts 9} 

10. Valid 

* 1   (A ⊃ (B ⊃ C)) 
1 [ ∴ ((A • B) ⊃ C) 
* 2 ┌ asm: ∼((A • B) ⊃ C) 
* 3 │ ∴ (A • B)—{from 2} 
* 4 │ ∴ ∼C—{from 2} 
* 5 │ ∴ A—{from 3} 
* 6 │ ∴ B—{from 3} 
* 7 │ ∴ (B ⊃ C)—{from 1 and 5} 
* 8 └ ∴ ∼B—{from 4 and 7} 
* 9 ∴ ((A • B) ⊃ C)—{from 2; 6 contradicts 8} 

7.1b 
1. Valid 

* 1   ((H • T) ⊃ B) 
* 2   H 
* [ ∴ (T ⊃ B) 
* 3 ┌ asm: ∼(T ⊃ B) 
* 4 │ ∴ T—{from 3} 
* 5 │ ∴ ∼B—{from 3} 
* 6 │ ∴ ∼(H • T)—{from 1 and 5} 
* 7 └ ∴ ∼T—{from 2 and 6} 
* 8 ∴ (T ⊃ B)—{from 3; 4 contradicts 7} 

3. Valid 

*1 1   (W ⊃ (F ∨ M)) 
* 12   ∼F 
* 13   (M ⊃ A) 
* 1 [ ∴ (W ⊃ A) 
* 14 ┌ asm: ∼(W ⊃ A) 
* 15 │ ∴ W—{from 4} 
* 16 │ ∴ ∼A—{from 4} 
* 17 │ ∴ (F ∨ M)—{from 1 and 5} 
* 18 │ ∴ ∼M—{from 3 and 6} 



 

* 19 └ ∴ M—{from 2 and 7} 
* 10 ∴ (W ⊃ A)—{from 4; 8 contradicts 9} 

5. Valid 

* 11   (∼W ⊃ ∼G) 
* 12   (∼A ⊃ ∼P) 
* 13   (∼W ∨ ∼A) 
* 1 [ ∴ (∼P ∨ ∼G) 
* 14 ┌ asm: ∼(∼P ∨ ∼G) 
* 15 │ ∴ P—{from 4} 
* 16 │ ∴ G—{from 4} 
* 17 │ ∴ W—{from 1 and 6} 
* 18 │ ∴ A—{from 2 and 5} 
* 19 └ ∴ ∼A—{from 3 and 7} 
* 10 ∴ (∼P ∨ ∼G)—{from 4; 8 contradicts 9} 

(This also could be translated without the NOTs – by letting “W,” for example, stand for 
“God doesn’t want to prevent evil.”) 

10. Valid 

* 1   (I ⊃ ∼R) 0388 
* 2   (∼R ⊃ ∼T) 
* 3   T 
* 4   (∼I ⊃ F) 
* [ ∴ F 
* 5 ┌ asm: ∼F 
* 6 │ ∴ R—{from 2 and 3} 
* 7 │ ∴ ∼I—{from 1 and 6} 
* 8 └ ∴ I—{from 4 and 5} 
* 9 ∴ F—{from 5; 7 contradicts 8} 

7.2a 

1. Invalid 

* 1   (A ∨ B) 
* [ ∴ A 
* 2   asm: ∼A 
* 3   ∴ B—{from 1 and 2} 

∼A, B 

3. Invalid 

* 1   ∼(A • ∼B) 
* [ ∴ ∼(B • ∼A) 
* 2   asm: (B • ∼A) 
* 3   ∴ B—{from 2} 
* 4    ∴ ∼A—{from 2} 

B, ∼A 



 

 

5. Invalid 

* 1   ((A ⊃ B) ⊃ (C ⊃ D)) 
* 2   (B ⊃ D) 
* 3   (A ⊃ C) 
* [ ∴ (A ⊃ D) 
* 4   asm: ∼(A ⊃ D) 
* 5   ∴ A—{from 4} 
* 6   ∴ ∼D—{from 4} 
* 7   ∴ ∼B—{from 2 and 6} 
* 8   ∴ C—{from 3 and 5} 

A, ∼D, ∼B, C 

10. Invalid 

* 1   ∼(∼A • ∼B) 
* 2   ∼C 
* 3   (D ∨ ∼A) 
* 4   ((C • ∼E) ⊃ ∼B) 
* 5   ∼D 
* [ ∴ ∼E 
* 6   asm: E 
* 7   ∴ ∼A—{from 3 and 5} 
* 8   ∴ B—{from 1 and 7} 
* 9   ∴ ∼(C • ∼E)—{from 4 and 8} 

∼C, ∼D, E, ∼A, B 

7.2b 

1. Invalid 

* 1   (S ⊃ K) 
* 2   (M ⊃ K) 
* 3   M 
* [ ∴ S 
* 4   asm: ∼S 
* 5   ∴ K—{from 2 and 3} 

M, ∼S, K 

3. Valid 

* 1   E 
* 2   (E ⊃ ∼R) 
* 3   ((I • ∼A) ⊃ R) 
* 4   I 
* [ ∴ A 
* 5 ┌ asm: ∼A 
* 6 │ ∴ ∼R—{from 1 and 2} 
* 7 │ ∴ ∼(I • ∼A)—{from 3 and 6} 
* 8 └ ∴ A—{from 4 and 7} 
* 9 ∴ A—{from 5; 5 contradicts 8} 



 

5. Valid 

* 1   (E ⊃ W) 
* 2   (W ⊃ (∼R • I)) 
* [ ∴ (R ⊃ ∼E) 
* 3 ┌ asm: ∼(R ⊃ ∼E) 
* 4 │ ∴ R—{from 3} 
* 5 │ ∴ E—{from 3} 
* 6 │ ∴ W—{from 1 and 5} 
* 7 │ ∴ (∼R • I)—{from 2 and 6} 
* 8 └ ∴ ∼R—{from 7} 
* 9 ∴ (R ⊃ ∼E)—{from 3; 4 contradicts 8} 

10. Valid 

* 11   (G ∨ H) 
* 12   ((G • K) ⊃ F) 
* 13   (H ⊃ C) 
* 14   ((C • K) ⊃ U) 
* 1[ ∴ (K ⊃ (U ∨ F)) 
* 15 ┌ asm: ∼(K ⊃ (U ∨ F)) 
* 16 │ ∴ K—{from 5} 
* 17 │ ∴ ∼(U ∨ F)—{from 5} 
* 18 │ ∴ ∼U—{from 7} 
*1 9 │ ∴ ∼F—{from 7} 
* 10 │ ∴ ∼(G • K)—{from 2 and 9} 
* 11 │ ∴ ∼(C • K)—{from 4 and 8} 
* 12 │ ∴ ∼G—{from 6 and 10} 
* 13 │ ∴ H—{from 1 and 12} 
* 14 │ ∴ C—{from 3 and 13} 
* 15 └ ∴ ∼C—{from 6 and 11} 
* 16 ∴ (K ⊃ (U ∨ F))—{from 5; 14 contradicts 15} 

15. Invalid 

* 1   (A ⊃ B) 
* 2   (B ⊃ (F ⊃ M)) 
* 3   (M ⊃ ∼H) 
* 4   H 
* [ ∴ ∼A 
* 5   asm: A 
* 6   ∴ B—{from 1 and 5} 
* 7   ∴ (F ⊃ M)—{from 2 and 6} 
* 8   ∴ ∼M—{from 3 and 4} 
* 9   ∴ ∼F—{from 7 and 8} 

An “F” premise would make it valid. 

H, A, B, ∼M, ∼F 

0389 20. Valid 

* 11   (∼A ⊃ (F • C)) 
* 12   (∼G ⊃ ∼F) 
*1 [ ∴ (∼A ⊃ G) 
* 13 ┌ asm: ∼(∼A ⊃ G) 



 

 

*1 4 │ ∴ ∼A—{from 3} 
1* 5 │ ∴ ∼G—{from 3} 
* 16 │ ∴ (F • C)—{from 1 and 4} 
*1 7 │ ∴ F—{from 6} 
1* 8 │ ∴ C—{from 6} 
*1 9 └ ∴ ∼F—{from 2 and 5} 
* 10 ∴ (∼A ⊃ G)—{from 3; 7 contradicts 9} 

25. Valid 

* 11   (F ⊃ (E • S)) 
* 12   (E ⊃ T) 
* 13   (T ⊃ T´) 
* 14   (T´ ⊃ X) 
* 15   ((X • T´) ⊃ Y) 
* 16   ((X • Y) ⊃ ∼S) 
* 1[ ∴ ∼F 
* 17 ┌ asm: F 
* 18 │ ∴ (E • S)—{from 1 and 7} 
* 19 │ ∴ E—{from 8} 
* 10 │ ∴ S—{from 8} 
* 11 │ ∴ T—{from 2 and 9} 
* 12 │ ∴ T´—{from 3 and 11} 
* 13 │ ∴ X—{from 4 and 12} 
* 14 │ ∴ ∼(X • Y)—{from 6 and 10} 
* 15 │ ∴ ∼Y—{from 13 and 14} 
* 16 │ ∴ ∼(X • T´)—{from 5 and 15} 
* 17 └ ∴ ∼X—{from 12 and 16} 
* 18 ∴ ∼F—{from 7; 13 contradicts 17} 

7.3a 

1. Valid 

* 11   (A ⊃ B) 
* 12   (A ∨ (A • C)) 
* 1[ ∴ (A • B) 
* 13 ┌ asm: ∼(A • B) 
* 14 │┌ asm: ∼A—{break 1} 
*1 5 ││ ∴ (A • C)—{from 2 and 4} 
*1 6 │└ ∴ A—{from 5} 
*1 7 │ ∴ A—{from 4; 4 contradicts 6} 
* 18 │ ∴ B—{from 1 and 7} 
* 19 └ ∴ ∼B—{from 3 and 7} 
* 10 ∴ (A • B)—{from 3; 8 contradicts 9} 

3. Valid 

* 11   (B ⊃ A) 
* 12   ∼(A • C) 
* 13   (B ∨ C) 
* 1[ ∴ (A ≡ B) 
* 14   ┌ asm: ∼(A ≡ B) 
* 15   │ ∴ (A ∨ B)—{from 4} 



 

* 16   │ ∴ ∼(A • B)—{from 4} 
* 17   │┌ asm: ∼B—{break 1} 
* 18   ││ ∴ C—{from 3 and 7} 
* 19   ││ ∴ ∼A—{from 2 and 8} 
* 10   │└ ∴ A—{from 5 and 7} 
* 11   │ ∴ B—{from 7; 9 contradicts 10} 
* 12   │ ∴ A—{from 1 and 11} 
* 13   │ ∴ ∼C—{from 2 and 12} 
* 14   └ ∴ ∼A—{from 6 and 11} 
* 15   ∴ (A ≡ B)—{from 4; 12 contradicts 14} 

5. Valid 

* 11   ((A ⊃ B) ⊃ C) 
* 12   (C ⊃ (D • E)) 
* 1[ ∴ (B ⊃ D) 
* 13 ┌ asm: ∼(B ⊃ D) 
* 14 │ ∴ B—{from 3} 
* 15 │ ∴ ∼D—{from 3} 
* 16 │┌ asm: ∼(A ⊃ B)—{break 1} 
*1 7 ││ ∴ A—{from 6} 
* 18 │└ ∴ ∼B—{from 6} 
*1 9 │ ∴ (A ⊃ B)—{from 6; 4 contradicts 8} 
* 10 │ ∴ C—{from 1 and 9} 
* 11 │ ∴ (D • E)—{from 2 and 10} 
* 12 └ ∴ D—{from 11} 
* 13 ∴ (B ⊃ D)—{from 3; 5 contradicts 12} 

7.3b 

1. Valid 

* 11   ((F • P) ∨ (A • P)) 
* 12   (P ⊃ G) 
* 1[ ∴ (P • G) 
* 13 ┌ asm: ∼(P • G) 
* 14 │┌ asm: (F • P)—{break 1} 
*1 5 ││ ∴ F—{from 4} 
*1 6 ││ ∴ P—{from 4} 
* 17 ││ ∴ G—{from 2 and 6} 
*1 8 │└ ∴ ∼G—{from 3 and 6} 
*1 9 │ ∴ ∼(F • P)—{from 4; 7 contradicts 8} 
* 10 │ ∴ (A • P)—{from 1 and 9} 
* 11 │ ∴ A—{from 10} 
* 12 │ ∴ P—{from 10} 
* 13 │ ∴ G—{from 2 and 12} 
* 14 └ ∴ ∼G—{from 3 and 12} 
* 15 ∴ (P • G)—{from 3; 13 contradicts 14} 

3. Valid 

* 11   (A ≡ (H ∨ B)) 
* 12   ∼H 
* 1[ ∴ (A ≡ B) 



 

 

* 13 ┌ asm: ∼(A ≡ B) 
* 14 │ ∴ (A ⊃ (H ∨ B))—{from 1} 
* 15 │ ∴ ((H ∨ B) ⊃ A)—{from 1} 
* 16 │ ∴ (A ∨ B)—{from 3} 
* 17 │ ∴ ∼(A • B)—{from 3} 0390 
* 18 │┌ asm: ∼A—{break 4} 
* 19 ││ ∴ ∼(H ∨ B)—{from 5 and 8} 
* 10 ││ ∴ ∼B—{from 9} 
* 11 │└ ∴ B—{from 6 and 8} 
* 12 │ ∴ A—{from 8; 10 contradicts 11} 
* 13 │ ∴ (H ∨ B)—{from 4 and 12} 
* 14 │ ∴ ∼B—{from 7 and 12} 
* 15 └ ∴ B—{from 2 and 13} 
* 16 ∴ (A ≡ B)—{from 3; 14 contradicts 15} 

5.  Valid 

* 11   (∼C ⊃ ∼M) 
* 12   (∼M ⊃ ∼E) 
* 13   (C ⊃ A) 
* 14   (A ⊃ E) 
* 1[ ∴ (E ≡ C) 
* 15 ┌ asm: ∼(E ≡ C) 
* 16 │ ∴ (E ∨ C)—{from 5} 
* 17 │ ∴ ∼(E • C)—{from 5} 
* 18 │┌ asm: C—{break 1} 
* 19 ││ ∴ A—{from 3 and 8} 
* 10 ││ ∴ E—{from 4 and 9} 
* 11 ││ ∴ M—{from 2 and 10} 
* 12 │└ ∴ ∼E—{from 7 and 8} 
* 13 │ ∴ ∼C—{from 8; 10 contradicts 12} 
* 14 │ ∴ ∼M—{from 1 and 13} 
* 15 │ ∴ ∼E—{from 2 and 14} 
* 16 │ ∴ ∼A—{from 4 and 15} 
* 17 └ ∴ E—{from 6 and 13} 
* 18 ∴ (E ≡ C)—{from 5; 15 contradicts 17} 

10. Valid 

* 11   ((D • L) ⊃ (F • A)) 
* 12   ((D • ∼L) ⊃ (G • A)) 
* 1[ ∴ (D ⊃ A) 
* 13 ┌ asm: ∼(D ⊃ A) 
* 14 │ ∴ D—{from 3} 
* 15 │ ∴ ∼A—{from 3} 
* 16 │┌ asm: ∼(D • L)—{break 1} 
* 17 ││ ∴ ∼L—{from 4 and 6} 
* 18 ││┌ asm: ∼(D • ∼L)—{break 2} 
* 19 ││└ ∴ L—{from 4 and 8} 
* 10 ││ ∴ (D • ∼L)—{from 8; 7 contradicts 9} 
* 11 ││ ∴ (G • A)—{from 2 and 10} 
* 12 ││ ∴ G—{from 11} 
* 13 │└ ∴ A—{from 11} 
* 14 │ ∴ (D • L)—{from 6; 5 contradicts 13} 



 

* 15 │ ∴ L—{from 14} 
* 16 │ ∴ (F • A)—{from 1 and 14} 
* 17 │ ∴ F—{from 16} 
* 18 └ ∴ A—{from 16} 
* 19 ∴ (D ⊃ A)—{from 3; 5 contradicts 18} 

7.4a 

1. Invalid 

** 1   ∼(A • B) 
** [ ∴ (∼A • ∼B) 
** 2   asm: ∼(∼A • ∼B) 
* *3      asm: ∼A—{break 1} 
* *4      ∴ B—{from 2 and 3} 

∼A, B 

3.  Invalid 

* 1   (A ⊃ B) 
* 2   (C ⊃ (∼D • E)) 
* [ ∴ (D ∨ F) 
* 3   asm: ∼(D ∨ F) 
* 4   ∴ ∼D—{from 3} 
* 5   ∴ ∼F—{from 3} 
* 6      asm: ∼A—{break 1} 
* 7         asm: ∼C—{break 2} 

∼D, ∼F, ∼A, ∼C 

5. Invalid 

** 1   (A ⊃ (B • C)) 
** 2   ((D ⊃ E) ⊃ A) 
** [ ∴ (E ∨ C) 
* *3   asm: ∼(E ∨ C) 
** 4   ∴ ∼E—{from 3} 
** 5   ∴ ∼C—{from 3} 
** 6      asm: ∼A—{break 1} 
** 7      ∴ ∼(D ⊃ E)—{from 2 and 6} 
** 8      ∴ D—{from 7} 

∼E, ∼C, ∼A, D 

7.4b 

1. Invalid 

1   (M ⊃ ∼B) 
2   ∼M 
3   (B ⊃ (P • G)) 
[ ∴ G 



 

 

4   asm: ∼G 
5      asm: ∼B—{break 3} 

∼M, ∼G, ∼B 

3. Invalid 

* 1   (∼R ⊃ (O • ∼S)) 
* [ ∴ (R ⊃ (C • S)) 
* 2   asm: ∼(R ⊃ (C • S)) 
* 3   ∴ R—{from 2} 
* 4   ∴ ∼(C • S)—{from 2} 
* 5      asm: ∼C—{break 4} 

R, ∼C 

5. Invalid 

* *11   ((A • L) ⊃ (D • M)) 
* *12   (M ⊃ ∼C) 
* *13   (S ⊃ L) 
* *1[ ∴ ((A • ∼S) ⊃ C) 
** 14   asm: ∼((A • ∼S) ⊃ C) 
** 15   ∴ (A • ∼S)—{from 4} 
** 16   ∴ ∼C—{from 4} 0391 
** 17   ∴ A—{from 5} 
** 18   ∴ ∼S—{from 5} 
** 19      asm: ∼(A • L)—{break 1} 
** 10      ∴ ∼L—{from 7 and 9} 

∼C, A, ∼S, ∼L 

10. Valid 

*1 1   H 
*1 2   P 
*1 3   ∼H´ 
* 14   (M ⊃ ((H • P) ⊃ H´)) 
*1 5   (∼M ⊃ S) 
*1 [ ∴ (∼M • S) 
*1 6 ┌ asm: ∼(∼M • S) 
*1 7 │┌ asm: ∼M—{break 4} 
*1 8 ││ ∴ S—{from 5 and 7} 
*1 9 │└ ∴ ∼S—{from 6 and 7} 
* 10 │ ∴ M—{from 7; 8 contradicts 9} 
* 11 │ ∴ ((H • P) ⊃ H´)—{from 4 and 10} 
* 12 │ ∴ ∼(H • P)—{from 3 and 11} 
* 13 └ ∴ ∼P—{from 1 and 12} 
* 14 ∴ (∼M • S)—{from 6; 2 contradicts 13} 

15. Invalid 

* *1   ((E • F) ⊃ W) 
* *2   ((W • M) ⊃ (B • ∼N)) 
** [ ∴ (N ⊃ ∼E) 



 

* *3   asm: ∼(N ⊃ ∼E) 
** 4   ∴ N—{from 3} 
** 5   ∴ E—{from 3} 
** 6      asm: ∼(E • F)—{break 1} 
** 7      ∴ ∼F—{from 5 and 6} 
** 8         asm: ∼(W • M)—{break 2} 
** 9            asm: ∼W—{break 8} 

N, E, ∼F, ∼W 

Chapter 8 answers 

8.1a 
1. ∼Cx 
3. (∃x)∼Cx 
5. (x)Cx 
10. ∼(∃x)(Lx • Ex) 
15. (∃x)(Ax • (∼Bx • Dx)) 
20. ∼(x)(Cx ⊃ Px) 
25. (x)(Cx • Lx) 

8.2a 

1. Valid 

* 1   (x)Fx 
* [ ∴ (x)(Gx ∨ Fx) 
* 2 ┌ asm: ∼(x)(Gx ∨ Fx) 
* 3 │ ∴ (∃x)∼(Gx ∨ Fx)—{from 2} 
* 4 │ ∴ ∼(Ga ∨ Fa)—{from 3} 
* 5 │ ∴ ∼Ga—{from 4} 
* 6 │ ∴ ∼Fa—{from 4} 
* 7 └ ∴ Fa—{from 1} 
* 8 ∴ (x)(Gx ∨ Fx)—{from 2; 6 contradicts 7} 

3. Valid 

* 11   ∼(∃x)(Fx • Gx) 
* 12   (∃x)Fx 
* 1[ ∴ (∃x)∼Gx 
* 13 ┌ asm: ∼(∃x)∼Gx 
* 14 │ ∴ (x)∼(Fx • Gx)—{from 1} 
* 15 │ ∴ Fa—{from 2} 
* 16 │ ∴ (x)Gx—{from 3} 
* 17 │ ∴ ∼(Fa • Ga)—{from 4} 
* 18 │ ∴ ∼Ga—{from 5 and 7} 
* 19 └ ∴ Ga—{from 6} 
* 10 ∴ (∃x)∼Gx—{from 3; 8 contradicts 9} 



 

 

5. Valid 

* 11   (x)(Fx ⊃ Gx) 
* 12   (∃x)Fx 
* 1[ ∴ (∃x)(Fx • Gx) 
* 13 ┌ asm: ∼(∃x)(Fx • Gx) 
* 14 │ ∴ Fa—{from 2} 
* 15 │ ∴ (x)∼(Fx • Gx)—{from 3} 
* 16 │ ∴ (Fa ⊃ Ga)—{from 1} 
* 17 │ ∴ Ga—{from 4 and 6} 
* 18 │ ∴ ∼(Fa • Ga)—{from 5} 
* 19 └ ∴ ∼Ga—{from 4 and 8} 
* 10 ∴ (∃x)(Fx • Gx)—{from 3; 7 contradicts 9} 

10. Valid 

* 11   (x)(Fx ≡ Gx) 
* 12   (∃x)∼Gx 
*1 [ ∴ (∃x)∼Fx 
* 13 ┌ asm: ∼(∃x)∼Fx 
* 14 │ ∴ ∼Ga—{from 2} 
* 15 │ ∴ (x)Fx—{from 3} 
* 16 │ ∴ (Fa ≡ Ga)—{from 1} 
* 17 │ ∴ (Fa ⊃ Ga)—{from 6} 
* 18 │ ∴ (Ga ⊃ Fa)—{from 6} 
* 19 │ ∴ ∼Fa—{from 4 and 7} 
* 10 └ ∴ Fa—{from 5} 
* 11 ∴ (∃x)∼Fx—{from 3; 9 contradicts 10} 

8.2b 

1. Valid 

* 1   (x)(Dx ⊃ Bx) 
* 2   (x)Dx 
* [ ∴ (x)Bx 
* 3 ┌ asm: ∼(x)Bx 
* 4 │ ∴ (∃x)∼Bx—{from 3} 
* 5 │ ∴ ∼Ba—{from 4} 
* 6 │ ∴ (Da ⊃ Ba)—{from 1} 
* 7 │ ∴ ∼Da—{from 5 and 6} 
* 8 └ ∴ Da—{from 2} 
* 9 ∴ (x)Bx—{from 3; 7 contradicts 8} 

3. Valid 

* 11   ∼(∃x)(Fx • Ox) 0392 
* 12   (x)(Cx ⊃ Ox) 
* 1[ ∴ ∼(∃x)(Fx • Cx) 
* 13 ┌ asm: (∃x)(Fx • Cx) 
* 14 │ ∴ (x)∼(Fx • Ox)—{from 1} 
* 15 │ ∴ (Fa • Ca)—{from 3} 
* 16 │ ∴ Fa—{from 5} 
* 17 │ ∴ Ca—{from 5} 
* 18 │ ∴ (Ca ⊃ Oa)—{from 2} 



 

* 19 │ ∴ Oa—{from 7 and 8} 
* 10 │ ∴ ∼(Fa • Oa)—{from 4} 
* 11 └ ∴ ∼Oa—{from 6 and 10} 
* 12 ∴ ∼(∃x)(Fx • Cx)—{from 3; 9 contradicts 11} 

5. Valid 

* 11   (x)(Kx ⊃ Ex) 
* 12   ∼(∃x)(Ex • Kx) 
* 1[ ∴ ∼(∃x)Kx 
* 13 ┌ asm: (∃x)Kx 
* 14 │ ∴ (x)∼(Ex • Kx)—{from 2} 
* 15 │ ∴ Ka—{from 3} 
* 16 │ ∴ (Ka ⊃ Ea)—{from 1} 
* 17 │ ∴ Ea—{from 5 and 6} 
* 18 │ ∴ ∼(Ea • Ka)—{from 4} 
* 19 └ ∴ ∼Ea—{from 5 and 8} 
* 10 ∴ ∼(∃x)Kx—{from 3; 7 contradicts 9} 

10. Valid 

* 11   ∼(∃x)(Bx • Cx) 
* 12   (∃x)(Lx • Cx) 
* 13   (x)(Cx ⊃ Rx) 
* 1[ ∴ (∃x)(Rx • (Cx • ∼Bx)) 
* 14 ┌ asm: ∼(∃x)(Rx • (Cx • ∼Bx)) 
* 15 │ ∴ (x)∼(Bx • Cx)—{from 1} 
* 16 │ ∴ (La • Ca)—{from 2} 
* 17 │ ∴ (x)∼(Rx • (Cx • ∼Bx))—{from 4} 
* 18 │ ∴ La—{from 6} 
* 19 │ ∴ Ca—{from 6} 
* 10 │ ∴ (Ca ⊃ Ra)—{from 3} 
* 11 │ ∴ Ra—{from 9 and 10} 
* 12 │ ∴ ∼(Ba • Ca)—{from 5} 
* 13 │ ∴ ∼Ba—{from 9 and 12} 
* 14 │ ∴ ∼(Ra • (Ca • ∼Ba))—{from 7} 
* 15 │ ∴ ∼(Ca • ∼Ba)—{from 11 and 14} 
* 16 └ ∴ Ba—{from 9 and 15} 
* 17 ∴ (∃x)(Rx • (Cx • ∼Bx))—{from 4; 13 contradicts 16} 

8.3a 

1. Invalid 

* 1   (∃x)Fx 
* [ ∴ (x)Fx 
* 2   asm: ∼(x)Fx 
* 3   ∴ Fa—{from 1} 
* 4   ∴ (∃x)∼Fx—{from 2} 
* 5   ∴ ∼Fb—{from 4} 

a, b 

Fa, ∼Fb 



 

 

3. Invalid 

* 11   (∃x)(Fx ∨ Gx) 
* 12   ∼(x)Fx 
1* [ ∴ (∃x)Gx 
* 13   asm: ∼(∃x)Gx 
* 14   ∴ (Fa ∨ Ga)—{from 1} 
* 15   ∴ (∃x)∼Fx—{from 2} 
1* 6   ∴ (x)∼Gx—{from 3} 
*1 7   ∴ ∼Fb—{from 5} 
*1 8   ∴ ∼Ga—{from 6} 
*1 9   ∴ Fa—{from 4 and 8} 
* 10   ∴ ∼Gb—{from 6} 

a, b 

Fa, ∼Ga, ∼Fb, ∼Gb 

5. Invalid 

* 1   ∼(∃x)(Fx • Gx) 
* 2   (x)∼Fx 
* [ ∴ (x)Gx 
* 3   asm: ∼(x)Gx 
* 4   ∴ (x)∼(Fx • Gx)—{from 1} 
* 5   ∴ (∃x)∼Gx—{from 3} 
* 6   ∴ ∼Ga—{from 5} 
* 7   ∴ ∼Fa—{from 2} 
* 8   ∴ ∼(Fa • Ga)—{from 4} 

a 

∼Ga, ∼Fa 

10. Invalid 

* 11   (∃x)∼Fx 
* 12   (∃x)∼Gx 
*1 [ ∴ (∃x)(Fx ≡ Gx) 
* 13   asm: ∼(∃x)(Fx ≡ Gx) 
*1 4   ∴ ∼Fa—{from 1} 
*1 5   ∴ ∼Gb—{from 2} 
1* 6   ∴ (x)∼(Fx ≡ Gx)—{from 3} 
* 17   ∴ ∼(Fa ≡ Ga)—{from 6} 
* 18   ∴ (Fa ∨ Ga)—{from 7} 
1* 9   ∴ ∼(Fa • Ga)—{from 7} 
* 10   ∴ Ga—{from 4 and 8} 
* 11   ∴ ∼(Fb ≡ Gb)—{from 6} 
* 12   ∴ (Fb ∨ Gb)—{from 11} 
* 13   ∴ ∼(Fb • Gb)—{from 11} 
* 14   ∴ Fb—{from 5 and 12} 

a, b 

Ga, ∼Fa,  Fb, ∼Gb 



 

8.3b 

1. Invalid 

* 1   (∃x)(Bx • Gx) 
* [ ∴ (x)(Bx ⊃ Gx) 
* 2   asm: ∼(x)(Bx ⊃ Gx) 
* 3   ∴ (∃x)∼(Bx ⊃ Gx)—{from 2} 
* 4   ∴ (Ba • Ga)—{from 1} 
* 5   ∴ Ba—{from 4} 
* 6   ∴ Ga—{from 4} 
* 7   ∴ ∼(Bb ⊃ Gb)—{from 3} 
* 8   ∴ Bb—{from 7} 
* 9   ∴ ∼Gb—{from 7} 

a, b 

Ba, Ga, Bb, ∼Gb 

0393 3. Invalid 

* 11   (∃x)Sx 
* 12   ∼(x)Cx 
*1 [ ∴ (∃x)(Sx • ∼Cx) 
* 13   asm: ∼(∃x)(Sx • ∼Cx) 
*1 4   ∴ Sa—{from 1} 
* 15   ∴ (∃x)∼Cx—{from 2} 
*1 6   ∴ (x)∼(Sx • ∼Cx)—{from 3} 
*1 7   ∴ ∼Cb—{from 5} 
* 18   ∴ ∼(Sa • ∼Ca)—{from 6} 
*1 9   ∴ Ca—{from 4 and 8} 
* 10   ∴ ∼(Sb • ∼Cb)—{from 6} 
* 11   ∴ ∼Sb—{from 7 and 10} 

a, b 

Sa, Ca, ∼Sb, ∼Cb 

5. Valid 

*1 1   (x)((Vx • Cx) ⊃ Px) 
*1 2   (x)(Dx ⊃ (Cx • ∼Px)) 
* 1[ ∴ ∼(∃x)(Dx • Vx) 
* 13 ┌ asm: (∃x)(Dx • Vx) 
* 14 │ ∴ (Da • Va)—{from 3} 
* 15 │ ∴ Da—{from 4} 
* 16 │ ∴ Va—{from 4} 
* 17 │ ∴ ((Va • Ca) ⊃ Pa)—{from 1} 
* 18 │ ∴ (Da ⊃ (Ca • ∼Pa))—{from 2} 
* 19 │ ∴ (Ca • ∼Pa)—{from 5 and 8} 
* 10 │ ∴ Ca—{from 9} 
* 11 │ ∴ ∼Pa—{from 9} 
* 12 │ ∴ ∼(Va • Ca)—{from 7 and 11} 
* 13 └ ∴ ∼Ca—{from 6 and 12} 
* 14 ∴ ∼(∃x)(Dx • Vx)—{from 3; 10 contradicts 13} 



 

 

10. Valid 

* 1   (x)(Sx ⊃ Vx) 
* [ ∴ (x)(∼Vx ⊃ ∼Sx) 
* 2 ┌ asm: ∼(x)(∼Vx ⊃ ∼Sx) 
* 3 │ ∴ (∃x)∼(∼Vx ⊃ ∼Sx)—{from 2} 
* 4 │ ∴ ∼(∼Va ⊃ ∼Sa)—{from 3} 
* 5 │ ∴ ∼Va—{from 4} 
* 6 │ ∴ Sa—{from 4} 
* 7 │ ∴ (Sa ⊃ Va)—{from 1} 
* 8 └ ∴ ∼Sa—{from 5 and 7} 
* 9 ∴ (x)(∼Vx ⊃ ∼Sx)—{from 2; 6 contradicts 8} 

15. Invalid 

* 11   ∼(∃x)(Px • Bx) 
* 12   (∃x)(Cx • ∼Bx) 
* 1[ ∴ (∃x)(Cx • Px) 
* 13   asm: ∼(∃x)(Cx • Px) 
* 14   ∴ (x)∼(Px • Bx)—{from 1} 
* 15   ∴ (Ca • ∼Ba)—{from 2} 
*1 6   ∴ (x)∼(Cx • Px)—{from 3} 
* 17   ∴ Ca—{from 5} 
*1 8   ∴ ∼Ba—{from 5} 
*1 9   ∴ ∼(Pa • Ba)—{from 4} 
* 10   ∴ ∼(Ca • Pa)—{from 6} 
* 11   ∴ ∼Pa—{from 7 and 10} 

a 

Ca, ∼Ba, ∼Pa 

8.4a 
1. (Cg ∨ Eg) 
3. ((x)Lx ⊃ (x)Ex) 
5. ((∃x)Ex ⊃ R) 
10. ((x)Ex ⊃ (x)(Lx ⊃ Ex)) 
15. ∼(∃x)Ex or, equivalently, (x)∼Ex 
20. ∼(∃x)(Lx • Ex) or, equiv, (x)∼(Lx • Ex) 

8.5a 

1. Valid 

* 1   (x)(Fx ∨ Gx) 
* 2   ∼Fa 
* [ ∴ (∃x)Gx 
* 3 ┌ asm: ∼(∃x)Gx 
* 4 │ ∴ (x)∼Gx—{from 3} 
* 5 │ ∴ (Fa ∨ Ga)—{from 1} 
* 6 │ ∴ Ga—{from 2 and 5} 
* 7 └ ∴ ∼Ga—{from 4} 
* 8 ∴ (∃x)Gx—{from 3; 6 contradicts 7} 



 

3. Invalid 

* 1   ((x)Ex ⊃ R) 
* [ ∴ (x)(Ex ⊃ R) 
* 2   asm: ∼(x)(Ex ⊃ R) 
* 3   ∴ (∃x)∼(Ex ⊃ R)—{from 2} 
* 4   ∴ ∼(Ea ⊃ R)—{from 3} 
* 5   ∴ Ea—{from 4} 
* 6   ∴ ∼R—{from 4} 
* 7   ∴ ∼(x)Ex—{from 1 and 6} 
* 8   ∴ (∃x)∼Ex—{from 7} 
* 9   ∴ ∼Eb—{from 8} 

a, b 

Ea, ∼Eb, ∼R 

5. Invalid 

* 11   ((∃x)Fx ⊃ (∃x)Gx) 
* 1[ ∴ (x)(Fx ⊃ Gx) 
* 12   asm: ∼(x)(Fx ⊃ Gx) 
* 13   ∴ (∃x)∼(Fx ⊃ Gx)—{from 2} 
* 14   ∴ ∼(Fa ⊃ Ga)—{from 3} 
* 15   ∴ Fa—{from 4} 
*1 6   ∴ ∼Ga—{from 4} 
* 17 ┌ asm: ∼(∃x)Fx—{break 1} 
*1 8 │ ∴ (x)∼Fx—{from 7} 
* 19 └ ∴ ∼Fa—{from 8} 
* 10   ∴ (∃x)Fx—{from 7; 5 contradicts 9} 
* 11   ∴ (∃x)Gx—{from 1 and 10} 
* 12   ∴ Gb—{from 11} 

a, b 

Fa, ∼Ga, Gb 

10. Invalid 

* 1   ∼(∃x)(Fx • Gx) 
* 2   ∼Fd 
* [ ∴ Gd 
* 3   asm: ∼Gd 
* 4   ∴ (x)∼(Fx • Gx)—{from 1} 
* 5   ∴ ∼(Fd • Gd)—{from 4} 

d 

∼Fd, ∼Gd 

0394 15. Valid 

* 11   ((∃x)Ex ⊃ R) 
*1 [ ∴ (x)(Ex ⊃ R) 
* 12 ┌ asm: ∼(x)(Ex ⊃ R) 
* 13 │ ∴ (∃x)∼(Ex ⊃ R)—{from 2} 



 

 

* 14 │ ∴ ∼(Ea ⊃ R)—{from 3} 
* 15 │ ∴ Ea—{from 4} 
* 16 │ ∴ ∼R—{from 4} 
* 17 │ ∴ ∼(∃x)Ex—{from 1 and 6} 
* 18 │ ∴ (x)∼Ex—{from 7} 
* 19 └ ∴ ∼Ea—{from 8} 
* 10 ∴ (x)(Ex ⊃ R)—{from 2; 5 contradicts 9} 

8.5b 

1. Valid 

* 1   (x)Cx 
* 2   (Cw ⊃ G) 
* [ ∴ G 
* 3 ┌ asm: ∼G 
* 4 │ ∴ ∼Cw—{from 2 and 3} 
* 5 └ ∴ Cw—{from 1} 
* 6 ∴ G—{from 3; 4 contradicts 5} 

3. Valid 

* 1   (x)(Bx ⊃ Cx) 
* 2   Bw 
* 3   (Cw ⊃ G) 
* [ ∴ G 
* 4 ┌ asm: ∼G 
* 5 │ ∴ ∼Cw—{from 3 and 4} 
* 6 │ ∴ (Bw ⊃ Cw)—{from 1} 
* 7 └ ∴ Cw—{from 2 and 6} 
* 8 ∴ G—{from 4; 5 contradicts 7} 

5. Valid 

* 11   (x)(Ex ⊃ (Ix ∨ Fx)) 
* 1[ ∴ (∼(∃x)Ix ⊃ (x)(∼Fx ⊃ ∼Ex)) 
* 12 ┌ asm: ∼(∼(∃x)Ix ⊃ (x)(∼Fx ⊃ ∼Ex)) 
* 13 │ ∴ ∼(∃x)Ix—{from 2} 
* 14 │ ∴ ∼(x)(∼Fx ⊃ ∼Ex)—{from 2} 
* 15 │ ∴ (x)∼Ix—{from 3} 
* 16 │ ∴ (∃x)∼(∼Fx ⊃ ∼Ex)—{from 4} 
* 17 │ ∴ ∼(∼Fa ⊃ ∼Ea)—{from 6} 
* 18 │ ∴ ∼Fa—{from 7} 
* 19 │ ∴ Ea—{from 7} 
* 10 │ ∴ (Ea ⊃ (Ia ∨ Fa))—{from 1} 
* 11 │ ∴ (Ia ∨ Fa)—{from 9 and 10} 
* 12 │ ∴ Ia—{from 8 and 11} 
* 13 └ ∴ ∼Ia—{from 5} 
* 14 ∴ (∼(∃x)Ix ⊃ (x)(∼Fx ⊃ ∼Ex))—{from 2; 12 contradicts 13} 

10. Valid 

* 11   (x)(Ax ⊃ Px) 
* 12   (Ae • Ad) 



 

* 1[ ∴ (Pe • Pd) 
* 13 ┌ asm: ∼(Pe • Pd) 
* 14 │ ∴ Ae—{from 2} 
* 15 │ ∴ Ad—{from 2} 
* 16 │ ∴ (Ad ⊃ Pd)—{from 1} 
* 17 │ ∴ Pd—{from 5 and 6} 
* 18 │ ∴ ∼Pe—{from 3 and 7} 
* 19 │ ∴ (Ae ⊃ Pe)—{from 1} 
* 10 └ ∴ Pe—{from 4 and 9} 
* 11 ∴ (Pe • Pd)—{from 3; 8 contradicts 10} 

15. Valid 

* 11   (T ⊃ (H • (x)(Mx ⊃ Ex))) 
*1 2   (x)(Ex ⊃ Ix) 
* 13   Mt 
* 14   ∼It 
* 1[ ∴ ∼T 
* 15 ┌ asm: T 
* 16 │ ∴ (H • (x)(Mx ⊃ Ex))—{from 1 and 5} 
* 17 │ ∴ H—{from 6} 
* 18 │ ∴ (x)(Mx ⊃ Ex)—{from 6} 
* 19 │ ∴ (Et ⊃ It)—{from 2} 
* 10 │ ∴ ∼Et—{from 4 and 9} 
* 11 │ ∴ (Mt ⊃ Et)—{from 8} 
* 12 └ ∴ Et—{from 3 and 11} 
* 13 ∴ ∼T—{from 5; 10 contradicts 12} 

20. Valid 

* 11   ∼(∃x)(∼Cx • Ix) 
* 12   (x)(Ex ⊃ Ix) 
*1 [ ∴ (x)(Ex ⊃ Cx) 
* 13 ┌ asm: ∼(x)(Ex ⊃ Cx) 
* 14 │ ∴ (x)∼(∼Cx • Ix)—{from 1} 
* 15 │ ∴ (∃x)∼(Ex ⊃ Cx)—{from 3} 
* 16 │ ∴ ∼(Ea ⊃ Ca)—{from 5} 
* 17 │ ∴ Ea—{from 6} 
* 18 │ ∴ ∼Ca—{from 6} 
* 19 │ ∴ (Ea ⊃ Ia)—{from 2} 
* 10 │ ∴ Ia—{from 7 and 9} 
* 11 │ ∴ ∼(∼Ca • Ia)—{from 4} 
* 12 └ ∴ ∼Ia—{from 8 and 11} 
* 13 ∴ (x)(Ex ⊃ Cx)—{from 3; 10 contradicts 12} 

Chapter 9 answers 

9.1a 
1. La 
3. ∼a=p 



 

 

5. (∃x)(∃y)(∼x=y • (Lx • Ly)) 
10. (∃x)(Lx • ∼(∃y)(∼y=x • Ly)) 
15. (Ra • ∼a=f) 

9.2a 

1. Invalid 

* 1   Fa 
* [ ∴ ∼(∃x)(Fx • ∼x=a) 0395 
* 2   asm: (∃x)(Fx • ∼x=a) 
* 3   ∴ (Fb • ∼b=a)—{from 2} 
* 4   ∴ Fb—{from 3} 
* 5   ∴ ∼b=a—{from 3} 

a, b 

Fa, ∼Fb, ∼b=a 

3. Valid 

1   a=b 
2   b=c 
[ ∴ a=c 
3 ┌ asm: ∼a=c 
4 └ ∴ ∼b=c—{from 1 and 3} 
5 ∴ a=c—{from 3; 2 contradicts 4} 

5. Invalid 

1   ∼a=b 
2   ∼c=b 
[ ∴ a=c 
3   asm: ∼a=c 

a, b, c 

∼a=b, ∼a=c, ∼c=b 

10. Invalid 

* [ ∴ (∃x)(∃y)∼y=x 
* 1   asm: ∼(∃x)(∃y)∼y=x 
* 2   ∴ (x)∼(∃y)∼y=x—{from 1} 
* 3   ∴ ∼(∃y)∼y=a—{from 2} 
* 4   ∴ (y)y=a—{from 3} 
* 5   ∴ a=a—{from 4} 

a 

a=a 



 

9.2b 

1. Valid 

* 1   k=n 
* 2   Bn 
* 3   Tk 
* [ ∴ (∃x)(Tx • Bx) 
* 4 ┌ asm: ∼(∃x)(Tx • Bx) 
* 5 │ ∴ Bk—{from 1 and 2} 
* 6 │ ∴ (x)∼(Tx • Bx)—{from 4} 
* 7 │ ∴ ∼(Tk • Bk)—{from 6} 
* 8 └ ∴ ∼Bk—{from 3 and 7} 
* 9 ∴ (∃x)(Tx • Bx)—{from 4; 5 contradicts 8} 

3. Valid 

1   Oc 
2   ∼Op 
[ ∴ ∼p=c 
3 ┌ asm: p=c 
4 └ ∴ ∼Oc—{from 2 and 3} 
5 ∴ ∼p=c—{from 3; 1 contradicts 4} 

5. Invalid 

1   ∼Bm 
2   ∼Bu 
[ ∴ u=m 
3   asm: ∼u=m 

m, u 

∼Bm, ∼Bu, ∼u=m 

10. Valid 

* 1   (Ku ∨ Kt) 
* 2   ∼Ku 
* [ ∴ ∼u=t 
* 3 ┌ asm: u=t 
* 4 │ ∴ Kt—{from 1 and 2} 
* 5 └ ∴ ∼Kt—{from 2 and 3} 
* 6 ∴ ∼u=t—{from 3; 4 contradicts 5} 

15. Valid 

* 11   (∃x)(Lx • ∼(∃y)(∼y=x • Ly)) 
* 12   Lp 
* 13   Fp 
* 1[ ∴ (x)(Lx ⊃ Fx) 
* 14 ┌ asm: ∼(x)(Lx ⊃ Fx) 
* 15 │ ∴ (∃x)∼(Lx ⊃ Fx)—{from 4} 
* 16 │ ∴ ∼(La ⊃ Fa)—{from 5} 
* 17 │ ∴ La—{from 6} 



 

 

* 18 │ ∴ ∼Fa—{from 6} 
* 19 │ ∴ (Lb • ∼(∃y)(∼y=b • Ly))—{from 1} 
* 10 │ ∴ Lb—{from 9} 
* 11 │ ∴ ∼(∃y)(∼y=b • Ly)—{from 9} 
* 12 │ ∴ (y)∼(∼y=b • Ly)—{from 11} 
* 13 │ ∴ ∼(∼a=b • La)—{from 12} 
* 14 │ ∴ a=b—{from 7 and 13} 
* 15 │ ∴ ∼(∼p=b • Lp)—{from 12} 
* 16 │ ∴ p=b—{from 2 and 15} 
* 17 │ ∴ ∼Fb—{from 8 and 14} 
* 18 └ ∴ ∼Fp—{from 16 and 17} 
* 19 ∴ (x)(Lx ⊃ Fx)—{from 4; 3 contradicts 18} 

9.3a 
1. (Lto • Lot) 
3. (x)(Rx ⊃ Ltx) 
5. ((x)Lxo • ∼(x)Lox) 
10. (x)(Lxx ⊃ Lox) 
15. (x)(Cgx ⊃ Lgx) 
20. (x)(Cgx ⊃ Ggx) 

9.4a 
1. (x)(Rx ⊃ (y)Lyx) or, equivalently, (x)(y)(Ry ⊃ Lxy) 
3. (∃x)(Rx • (∃y)Lyx) or, equivalently, (∃x)(∃y)(Ry • Lxy) 
5. (x)(Rx ⊃ (∃y)(Iy • Lxy)) 
10. ∼(∃x)(Ix • (y)Lxy) 
15. ((x)Ltx ⊃ (∃x)(Ix • (y)Lxy)) 
20. (x)(∃y)Cyx 
25. (x)(y)(Cxy ⊃ Lxy) 

9.5a 

1. Invalid 

* 1   (x)Lxa 
* [ ∴ (x)Lax 
* 2   asm: ∼(x)Lax 0396 
* 3 ∴ (∃x)∼Lax—{from 2} 
* 4 ∴ ∼Lab—{from 3} 
* 5 ∴ Laa—{from 1} 
* 6 ∴ Lba—{from 1} 

a, b 

Lab, Laa, ∼Lab 

3. Invalid 

* 1   (x)(y)(Lxy ⊃ x=y) 
* [ ∴ (x)Lxx 



 

* 2   asm: ∼(x)Lxx 
* 3 ∴ (∃x)∼Lxx—{from 2} 
* 4 ∴ ∼Laa—{from 3} 
* 5 ∴ (y)(Lay ⊃ a=y)—{from 1} 
* 6 ∴ (Laa ⊃ a=a)—{from 5} 

a 

∼Laa 

5. Valid 

* 11   (x)(y)Lxy 
* 1[ ∴ (x)(y)((Fx • Gy) ⊃ Lxy) 
* 12 ┌ asm: ∼(x)(y)((Fx • Gy) ⊃ Lxy) 
* 13 │ ∴ (∃x)∼(y)((Fx • Gy) ⊃ Lxy) {from 2} 
* 14 │ ∴ ∼(y)((Fa • Gy) ⊃ Lay)—{from 3} 
* 15 │ ∴ (∃y)∼((Fa • Gy) ⊃ Lay)—{from 4} 
* 16 │ ∴ ∼((Fa • Gb) ⊃ Lab)—{from 5} 
* 17 │ ∴ (Fa • Gb)—{from 6} 
* 18 │ ∴ ∼Lab—{from 6} 
* 19 │ ∴ Fa—{from 7} 
* 10 │ ∴ Gb—{from 7} 
* 11 │ ∴ (y)Lay—{from 1} 
* 12 │ ∴ (y)Lby—{from 1} 
* 13 │ ∴ Laa—{from 11} 
* 14 └ ∴ Lab—{from 11} 
* 15 ∴ (x)(y)((Fx • Gy) ⊃ Lxy)—{from 2; 8 contradicts 14} 

10. Valid 

* 1   Lab 
* 2   Lbc 
* [ ∴ (∃x)(Lax • Lxc) 
* 3 ┌ asm: ∼(∃x)(Lax • Lxc) 
* 4 │ ∴ (x)∼(Lax • Lxc)—{from 3} 
* 5 │ ∴ ∼(Laa • Lac)—{from 4} 
* 6 │ ∴ ∼(Lab • Lbc)—{from 4} 
* 7 └ ∴ ∼Lbc—{from 1 and 6} 
* 8 ∴ (∃x)(Lax • Lxc)—{from 3; 2 contradicts 7} 

15. Valid 

* 11   (x)(y)(Lxy ⊃ (Fx • ∼Fy)) 
* 1[ ∴ (x)(y)(Lxy ⊃ ∼Lyx) 
* 12 ┌ asm: ∼(x)(y)(Lxy ⊃ ∼Lyx) 
* 13 │ ∴ (∃x)∼(y)(Lxy ⊃ ∼Lyx)—{from 2} 
* 14 │ ∴ ∼(y)(Lay ⊃ ∼Lya)—{from 3} 
* 15 │ ∴ (∃y)∼(Lay ⊃ ∼Lya)—{from 4} 
* 16 │ ∴ ∼(Lab ⊃ ∼Lba)—{from 5} 
* 17 │ ∴ Lab—{from 6} 
* 18 │ ∴ Lba—{from 6} 
* 19 │ ∴ (y)(Lay ⊃ (Fa • ∼Fy))—{from 1} 
* 10 │ ∴ (y)(Lby ⊃ (Fb • ∼Fy))—{from 1} 
* 11 │ ∴ (Lab ⊃ (Fa • ∼Fb))—{from 9} 



 

 

* 12 │ ∴ (Fa • ∼Fb)—{from 7 and 11} 
* 13 │ ∴ Fa—{from 12} 
* 14 │ ∴  ∼Fb—{from 12} 
* 15 │ ∴ (Lba ⊃ (Fb • ∼Fa))—{from 10} 
* 16 │ ∴ (Fb • ∼Fa)—{from 8 and 15} 
* 17 └ ∴ Fb—{from 16} 
* 18 ∴ (x)(y)(Lxy ⊃ ∼Lyx)—{from 2; 14 contradicts 17} 

9.5b 

1. Valid 

* 1   (x)Ljx 
* [ ∴ (∃x)Lxu 
* 2 ┌ asm: ∼(∃x)Lxu 
* 3 │ ∴ (x)∼Lxu—{from 2} 
* 4 │ ∴ Ljj—{from 1} 
* 5 │ ∴ Lju—{from 1} 
* 6 └ ∴ ∼Lju—{from 3} 
* 7 ∴ (∃x)Lxu—{from 2; 5 contradicts 6} 

3. Invalid 

1   Oab 
[ ∴ ∼Oba 
2   asm: Oba 

a, b 

Oab, Oba 

To make it valid, we need the premise that “older than” is asymmetrical: “(x)(y)(Oxy ⊃ 
∼Oyx)” –”In every case, if x is older than y, then y isn’t older than x.” 

5. Invalid 

* 1   (x)(∃y)Dxy 
* [ ∴ (∃y)(x)Dxy 
* 2   asm: ∼(∃y)(x) Dxy 
* 3 ∴ (y)∼(x)Dxy—{from 2} 
* 4 ∴ (∃y)Day—{from 1} 
* 5 ∴ Dab—{from 4} 
* 6 ∴ ∼(x)Dxb—{from 3} 
* 7 ∴ (∃x)∼Dxb—{from 6} 

Endless loop: we add further wffs to make the premise true and conclusion false. “∼Dab, 
∼Dba, Daa, Dbb” also refutes the argument. 

a, b 

Dab, Dba, ∼Daa, ∼Dbb 

10. Valid 

* 1   (∃x)(y)Lyx 
* [ ∴ (∃x)Lxx 



 

* 2 ┌ asm: ∼(∃x)Lxx 
* 3 │ ∴ (y)Lya—{from 1} 
* 4 │ ∴ (x)∼Lxx—{from 2} 
* 5 │ ∴ Laa—{from 3} 
* 6 └ ∴ ∼Laa—{from 4} 
* 7 ∴ (∃x)Lxx—{from 2; 5 contradicts 6} 

15. Valid 

* 11   (x)((∃y)Lxy ⊃ (y)Lyx) 
* 12   Lrj 0397 
* 1[ ∴ Liu 
* 13 ┌ asm: ∼Liu 
* 14 │ ∴ ((∃y)Lry ⊃ (y)Lyr)—{from 1} 
* 15 │┌ asm: ∼(∃y)Lry—{break 4} 
* 16 ││ ∴ (y)∼Lry—{from 5} 
* 17 │└ ∴ ∼Lrj—{from 6} 
* 18 │ ∴ (∃y)Lry—{from 5; 2 contradicts 7} 
* 19 │ ∴ (y)Lyr—{from 4 and 8} 
* 10 │ ∴ Lur—{from 9} 
* 11 │ ∴ ((∃y)Luy ⊃ (y)Lyu)—{from 1} 
* 12 │┌ asm: ∼(∃y)Luy—{break 11} 
* 13 ││ ∴ (y)∼Luy—{from 12} 
* 14 │└ ∴ ∼Lur—{from 13} 
* 15 │ ∴ (∃y)Luy—{from 12; 10 contradicts 14} 
* 16 │ ∴ (y)Lyu—{from 11 and 15} 
* 17 └ ∴ Liu—{from 16} 
* 18 ∴ Liu—{from 3; 3 contradicts 17} 

20. Valid 

* 11   (x)(Gx ⊃ (y)((Ey • Cxy) ⊃ Pxy)) 
* 12   (x)(Ox ⊃ (y)(Ey ⊃ Cxy)) 
* 13   ((∃x)(y)(Ey ⊃ Pxy) ⊃ ∼(∃x)Ex) 
* 14   (∃x)Ex 
* 1[ ∴ (∼Og ∨ ∼Gg) 
* 15 ┌ asm: ∼(∼Og ∨ ∼Gg) 
* 16 │ ∴ Og—{from 5} 
* 17 │ ∴ Gg—{from 5} 
* 18 │ ∴ (Gg ⊃ (y)((Ey • Cgy) ⊃ Pgy))—{fm 1} 
* 19 │ ∴ (y)((Ey • Cgy) ⊃ Pgy)—{fm 7 and 8} 
* 10 │ ∴ (Og ⊃ (y)(Ey ⊃ Cgy))—{from 2} 
* 11 │ ∴ (y)(Ey ⊃ Cgy)—{from 7 and 8} 
* 12 │ ∴ Ea—{from 4} 
* 13 │ ∴ ∼(∃x)(y)(Ey ⊃ Pxy)—{from 3 and 4} 
* 14 │ ∴ (x)∼(y)(Ey ⊃ Pxy)—{from 13} 
* 15 │ ∴ ∼(y)(Ey ⊃ Pgy)—{from 14} 
* 16 │ ∴ (∃y)∼(Ey ⊃ Pgy)—{from 15} 
* 17 │ ∴ ∼(Eb ⊃ Pgb)—{from 16} 
* 18 │ ∴ Eb—{from 17} 
* 19 │ ∴ ∼Pgb—{from 17} 
* 20 │ ∴ ((Eb • Cgb) ⊃ Pgb)—{from 9} 
* 21 │ ∴ (Eb ⊃ Cgb)—{from 11} 
* 22 │ ∴ Cgb—{from 18 and 21} 



 

 

* 23 │ ∴ ∼(Eb • Cgb)—{from 19 and 20} 
* 24 └ ∴ ∼Eb—{from 22 and 23} 
* 25 ∴ (∼Og ∨ ∼Gg)—{from 5; 18 contradicts 24} 

25. Valid 

* 11   (x)(Dx ⊃ Ax) 
*1 [ ∴ (x)((∃y)(Dy • Hxy) ⊃ (∃y)(Ay • Hxy)) 
* 12 ┌ asm: ∼(x)((∃y)(Dy • Hxy) ⊃ (∃y)(Ay • Hxy)) 
* 13 │ ∴ (∃x)∼((∃y)(Dy • Hxy) ⊃ (∃y)(Ay • Hxy))—{from 2} 
* 14 │ ∴ ∼((∃y)(Dy • Hay) ⊃ (∃y)(Ay • Hay))—{from 3} 
* 15 │ ∴ (∃y)(Dy • Hay)—{from 4} 
* 16 │ ∴ ∼(∃y)(Ay • Hay)—{from 4} 
* 17 │ ∴ (Db • Hab)—{from 5} 
* 18 │ ∴ Db—{from 7} 
* 19 │ ∴ Hab—{from 7} 
* 10 │ ∴ (y)∼(Ay • Hay)—{from 6} 
* 11 │ ∴ ∼(Ab • Hab)—{from 10} 
* 12 │ ∴ ∼Ab—{from 9 and 11} 
* 13 │ ∴ (Db ⊃ Ab)—{from 1} 
* 14 └ ∴ Ab—{from 8 and 13} 
* 15 ∴ (x)((∃y)(Dy • Hxy) ⊃ (∃y)(Ay • Hxy))—{from 2; 12 contradicts 14} 

Chapter 10 answers 

10.1a 
1. ☐G 
3. ∼☐M 
5. ☐(R ⊃ P) 
10. Ambiguous: (R ⊃ ☐R) or ☐(R ⊃ R) 
15. (A ⊃ ☐B) 
20. ☐(H ∨ T) 
25. (R ⊃ ☐E) 
30. ☐(G ⊃ ☐G) 

10.2a 

01. Valid 

* 1   ◇(A • B) 
* [ ∴ ◇A 
* 2 ┌ asm: ∼◇A 
* 3 │ W ∴ (A • B)—{from 1} 
* 4 │ ∴ ☐∼A—{from 2} 
* 5 │ W ∴ A—{from 3} 
* 6 │ W ∴ B—{from 3} 
* 7 └ W ∴ ∼A—{from 4} 
* 8 ∴ ◇A—{from 2; 5 contradicts 7} 



 

03. Valid 

* 11   ∼◇(A • ∼B) 
* 1[ ∴ ☐(A ⊃ B) 
* 12 ┌ asm: ∼☐(A ⊃ B) 
* 13 │ ∴ ☐∼(A • ∼B)—{from 1} 
* 14 │ ∴ ◇∼(A ⊃ B)—{from 2} 
* 15 │ W ∴ ∼(A ⊃ B)—{from 4} 
* 16 │ W ∴ A—{from 5} 
* 17 │ W ∴ ∼B—{from 5} 
* 18 │ W ∴ ∼(A • ∼B)—{from 3} 
* 19 └ W ∴ B—{from 6 and 8} 
* 10 ∴ ☐(A ⊃ B)—{from 2; 7 contradicts 9} 

05. Valid 

* 11   (◇A ∨ ◇B) 
* 1[ ∴ ◇(A ∨ B) 
* 12 ┌ asm: ∼◇(A ∨ B) 
* 13 │ ∴ ☐∼(A ∨ B)—{from 2} 
* 14 │┌ asm: ◇A—{break 1} 
* 15 ││ W ∴ A—{from 4} 
* 16 ││ W ∴ ∼(A ∨ B)—{from 3} 0398 
* 17 │└ W ∴ ∼A—{from 6} 
* 18 │ ∴ ∼◇A—{from 4; 5 contradicts 7} 
* 19 │ ∴ ☐∼A—{from 8} 
* 10 │ ∴ ◇B—{from 1 and 8} 
* 11 │ WW ∴ B—{from 10} 
* 12 │ WW ∴ ∼(A ∨ B)—{from 3} 
* 13 │ WW ∴ ∼A—{from 12} 
* 14 └ WW ∴ ∼B—{from 12} 
* 15 ∴ ◇(A ∨ B)—{from 2; 11 contradicts 14} 

10. Valid 

* 11   ☐(A ⊃ B) 
* 1[ ∴ (☐A ⊃ ☐B) 
* 12 ┌ asm: ∼(☐A ⊃ ☐B) 
* 13 │ ∴ ☐A—{from 2} 
* 14 │ ∴ ∼☐B—{from 2} 
* 15 │ ∴ ◇∼B—{from 4} 
* 16 │ W ∴ ∼B—{from 5} 
* 17 │ W ∴ (A ⊃ B)—{from 1} 
* 18 │ W ∴ ∼A—{from 6 and 7} 
* 19 └ W ∴ A—{from 3} 
* 10 ∴ (☐A ⊃ ☐B)—{from 2; 8 contradicts 9} 

10.2b 

01. Valid 

* 11   ☐(T ⊃ L) 



 

 

* 12   ◇(T • ∼I) 
* 1[ ∴ ◇(L • ∼I) 
* 13 ┌ asm: ∼◇(L • ∼I) 
* 14 │ W ∴ (T • ∼I)—{from 2} 
* 15 │ ∴ ☐∼(L • ∼I)—{from 3} 
* 16 │ W ∴ T—{from 4} 
* 17 │ W ∴ ∼I—{from 4} 
* 18 │ W ∴ (T ⊃ L)—{from 1} 
* 19 │ W ∴ L—{from 6 and 8} 
* 10 │ W ∴ ∼(L • ∼I)—{from 5} 
* 11 └ W ∴ ∼L—{from 7 and 10} 
* 12 ∴ ◇(L • ∼I)—{from 3; 9 contradicts 11} 

03. Valid 

* 11   (C ⊃ ☐(T ⊃ M)) 
* 12   ∼☐M 
* 13   ☐(∼T ⊃ ∼∼T) 
* 1[ ∴ ∼C 
* 14 ┌ asm: C 
* 15 │ ∴ ☐(T ⊃ M)—{from 1 and 4} 
* 16 │ ∴ ◇∼M—{from 2} 
* 17 │ W ∴ ∼M—{from 6} 
* 18 │ W ∴ (∼T ⊃ ∼∼T)—{from 3} 
* 19 │ W ∴ (T ⊃ M)—{from 5} 
* 10 │ W ∴ ∼T—{from 7 and 9} 
* 11 └ W ∴ ∼∼T—{from 8 and 10} 
* 12 ∴ ∼C—{from 4; 10 contradicts 11} 

05. Valid 

* 11   ◇(G • T) 
* 12   ☐(T ⊃ E) 
* 1[ ∴ ◇(G • E) 
* 13 ┌ asm: ∼◇(G • E) 
* 14 │ W ∴ (G • T)—{from 1} 
* 15 │ ∴ ☐∼(G • E)—{from 3} 
* 16 │ W ∴ G—{from 4} 
* 17 │ W ∴ T—{from 4} 
* 18 │ W ∴ (T ⊃ E)—{from 2} 
* 19 │ W ∴ E—{from 7 and 8} 
* 10 │ W ∴ ∼(G • E)—{from 5} 
* 11 └ W ∴ ∼E—{from 6 and 10} 
* 12 ∴ ◇(G • E)—{from 3; 9 contradicts 11} 

10. Valid 

* 11   ☐((R • B) ⊃ ∼N) 
* 12   ◇(R • B) 
* 1[ ∴ ∼☐(R ⊃ N) 
* 13 ┌ asm: ☐(R ⊃ N) 
* 14 │ W ∴ (R • B)—{from 2} 



 

* 15 │ W ∴ R—{from 4} 
* 16 │ W ∴ B—{from 4} 
* 17 │ W ∴ ((R • B) ⊃ ∼N)—{from 1} 
* 18 │ W ∴ ∼N—{from 4 and 7} 
* 19 │ W ∴ (R ⊃ N)—{from 3} 
* 10 └ W ∴ N—{from 5 and 9} 
* 11 ∴ ∼☐(R ⊃ N)—{from 3; 8 contradicts 10} 

15. Valid 

* 1   ☐(∼T ⊃ T) 
* [ ∴ ☐T 
* 2 ┌ asm: ∼☐T 
* 3 │ ∴ ◇∼T—{from 2} 
* 4 │ W ∴ ∼T—{from 3} 
* 5 │ W ∴ (∼T ⊃ T)—{from 1} 
* 6 └ W ∴ T—{from 4 and 5} 
* 7 ∴ ☐T—{from 2; 4 contradicts 6} 

10.3a 

1. Invalid 

* 1   ◇A 
* [ ∴ ☐A 
* 2   asm: ∼☐A 
* 3   W ∴ A—{from 1} 
* 4   ∴ ◇∼A—{from 2} 
* 5   WW ∴ ∼A—{from 4} 

W A 

WW ∼A 

3. Invalid 

* 11   ◇A 
* 12   ◇B 
* 1[ ∴ ◇(A • B) 
* 13   asm: ∼◇(A • B) 
* 14   W ∴ A—{from 1} 
* 15   WW ∴ B—{from 2} 
* 16   ∴ ☐∼(A • B)—{from 3} 
* 17   W ∴ ∼(A • B)—{from 6} 
* 18   W ∴ ∼B—{from 4 and 7} 0399 
* 19   WW ∴ ∼(A • B)—{from 6} 
* 10   WW ∴ ∼A—{from 5 and 9} 

W A, ∼B 

WW B, ∼A 



 

 

5. Invalid 

* *1   (☐A ⊃ ☐B) 
* * [ ∴ ☐(A ⊃ B) 
* *2   asm: ∼☐(A ⊃ B) 
* *3   ∴ ◇∼(A ⊃ B)—{from 2} 
* *4   W ∴ ∼(A ⊃ B)—{from 3} 
** 5   W ∴ A—{from 4} 
** 6   W ∴ ∼B—{from 4} 
** 7      asm: ∼☐A—{break 1} 
** 8      ∴ ◇∼A—{from 7} 
** 9      WW ∴ ∼A—{from 8} 

W A, ∼B 

WW ∼A 

10. Invalid 

* 11   ∼☐A 
* 12   ☐(B ≡ A) 
* 1[ ∴ ∼◇B 
* 13   asm: ◇B 
* 14   ∴ ◇∼A—{from 1} 
* 15   W ∴ B—{from 3} 
* 16   WW ∴ ∼A—{from 4} 
* 17   W ∴ (B ≡ A)—{from 2} 
* 18   W ∴ (B ⊃ A)—{from 7} 
* 19   W ∴ (A ⊃ B)—{from 7} 
* 10   W ∴ A—{from 5 and 8} 
* 11   WW ∴ (B ≡ A)—{from 2} 
* 12   WW ∴ (B ⊃ A)—{from 11} 
* 13   WW ∴ (A ⊃ B)—{from 11} 
* 14   WW ∴ ∼B—{from 6 and 12} 

W A, B 

WW ∼A, ∼B 

10.3b 

1. Valid 

* 11   (P ⊃ ☐(T ⊃ B)) 
* 12   ◇(T • ∼B) 
* 1[ ∴ ∼P 
* 13 ┌ asm: P 
* 14 │ ∴ ☐(T ⊃ B)—{from 1 and 3} 
* 15 │ W ∴ (T • ∼B)—{from 2} 
* 16 │ W ∴ T—{from 5} 
* 17 │ W ∴ ∼B—{from 5} 
* 18 │ W ∴ (T ⊃ B)—{from 4} 
*1 9 └ W ∴ B—{from 6 and 8} 



 

* 10 ∴ ∼P—{from 3; 7 contradicts 9} 

3. Invalid 

* 1   ☐(B ⊃ B) 
* [ ∴ (B ⊃ ☐B) 
* 2   asm: ∼(B ⊃ ☐B) 
* 3   ∴ B—{from 2} 
* 4   ∴ ∼☐B—{from 2} 
* 5   ∴ ◇∼B—{from 4} 
* 6   W ∴ ∼B—{from 5} 
* 7   ∴ (B ⊃ B)—{from 1} 
* 8   W ∴ (B ⊃ B)—{from 1} 

 B 

W ∼B 

5. Invalid 

1   ☐(R ⊃ F) 
2   ☐(U ⊃ ∼R) 
[ ∴ ∼☐(F ⊃ U) 
3   asm: ☐(F ⊃ U) 
4   ∴ (R ⊃ F)—{from 1} 
5   ∴ (U ⊃ ∼R)—{from 2} 
6   ∴ (F ⊃ U)—{from 3} 
7      asm: ∼R—{break 4} 
8         asm: ∼F—{break 6} 

∼R, ∼F 

10. Invalid 

* 11   ☐(D ∨ ∼D) 
* 12   (☐D ⊃ ∼F) 
* 13   (☐∼D ⊃ ∼F) 
* 1[ ∴ ∼F 
* 14   asm: F 
* 15   ∴ ∼☐D—{from 2 and 4} 
* 16   ∴ ∼☐∼D—{from 2 and 4} 
* 17   ∴ ◇∼D—{from 3} 
* 18   ∴ ◇D—{from 4} 
* 19   W ∴ ∼D—{from 5} 
* 10   WW ∴ D —{from 6} 
* 11   W ∴ (D ∨ ∼D)—{from 1} 
* 12   WW ∴ (D ∨ ∼D)—{from 1} 
* 13   ∴ (D ∨ ∼D)—{from 1} 
* 14      asm: D—{break 13} 

 F, D 

W ∼D 



 

 

WW D 

15. Valid 

* 11   (M ⊃ ☐(S ⊃ G)) 
* 12   ◇(S • ∼G) 
* 1[ ∴ ∼M 
* 13 ┌ asm: M 
* 14 │ ∴ ☐(S ⊃ G)—{from 1 and 3} 
* 15 │ W ∴ (S • ∼G)—{from 2} 
* 16 │ W ∴ S—{from 5} 
* 17 │ W ∴ ∼G—{from 5} 
* 18 │ W ∴ (S ⊃ G)—{from 4} 
* 19 └ W ∴ G—{from 6 and 8} 
* 10 ∴ ∼M—{from 3; 7 contradicts 9} 

20. Valid 

* 11   (M ⊃ ☐(A ⊃ B)) 
* 12   ◇(∼B • A) 
* 1[ ∴ ∼M 
* 13 ┌ asm: M 
* 14 │ ∴ ☐(A ⊃ B)—{from 1 and 3} 
* 15 │ W ∴ (∼B • A)—{from 2} 
* 16 │ W ∴ ∼B—{from 5} 
* 17 │ W ∴ A—{from 5} 
* 18 │ W ∴ (A ⊃ B)—{from 4} 
* 19 └ W ∴ ∼A—{from 6 and 8} 
* 10 ∴ ∼M—{from 3; 7 contradicts 9} 

25. Valid 

* 11   ◇(W • D) 
* 12   ☐(W ⊃ F) 0400 
* 1[ ∴ ◇(F • D) 
* 13 ┌ asm: ∼◇(F • D) 
* 14 │ W ∴ (W • D)—{from 1} 
* 15 │ ∴ ☐∼(F • D)—{from 3} 
* 16 │ W ∴ W —{from 4} 
* 17 │ W ∴ D —{from 4} 
* 18 │ W ∴ (W ⊃ F)—{from 2} 
* 19 │ W ∴ F—{from 6 and 8} 
* 10 │ W ∴ ∼(F • D)—{from 5} 
* 11 └ W ∴ ∼F—{from 7 and 10} 
* 12 ∴ ◇(F • D)—{from 3; 9 contradicts 11} 



 

Chapter 11 answers 

11.1a 

1. Valid in B or S5. 

* 1   ◇☐A 
* [ ∴ A 
* 2 ┌ asm: ∼A 
* 3 │ W ∴ ☐A—{from 1} # ⇒ W 
* 4 └ ∴ A—{from 3} Need B or S5 
* 5 ∴ A—{from 2; 2 contradicts 4} 

3. Valid in S4 or S5. 

* 1   ◇◇A 
* [ ∴ ◇A 
* 2 ┌ asm: ∼◇A 
* 3 │ W ∴ ◇A—{from 1} # ⇒ W 
* 4 │ ∴ ☐∼A—{from 2} 
* 5 │ WW ∴ A—{from 3} W ⇒ WW 
* 6 └ WW ∴ ∼A—{from 4} Need S4 or S5 
* 7 ∴ ◇A—{from 2; 5 contradicts 6} 

5. Valid in S5. 

* 11   (☐A ⊃ ☐B) 
* 1[ ∴ ☐(☐A ⊃ ☐B) 
* 12 ┌ asm: ∼☐(☐A ⊃ ☐B) 
* 13 │ ∴ ◇∼(☐A ⊃ ☐B)—{from 2} 
* 14 │ W ∴ ∼(☐A ⊃ ☐B)—{from 3} # ⇒ W 
* 15 │ W ∴ ☐A—{from 4} 
* 16 │ W ∴ ∼☐B—{from 4} 
* 17 │ W ∴ ◇∼B—{from 6} 
* 18 │ WW ∴ ∼B—{from 7} W ⇒ WW 
* 19 │┌ asm: ∼☐A {break 1} 
* 10 ││ ∴ ◇∼A—{from 9} 
* 11 ││ WWW ∴ ∼A—{from 10} # ⇒ WWW 
* 12 │└ WWW ∴ A—{from 5} Need S5 
* 13 │ ∴ ☐A—{from 9; 11 contradicts 12} 
* 14 │ ∴ ☐B—{from 1 and 13} 
* 15 └ WW ∴ B—{from 14} Need S4 or S5 
* 16 ∴ ☐(☐A ⊃ ☐B)—{from 2; 8 contradicts 15} 

10. Valid in B or S5. 

* 11   ◇A 
* 1[ ∴ ◇☐◇A 
* 12 ┌ asm: ∼◇☐◇A 
* 13 │ W ∴ A—{from 1} # ⇒ W 



 

 

* 14 │ ∴  ☐∼☐◇A—{from 2} 
* 15 │ W ∴ ∼☐◇A—{from 4} Any system 
* 16 │ W ∴ ◇∼◇A—{from 5} 
* 17 │ WW ∴ ∼◇A—{from 6} W ⇒ WW 
* 18 │ WW ∴ ☐∼A—{from 7} 
* 19 └ W ∴ ∼A—{from 8} Need B or S5 
* 10 ∴ ◇☐◇A—{from 2; 3 contradicts 9} 

15. Valid in S4 or S5. 

* 11   ☐A 
* 1[ ∴ ☐☐☐A 
* 12 ┌ asm: ∼☐☐☐A 
* 13 │ ∴ ◇∼☐☐A—{from 2} 
* 14 │ W ∴ ∼☐☐A—{from 3} # ⇒ W 
* 15 │ W ∴ ◇∼☐A—{from 4} 
* 16 │ WW ∴ ∼☐A—{from 5} W ⇒ WW 
* 17 │ WW ∴ ◇∼A—{from 6} 
* 18 │ WWW ∴ ∼A—{from 7} WW ⇒ WWW 
* 19 └ WWW ∴ A—{from 1} Need S4 or S5 
* 10 ∴ ☐☐☐A—{from 2; 8 contradicts 9} 

11.1b 

1. Valid in S5. 

* 11   ☐(N ⊃ ☐N) 
* 12   ◇N 
* 1[ ∴ ☐N 
* 13 ┌ asm: ∼☐N 
* 14 │ W ∴ N—{from 2} # ⇒ W 
* 15 │ ∴ ◇∼N—{from 3} 
* 16 │ WW ∴ ∼N—{from 5} # ⇒ WW 
* 17 │ W ∴ (N ⊃ ☐N)—{from 1} Any system 
* 18 │ W ∴ ☐N—{from 4 and 7} 
* 19 └ WW ∴ N—{from 8} Need S5 
* 10 ∴ ☐N—{from 3; 6 contradicts 9} 

3. This side is valid in S5. 

* 11   ☐(N ⊃ ☐N) 
* 1[ ∴ ∼(◇N • ◇∼N) 
* 12 ┌ asm: (◇N • ◇∼N) 
* 13 │ ∴ ◇N—{from 2} 
* 14 │ ∴ ◇∼N—{from 2} 
* 15 │ W ∴ N—{from 3} # ⇒ W 
* 16 │ WW ∴ ∼N—{from 4} # ⇒ WW 
* 17 │ W ∴ (N ⊃ ☐N)—{from 1} Any system 
* 18 │ W ∴ ☐N—{from 5 and 7} 
* 19 └ WW ∴ N—{from 8} Need S5 



 

* 10 ∴ ∼(◇N • ◇∼N)—{from 2; 6 contradicts 9} 

The other side is valid in S4 or S5. 

* 11   ∼(◇N • ◇∼N) 
* 1[ ∴ ☐(N ⊃ ☐N) 
* 12 ┌ asm: ∼☐(N ⊃ ☐N) 
* 13 │ ∴ ◇∼(N ⊃ ☐N)—{from 2} 
* 14 │ W ∴ ∼(N ⊃ ☐N)—{from 3} # ⇒ W 
* 15 │ W ∴ N—{from 4} 
* 16 │ W ∴ ∼☐N—{from 4} 0401 
* 17 │ W ∴ ◇∼N—{from 6} 
* 18 │ WW ∴ ∼N—{from 7} W ⇒ WW 
* 19 │┌ asm: ∼◇N—{break 1} 
* 10 ││ ∴ ☐∼N—{from 9} 
* 11 │└ W ∴ ∼N—{from 10} Any system 
* 12 │ ∴ ◇N—{from 9; 5 contradicts 11} 
* 13 │ ∴ ∼◇∼N—{from 1 and 12} 
* 14 │ ∴ ☐N—{from 13} 
* 15 └ WW ∴ N—{from 14} Need S4 or S5 
* 16 ∴ ☐(N ⊃ ☐N)—{from 2; 8 contradicts 15} 

5. Valid in S4 or S5. 

* 11   ☐T 
* 12   ◇∼L 
* 13   (N ⊃ ☐(☐T ⊃ L)) 
* 1[ ∴ ∼N 
* 14 ┌ asm: N 
* 15 │ W ∴ ∼L—{from 2} # ⇒ W 
* 16 │ ∴ ☐(☐T ⊃ L)—{from 3 and 4} 
* 17 │ W ∴ (☐T ⊃ L)—{from 6} Any system 
* 18 │ W ∴ ∼☐T—{from 5 and 7} 
* 19 │ W ∴ ◇∼T—{from 8} 
* 10 │ WW ∴ ∼T—{from 9} W ⇒ WW 
* 11 └ WW ∴ T—{from 1} Need S4 or S5 
* 12 ∴ ∼N—{from 4; 10 contradicts 11} 

11.2a 
1. (x)◇Ux 
3. ☐Uj 
5. (Ns • ◇∼Ns) 
10. (x)(Nx ⊃ ☐Ax) 
15. ◇(x)(Cx ⊃ Tx) 
20. (∃x)☐Ux 



 

 

11.3a 

1. Valid 

* 1   (∃x)☐Fx 
* [ ∴ ☐(∃x)Fx 
* 2 ┌ asm: ∼☐(∃x)Fx 
* 3 │ ∴ ☐Fa—{from 1} 
* 4 │ ∴ ◇∼(∃x)Fx—{from 2} 
* 5 │ W ∴ ∼(∃x)Fx—{from 4} 
* 6 │ W ∴ (x)∼Fx—{from 5} 
* 7 │ W ∴ Fa—{from 3} 
* 8 └ W ∴ ∼Fa—{from 6} 
* 9 ∴ ☐(∃x)Fx—{from 2; 7 contradicts 8} 

3. Valid 

* [ ∴ ☐(∃x)x=a 
* 1 ┌ asm: ∼☐(∃x)x=a 
* 2 │ ∴ ◇∼(∃x)x=a—{from 1} 
* 3 │ W ∴ ∼(∃x)x=a—{from 2} 
* 4 │ W ∴ (x)∼x=a—{from 3} 
* 5 │ W ∴ ∼a=a—{from 4} 
* 6 └ W ∴ a=a {to contradict 5} 
* 7 ∴ ☐(∃x)x=a—{from 1; 5 contradicts 6} 

5. Valid 

* 1   ◇(x)Fx 
* [ ∴ (x)◇Fx 
* 2 ┌ asm: ∼(x)◇Fx 
* 3 │ W ∴ (x)Fx—{from 1} 
* 4 │ ∴ (∃x)∼◇Fx—{from 2} 
* 5 │ ∴ ∼◇Fa—{from 4} 
* 6 │ ∴ ☐∼Fa—{from 5} 
* 7 │ W ∴ Fa—{from 3} 
* 8 └ W ∴ ∼Fa—{from 6} 
* 9 ∴ (x)◇Fx—{from 2; 7 contradicts 8} 

10. Valid 

* 1   (∃x)◇Fx 
* [ ∴ ◇(∃x)Fx 
* 2 ┌ asm: ∼◇(∃x)Fx 
* 3 │ ∴ ◇Fa—{from 1} 
* 4 │ ∴ ☐∼(∃x)Fx—{from 2} 
* 5 │ W ∴ Fa—{from 3} 
* 6 │ W ∴ ∼(∃x)Fx—{from 4} 
* 7 │ W ∴ (x)∼Fx—{from 6} 
* 8 └ W ∴ ∼Fa—{from 7} 
* 9 ∴ ◇(∃x)Fx—{from 2; 5 contradicts 8} 



 

11.3b 

1. Invalid 

* 11   Bi 
* 1[ ∴ ☐(x)(∼Bx ⊃ ∼x=i) 
* 12   asm: ∼☐(x)(∼Bx ⊃ ∼x=i) 
* 13   ∴ ◇∼(x)(∼Bx ⊃ ∼x=i)—{from 2} 
* 14   W ∴ ∼(x)(∼Bx ⊃ ∼x=i)—{from 3} 
* 15   W ∴ (∃x)∼(∼Bx ⊃ ∼x=i)—{from 4} 
* 16   W ∴ ∼(∼Ba ⊃ ∼a=i)—{from 5} 
* 17   W ∴ ∼Ba—{from 6} 
* 18   W ∴ a=i—{from 6} 
* 19   W ∴ ∼(∼Bi ⊃ ∼i=i)—{from 6 and 8} 
* 10   W ∴ ∼Bi—{from 7 and 8} 

a, i 

 Bi 

W ∼Bi, ∼Ba a=i 

3. Valid 

* 11   ∼a=p 
* 12   (((∃x)☐x=p • ∼(x)☐x=p) ⊃ S) 
* 1[ ∴ S 
* 13 ┌ asm: ∼S 
* 14 │ ∴ ∼((∃x)☐x=p • ∼(x)☐x=p)—{from 2 and 3} 
* 15 │┌ asm: ∼(∃x)☐x=p—{break 4} 
* 16 ││ ∴ (x)∼☐x=p—{from 5} 
* 17 ││ ∴ ∼☐p=p—{from 6} 
* 18 ││ ∴ ◇∼p=p—{from 7} 
* 19 ││ W ∴ ∼p=p—{from 8} 
* 10 │└ W ∴ p=p {to contradict 9} 
* 11 │ ∴ (∃x)☐x=p—{from 5; 9 contradicts 10} 
* 12 │ ∴ (x)☐x=p—{from 4 and 11} 0402 
* 13 │ ∴ ☐a=p—{from 12} 
* 14 └ ∴ a=p—{from 13} 
* 15 ∴ S—{from 3; 1 contradicts 14} 

5. Invalid 

* 11   ☐(∃x)Ux 
* 1[ ∴ (∃x)☐Ux 
* 12   asm: ∼(∃x)☐Ux 
* 13   ∴ (x)∼☐Ux—{from 3} 
* 14   ∴ (∃x)Ux—{from 1} 
* 15   ∴ Ua—{from 4} 
* 16   ∴ ∼☐Ua—{from 3} 
* 17   ∴ ◇∼Ua—{from 6} 
* 18   W ∴ ∼Ua—{from 7} 
* 19   W ∴ (∃x)Ux—{from 1} 



 

 

* 10   W ∴ Ub—{from 1} 

Endless loop: add “∼Ub” to the actual world to make the conclusion false. 

a, b 

 Ua, ∼Ub 

W Ub, ∼Ua 

10. Valid 

* 11   ◇(Ts • ∼Bs) 
* 12   ☐(x)(Tx ⊃ Px) 
* 1[ ∴ ∼☐(x)(Px ⊃ Bx) 
* 13 ┌ asm: ☐(x)(Px ⊃ Bx) 
* 14 │ W ∴ (Ts • ∼Bs)—{from 1} 
* 15 │ W ∴ Ts—{from 4} 
* 16 │ W ∴ ∼Bs—{from 4} 
* 17 │ W ∴ (x)(Tx ⊃ Px)—{from 2} 
* 18 │ W ∴ (x)(Px ⊃ Bx)—{from 3} 
* 19 │ W ∴ (Ts ⊃ Ps)—{from 7} 
* 10 │ W ∴ Ps—{from 5 and 9} 
* 11 │ W ∴ (Ps ⊃ Bs)—{from 8} 
* 12 └ W ∴ ∼Ps—{from 6 and 11} 
* 13 ∴ ∼☐(x)(Px ⊃ Bx)—{from 3; 10 contradicts 12} 

15. Valid (but line 11 requires S5 or B). 

* 11   ◇(∃x)Ux 
* 12   ☐(x)(Ux ⊃ ☐Ox) 
* 1[ ∴ (∃x)Ox 
* 13 ┌ asm: ∼(∃x)Ox 
* 14 │ W ∴ (∃x)Ux—{from 1} 
* 15 │ ∴ (x)∼Ox—{from 3} 
* 16 │ W ∴ Ua—{from 4} 
* 17 │ W ∴ (x)(Ux ⊃ ☐Ox)—{from 2} 
* 18 │ ∴ ∼Oa—{from 5} 
* 19 │ W ∴ (Ua ⊃ ☐Oa)—{from 7} 
* 10 │ W ∴ ☐Oa—{from 6 and 9} 
* 11 └ ∴ Oa—{from 10} 
* 12∴(∃x)Ox—{from 3; 8 contradicts 11} 

Chapter 12 answers 

12.1a 
1. (L ∨ S) 
3. (A ⊃ W) or, equivalently, (∼W ⊃ ∼A) 
5. ∼(A • B) 
10. ((x)Ax ⊃ Au) 



 

15. (B ⊃ ∼A) 
20. (∃x)(Sx • Wx) 

12.2a 

1. Valid 

1   ∼A 
[ ∴ ∼(A • B) 
2 ┌ asm: (A • B) 
3 └ ∴ A—{from 2} 
4 ∴ ∼(A • B)—{from 2; 1 contradicts 3} 

3. Invalid 

* 1   (A ⊃ B) 
* [ ∴ (∼B ⊃ ∼A) 
* 2   asm: ∼(∼B ⊃ ∼A) 
* 3   ∴ ∼B—{from 2} 
* 4   ∴ A—{from 2} 
* 5      asm: ∼A—{break 1} 

∼B, A, ∼A 

5. Valid 

* 11   ∼◇(A • B) 
* 12   ∼(C • ∼A) 
* 1[ ∴ ∼(C • B) 
* 13 ┌ asm: (C • B) 
* 14 │ ∴ ☐∼(A • B)—{from 1} 
* 15 │ ∴ C—{from 3} 
* 16 │ ∴ B—{from 3} 
* 17 │ ∴ A—{from 2 and 5} 
* 18 │ ∴ ∼(A • B)—{from 4} 
* 19 └ ∴ ∼A—{from 6 and 8} 
* 10 ∴ ∼(C • B)—{from 3; 7 contradicts 9} 

10. Valid 

* 1   ∼(A • ∼B) 
* [ ∴ (∼A ∨ B) 
* 2 ┌ asm: ∼(∼A ∨ B) 
* 3 │ ∴ A—{from 2} 
* 4 │ ∴ ∼B—{from 2} 
* 5 └ ∴ B—{from 1 and 3} 
* 6 ∴ (∼A ∨ B)—{from 2; 4 contradicts 5} 

12.2b 

1. Valid 

* 1   (C ∨ E) 



 

 

* 2   V 
* 3   (V ⊃ ∼C) 
* [ ∴ E 
* 4 ┌ asm: ∼E 
* 5 │ ∴ C—{from 1 and 4} 
* 6 └ ∴ ∼C—{from 2 and 3} 
* 7 ∴ E—{from 4; 5 contradicts 6} 

3. Valid 

* 1   (G ⊃ ∼E) 0403 
* 2   G 
* [ ∴ ∼E 
* 3 ┌ asm: E 
* 4 └ ∴ ∼E—{from 1 and 2} 
* 5 ∴ ∼E—{from 3; 3 contradicts 4} 

5. Valid 

* 1   (B ⊃ C) 
* 2   B 
* [ ∴ C 
* 3 ┌ asm: ∼C 
* 4 └ ∴ C—{from 1 and 2} 
* 5 ∴ C—{from 3; 3 contradicts 4} 

10. Valid 

* 1   w=l 
* [ ∴ (Guw ∨ ∼Gul) 
* 2 ┌ asm: ∼(Guw ∨ ∼Gul) 
* 3 │ ∴ ∼Guw—{from 2} 
* 4 │ ∴ ∼Gul—{from 1 and 3} 
* 5 └ ∴ Gul—{from 2} 
* 6 ∴ (Guw ∨ ∼Gul)—{from 2; 4 contradicts 5} 

15. Invalid 

1   (T ⊃ M) 
2   T 
[ ∴ M 
3   asm: ∼M 
4      asm: ∼T—{break 1} 

T, ∼M, ∼T 

20. Invalid 

* 1   (x)(Hx ⊃ Ex) 
* [ ∴ (x)(∼Ex ⊃ ∼Hx) 
* 2   asm: ∼(x)(∼Ex ⊃ ∼Hx) 
* 3   ∴ (∃x)∼(∼Ex ⊃ ∼Hx)—{from 2} 
* 4   ∴ ∼(∼Ea ⊃ ∼Ha)—{from 3} 
* 5   ∴ ∼Ea—{from 4} 
* 6   ∴ Ha—{from 4} 



 

* 7   ∴ (Ha ⊃ Ea)—{from 1} 
* 8      asm: ∼Ha—{break 7} 

a 

∼Ea, Ha, ∼Ha 

12.3a 
1. (A ⊃ O∼B) 
3. (O∼A ⊃ ∼A) 
5. ☐(A ⊃ RA) 
10. O∼(B • ∼A) 
15. (∼◇(x)Ax ⊃ O∼Au) 
20. R(x)(∼Tx ⊃ Sx) 

12.4a 

1. Valid 

* 1   O∼A 
* [ ∴ O∼(A • B) 
* 2 ┌ asm: ∼O∼(A • B) 
* 3 │ ∴ R(A • B)—{from 2} 
* 4 │ D ∴ (A • B)—{from 3} 
* 5 │ D ∴ A—{from 4} 
* 6 │ D ∴ B—{from 4} 
* 7 └ D ∴ ∼A—{from 1} 
* 8 ∴ O∼(A • B)—{from 2; 5 contradicts 7} 

3. Valid 

* 1   b=c 
* [ ∴ (OFab ⊃ OFac) 
* 2 ┌ asm: ∼(OFab ⊃ OFac) 
* 3 │ ∴ OFab—{from 2} 
* 4 │ ∴ ∼OFac—{from 2} 
* 5 └ ∴ OFac—{from 1 and 3} 
* 6 ∴ (OFab ⊃ OFac)—{from 2; 4 contradicts 5} 

5. Invalid 

* [ ∴ O(A ⊃ OA) 
* 1   asm: ∼O(A ⊃ OA) 
* 2   ∴ R∼(A ⊃ OA)—{from 1} 
* 3   D ∴ ∼(A ⊃ OA)—{from 2} 
* 4   D ∴ A—{from 3} 
* 5   D ∴ ∼OA—{from 3} 
* 6   D ∴ R∼A—{from 5} 
* 7   DD ∴ ∼A—{from 6} 

10. Valid 

* 1   (A ⊃ OB) 



 

 

* [ ∴ O(A ⊃ B) 
* 2 ┌ asm: ∼O(A ⊃ B) 
* 3 │ ∴ R∼(A ⊃ B)—{from 2} 
* 4 │ D ∴ ∼(A ⊃ B)—{from 3} 
* 5 │ D ∴ A—{from 4} 
* 6 │ D ∴ ∼B—{from 4} 
* 7 │ ∴ A—{from 5 by indicative transfer} 
* 8 │ ∴ OB—{from 1 and 7} 
* 9 └ D ∴ B—{from 8} 
10 ∴ O(A ⊃ B)—{from 2; 6 contradicts 9} 

15. Valid 

* 11   OA 
* 12   OB 
* 1[ ∴ ◇(A • B) 
* 13 ┌ asm: ∼◇(A • B) 
* 14 │┌ asm: O(A • B)—{assume to get opposite using 3 and Kant’s Law} 
* 15 │└ ◇(A • B)—{from 4 using Kant’s Law} 
* 16 │ ∴ ∼O(A • B)—{from 4; 3 contradicts 5} 
* 17 │ ∴ R∼(A • B)—{from 6} 
* 18 │ D ∴ ∼(A • B)—{from 7} 
* 19 │ D ∴ A—{from 1} 
* 10 │ D ∴ B—{from 2} 
* 11 └ D ∴ ∼B—{from 8 and 9} 
* 12 ∴ ◇(A • B)—{from 3; 10 contradicts 11} 

20. Invalid 

* 11   O(x)(Fx ⊃ Gx) 0404 
* 12   OFa 
* 1[ ∴ OGa 
* 13   asm: ∼OGa 
* 14   ∴ R∼Ga—{from 3} 
* 15   D ∴ ∼Ga—{from 4} 
* 16   D ∴ (x)(Fx ⊃ Gx)—{from 1} 
* 17   D ∴ Fa—{from 2} 
* 18   D ∴ (Fa ⊃ Ga)—{from 6} 
* 19   D ∴ ∼Fa—{from 5 and 8} 
* 10   ∴ ∼Fa—{from 9 by indicative transfer} 

25. Valid 

* 1   (A ∨ OB) 
* 2   ∼A 
* [ ∴ OB 
* 3 ┌ asm: ∼OB 
* 4 └ ∴ OB—{from 1 and 2} 
* 5 ∴ OB—{from 3; 3 contradicts 4} 



 

12.4b 

1. Valid 

* 1   ∼R(T • D) 
* 2   OD 
* [ ∴ ∼T 
* 3 ┌ asm: T 
* 4 │ ∴ O∼(T • D)—{from 1} 
* 5 │ ∴ D—{from 2} 
* 6 │ ∴ ∼(T • D)—{from 4} 
* 7 └ ∴ ∼D—{from 3 and 6} 
* 8 ∴ ∼T—{from 3; 5 contradicts 7} 

3. Valid 

* 1   A 
* 2   O∼A 
* 3   ((A • ◇∼A) ⊃ F) 
* [ ∴ F 
* 4 ┌ asm: ∼F 
* 5 │ ∴ ∼(A • ◇∼A)—{from 3 and 4} 
* 6 │ ∴ ∼◇∼A—{from 1 and 5} 
* 7 └ ∴ ◇∼A—{from 2 by Kant’s Law} 
* 8 ∴ F—{from 4; 6 contradicts 7} 

5. Invalid 

* [ ∴ (OA ⊃ A) 
* 1   asm: ∼(OA ⊃ A) 
* 2   ∴ OA—{from 1} 
* 3   ∴ ∼A—{from 1} 
* 4   ∴ A—{from 2} 

10. Invalid 

* 1   R(∃x)Ax 
* [ ∴ (x)RAx 
* 2   asm: ∼(x)RAx 
* 3   D ∴ (∃x)Ax—{from 1} 
* 4   ∴ (∃x)∼RAx—{from 2} 
* 5   D ∴ Aa—{from 3} 
* 6   ∴ ∼RAb—{from 4} 
* 7   ∴ O∼Ab—{from 6} 
* 8   D ∴ ∼Ab—{from 7} 

15. Valid 

* 11   (O∼K ⊃ O∼I) 
* 12   (RN ⊃ RI) 
* 1[ ∴ (O∼K ⊃ O∼N) 
* 13 ┌ asm: ∼(O∼K ⊃ O∼N) 
* 14 │ ∴ O∼K—{from 3} 
* 15 │ ∴ ∼O∼N—{from 3} 



 

 

* 16 │ ∴  RN—{from 5} 
* 17 │ ∴ O∼I—{from 1 and 4} 
* 18 │ ∴ RI—{from 2 and 6} 
* 19 │ DD ∴ I—{from 8} 
* 10 └ DD ∴ ∼I—{from 7} 
* 11 ∴ (O∼K ⊃ O∼N)—{from 3; 9 contradicts 10} 

20. Valid 

* 11   N 
* 12   ☐(B ⊃ D) 
* 13   ☐(D ⊃ (N ⊃ S)) 
* 1[ ∴ O(S ∨ ∼B) 
* 14 ┌ asm: ∼O(S ∨ ∼B) 
* 15 │ ∴ R∼(S ∨ ∼B)—{from 4} 
* 16 │ D ∴ ∼(S ∨ ∼B)—{from 5} 
* 17 │ D ∴ ∼S—{from 6} 
* 18 │ D ∴ B—{from 6} 
* 19 │ D ∴ (B ⊃ D)—{from 2} 
* 10 │ D ∴ D—{from 8 and 9} 
* 11 │ D ∴ (D ⊃ (N ⊃ S))—{from 3} 
* 12 │ D ∴ (N ⊃ S)—{from 10 and 11} 
* 13 │ D ∴ ∼N—{from 7 and 12} 
* 14 └ ∴ ∼N—{from 13 by indicative transfer} 
* 15 ∴ O(S ∨ ∼B)—{from 4; 1 contradicts 14} 

25. Valid 

* 11   (RP ⊃ OS) 
* 12   ∼◇S 
* 1[ ∴ O∼P 
* 13 ┌ asm: ∼O∼P 
* 14 │ ∴ ☐∼S—{from 2} 
* 15 │ ∴ RP—{from 3} 
* 16 │ ∴ OS—{from 1 and 5} 
* 17 │ ∴ ◇S—{from 6 by Kant’s Law} 
* 18 │ W ∴ S—{from 7} 
* 19 └ W ∴ ∼S—{from 4} 
* 10 ∴ O∼P—{from 3; 8 contradicts 9} 

Chapter 13 answers 

13.1a 
1. u:∼G 
3. ∼u:G 
5. ☐(u:G ⊃ ∼u:∼G) 
10. ∼(u:A • u:∼A) 0405 



 

13.2a 

1. Valid 

* 11   ∼◇(A • B) 
* 1[ ∴ ∼(u:A • u:B) 
* 12 ┌ asm: (u:A • u:B) 
* 13 │ ∴ ☐∼(A • B)—{from 1} 
* 14 │ ∴ u:A—{from 2} 
* 15 │ ∴ u:B—{from 2} 
* 16 │ u ∴ A—{from 4} 
* 17 │ u ∴ ∼(A • B)—{from 3} 
* 18 │ u ∴ ∼B—{from 6 and 7} 
* 19 └ u ∴ B—{from 5} 
* 10 ∴ ∼(u:A • u:B)—{from 2; 8 contradicts 9} 

3. Invalid 

* 1   ∼◇(A • B) 
* [ ∴ (u:A ⊃ ∼u:B) 
* 2   asm: ∼(u:A ⊃ ∼u:B) 
* 3   ∴ ☐∼(A • B)—{from 1} 
* 4   ∴ u:A—{from 2} 
* 5   ∴ u:B—{from 2} 
* 6   u ∴ B—{from 5} 
* 7   u ∴ ∼(A • B)—{from 3} 
* 8   u ∴ ∼A—{from 6 and 7} 

5. Invalid 

* 11   ∼◇(A • B) 
* 1[ ∴ (u:∼A ∨ u:∼B) 
* 12   asm: ∼(u:∼A ∨ u:∼B) 
* 13   ∴ ☐∼(A • B)—{from 1} 
* 14   ∴ ∼u:∼A—{from 2} 
* 15   ∴ ∼u:∼B—{from 2} 
* 16   u ∴ A—{from 4} 
* 17   uu ∴ B—{from 5} 
* 18   u ∴ ∼(A • B)—{from 3} 
* 19   u ∴ ∼B—{from 6 and 8} 
* 10   uu ∴ ∼(A • B)—{from 3} 
* 11   uu ∴ ∼A—{from 7 and 10} 

10. Valid 

* 11   ∼◇(A • B) 
* 1[ ∴ ∼(u:A • ∼u:∼B) 
* 12 ┌ asm: (u:A • ∼u:∼B) 
* 13 │ ∴ ☐∼(A • B)—{from 1} 
* 14 │ ∴ u:A—{from 2} 
* 15 │ ∴ ∼u:∼B—{from 2} 
* 16 │ u ∴ B—{from 5} 
* 17 │ u ∴ ∼(A • B)—{from 3} 
* 18 │ u ∴ ∼A—{from 6 and 7} 



 

 

* q9 └ u ∴ A—{from 4} 
* 10 ∴ ∼(u:A • ∼u:∼B)—{from 2; 8 contradicts 9} 

13.2b 

1. Valid 

* 1   ☐(A ⊃ B) 
* 2   ∼u:B 
* [ ∴ ∼u:A 
* 3 ┌ asm: u:A 
* 4 │ u ∴ ∼B—{from 2} 
* 5 │ u ∴ (A ⊃ B)—{from 1} 
* 6 │ u ∴ ∼A—{from 4 and 5} 
* 7 └ u ∴ A—{from 3} 
* 8 ∴ ∼u:A—{from 3; 6 contradicts 7} 

3. Invalid 

1   u:A 
[ ∴ ∼u:∼A 
2   asm: u:∼A 
3   u ∴ ∼A—{from 2} 

5. Invalid 

* [ ∴ (u:A ∨ u:∼A) 
* 1   asm: ∼(u:A ∨ u:∼A) 
* 2   ∴ ∼u:A—{from 1} 
* 3   ∴ ∼u:∼A—{from 1} 
* 4   u ∴ ∼A—{from 2} 
* 5   uu ∴ A—{from 3} 

10. Invalid 

* [ ∴ (A ⊃ u:A) 
* 1   asm: ∼(A ⊃ u:A) 
* 2   ∴ A—{from 1} 
* 3   ∴ ∼u:A—{from 1} 
* 4   u ∴ ∼A—{from 3} 

13.3a 
1. u:Sa 
3. u:OSa 
5. u:Sa 
10. (u:OAu ⊃ Au) 
15. (u:Axu ⊃ Aux) 



 

13.4a 

1. Valid 

* [ ∴ ∼(u:A • u:∼A) 
* 1 ┌ asm: (u:A • u:∼A) 
* 2 │ ∴ u:A—{from 1} 
* 3 │ ∴ u:∼A—{from 1} 
* 4 │ u ∴ A—{from 2} 
* 5 └ u ∴ ∼A—{from 3} 
* 6 ∴ ∼(u:A • u:∼A)—{from 1; 4 contradicts 5} 0406 

3. Invalid 

* [ ∴ (u:Ba ∨ u:∼Ba) 
* 1   asm: ∼(u:Ba ∨ u:∼Ba) 
* 2   ∴ ∼u:Ba—{from 1} 
* 3   ∴ ∼u:∼Ba—{from 1} 
* 4   u ∴ ∼Ba—{from 2} 
* 5   uu ∴ Ba—{from 3} 

5. Invalid 

* 1   u:(x)OAx 
* [ ∴ u:Au 
* 2   asm: ∼u:Au 
* 3   u ∴ ∼Au—{from 2} 

10. Valid 

* 11   ☐(A ⊃ B) 
* 1[ ∴ ∼(u:OA • ∼u:B) 
* 12 ┌ asm: (u:OA • ∼u:B) 
* 13 │ ∴ u:OA—{from 2} 
* 14 │ ∴ ∼u:B—{from 2} 
* 15 │ u ∴ ∼B—{from 4} 
* 16 │ u ∴ (A ⊃ B)—{from 1} 
* 17 │ u ∴ ∼A—{from 5 and 6} 
* 18 │ u ∴ OA—{from 3} 
* 19 └ u ∴ A—{from 8} 
* 10 ∴ ∼(u:OA • ∼u:B)—{from 2; 7 contradicts 9} 

13.4b 

1. Valid 

* [ ∴ ∼(u:(x)OAx • ∼u:Au) 
* 1 ┌ asm: (u:(x)OAx • ∼u:Au) 
* 2 │ ∴ u:(x)OAx—{from 1} 
* 3 │ ∴ ∼u:Au—{from 1} 
* 4 │ u ∴ ∼Au—{from 3} 
* 5 │ u ∴ (x)OAx—{from 2} 
* 6 │ u ∴ OAu—{from 5} 
* 7 └ u ∴ Au—{from 6} 



 

 

* 8 ∴ ∼(u:(x)OAx • ∼u:Au)—{from 1; 4 contradicts 7} 

3. Valid 

* 11   ☐(E ⊃ (N ⊃ M)) 
* 1[ ∴ ∼((u:E • u:N) • ∼u:M) 
* 12 ┌ asm: ((u:E • u:N) • ∼u:M) 
* 13 │ ∴ (u:E • u:N)—{from 2} 
* 14 │ ∴ ∼u:M—{from 2} 
* 15 │ ∴ u:E—{from 3} 
* 16 │ ∴ u:N—{from 3} 
* 17 │ u ∴ ∼M—{from 4} 
* 18 │ u ∴ (E ⊃ (N ⊃ M))—{from 1} 
* 19 │ u ∴ E—{from 5} 
* 10 │ u ∴ (N ⊃ M)—{from 8 and 9} 
* 11 │ u ∴ ∼N—{from 7 and 10} 
* 12 └ u ∴ N—{from 6} 
* 13 ∴ ∼((u:E • u:N) • ∼u:M)—{from 2; 11 contradicts 12} 

5. Valid 

* 1[ ∴ ∼(u:(x)O∼Kx • ∼u:(N ⊃ ∼Ku)) 
* 11 ┌ asm: (u:(x)O∼Kx • ∼u:(N ⊃ ∼Ku)) 
* 12 │ ∴ u:(x)O∼Kx—{from 1} 
* 13 │ ∴ ∼u:(N ⊃ ∼Ku)—{from 1} 
* 14 │ u ∴ ∼(N ⊃ ∼Ku)—{from 3} 
* 15 │ u ∴ N—{from 4} 
* 16 │ u ∴ Ku—{from 4} 
* 17 │ u ∴ (x)O∼Kx—{from 2} 
* 18 │ u ∴ O∼Ku—{from 7} 
* 19 └ u ∴ ∼Ku—{from 8} 
* 10 ∴ ∼(u:(x)O∼Kx • ∼u:(N ⊃ ∼Ku))—{from 1; 6 contradicts 9} 

10. Invalid 

* [ ∴ (u:Au ⊃ u:RAu) 
* 1   asm: ∼(u:Au ⊃ u:RAu) 
* 2   ∴ u:Au—{from 1} 
* 3   ∴ ∼u:RAu—{from 1} 
* 4   u ∴ ∼RAu—{from 3} 
* 5   u ∴ O∼Au—{from 4} 

13.5a 
1. Ou:Sa 
3. Ru:OSa 
5. (x)∼Rx:G 
10. (Ou:x=x • (x=x • u:x=x)) 
15. (Ou:A ≡ ∼◇(u:A • ∼A)) 
20. (u:Axu ⊃ OAux) 
25. ((∼Du • Ou:Bj) ⊃ Ou:Fj) 



 

13.6a 

1. Valid 

* 11   ☐(A ⊃ B) 
* 12   ∼Ru:B 
* 1[ ∴ ∼Ru:A 
* 13 ┌ asm: Ru:A 
* 14 │ ∴ O∼u:B—{from 2} 
* 15 │ D ∴ u:A—{from 3} 
* 16 │ D ∴ ∼u:B—{from 4} 
* 17 │ Du ∴ ∼B—{from 6} 
* 18 │ Du ∴ (A ⊃ B)—{from 1} 
* 19 │ Du ∴ ∼A—{from 7 and 8} 
* 10 └ Du ∴ A—{from 5} 
* 11 ∴ ∼Ru:A—{from 3; 9 contradicts 10} 

3. Valid 

* 1   R(∼u:A • ∼u:∼A) 
* [ ∴ ∼Ou:A 
* 2 ┌ asm: Ou:A 
* 3 │ D ∴ (∼u:A • ∼u:∼A)—{from 1} 
* 4 │ D ∴ u:A—{from 2} 0407 
* 5 └ D ∴ ∼u:A—{from 3} 
* 6 ∴ ∼Ou:A—{from 2; 4 contradicts 5} 

5. Invalid 

* 1   Oa:(C • D) 
* [ ∴ Ob:C 
* 2   asm: ∼Ob:C 
* 3   ∴ R∼b:C—{from 2} 
* 4   D ∴ ∼b:C—{from 3} 
* 5   Db ∴ ∼C—{from 4} 
* 6   D ∴ a:(C • D)—{from 1} 
* 7   Da ∴ (C • D)—{from 6} 
* 8   Da ∴ C—{from 7} 
* 9   Da ∴ D—{from 7} 

10. Valid 

* 11   Ou:(A ⊃ OBu) 
* 1[ ∴ ∼(u:A • ∼u:Bu) 
* 12 ┌ asm: (u:A • ∼u:Bu) 
* 13 │ ∴ u:A—{from 2} 
* 14 │ ∴ ∼u:Bu—{from 2} 
* 15 │ u ∴ ∼Bu—{from 4} 
* 16 │ ∴ u:(A ⊃ OBu)—{from 1} 
* 17 │ u ∴ A—{from 3} 
* 18 │ u ∴ (A ⊃ OBu)—{from 6} 
* 19 │ u ∴ OBu—{from 7 and 8} 
* 10 └ u ∴ Bu—{from 9} 
* 11 ∴ ∼(u:A • ∼u:Bu)—{from 2; 5 contradicts 10} 



 

 

13.6b 

1. Valid 

* 1   Ou:G 
* [ ∴ ∼Ru:∼G 
* 2 ┌ asm: Ru:∼G 
* 3 │ D ∴ u:∼G—{from 2} 
* 4 │ D ∴ u:G—{from 1} 
* 5 │ Du ∴ ∼G—{from 3} 
* 6 └ Du ∴ G—{from 4} 
* 7 ∴ ∼Ru:∼G—{from 2; 5 contradicts 6} 

3. Valid 

* [ ∴ O∼(u:OAu • ∼u:Au) 
* 1 ┌ asm: ∼O∼(u:OAu • ∼u:Au) 
* 2 │ ∴ R(u:OAu • ∼u:Au)—{from 1} 
* 3 │ D ∴ (u:OAu • ∼u:Au)—{from 2} 
* 4 │ D ∴ u:OAu—{from 3} 
* 5 │ D ∴ ∼u:Au—{from 3} 
* 6 │ Du ∴ ∼Au—{from 5} 
* 7 │ Du ∴ OAu—{from 4} 
* 8 └ Du ∴ Au—{from 7} 
* 9 ∴ O∼(u:OAu • ∼u:Au)—{from 1; 6 contradicts 8} 

5. Valid 

* 11   ☐(E ⊃ C) 
* 12   Ou:E 
* 1[ ∴ Ou:C 
* 13 ┌ asm: ∼Ou:C 
* 14 │ ∴ R∼u:C—{from 3} 
* 15 │ D ∴ ∼u:C—{from 4} 
* 16 │ Du ∴ ∼C—{from 5} 
* 17 │ Du ∴ (E ⊃ C)—{from 1} 
* 18 │ Du ∴ ∼E—{from 6 and 7} 
* 19 │ D ∴ u:E—{from 2} 
* 10 └ Du ∴ E—{from 9} 
* 11 ∴ ∼Ou:E—{from 3; 8 contradicts 10} 

10. Valid 

* 11   a:F 
* 12   Oa:F 
* 13   ∼F 
* 14   C 
* 15   a:(F ∨ C) 
* 16   ∼K 
* 1[ ∴ (((Oa:(F ∨ C) • (F ∨ C)) • a:(F ∨ C)) • ∼K) 
* 17 ┌ asm: ∼(((Oa:(F ∨ C) • (F ∨ C)) • a:(F ∨ C)) • ∼K) 
* 18 │ ∴ ∼((Oa:(F ∨ C) • (F ∨ C)) • a:(F ∨ C))—{from 6 and 7} 
* 19 │ ∴ ∼(Oa:(F ∨ C) • (F ∨ C))—{from 5 and 8} 
* 10 │┌ asm: ∼(F ∨ C)—{break 9} 
* 11 │└ ∴ ∼C—{from 10} 
* 12 │ ∴ (F ∨ C)—{from 10; 4 contradicts 11} 



 

* 13 │ ∴ ∼Oa:(F ∨ C)—{from 9 and 12} 
* 14 │ ∴ R∼a:(F ∨ C)—{from 13} 
* 15 │ D ∴ ∼a:(F ∨ C)—{from 14} 
* 16 │ D ∴ a:F—{from 2} 
* 17 │ Du ∴ ∼(F ∨ C)—{from 15} 
* 18 │ Du ∴ F—{from 16} 
* 19 └ Du ∴ ∼F—{from 17} 
* 20 ∴ (((Oa:(F ∨ C) • (F ∨ C)) • a:(F ∨ C)) • ∼K)—{from 7; 18 contradicts 19} 

15. Valid 

* 11   Ou:(M ⊃ F) 
* 1[ ∴ ∼(u:M • ∼u:F) 
* 12 ┌ asm: (u:M • ∼u:F) 
* 13 │ ∴ u:M—{from 2} 
* 14 │ ∴ ∼u:F—{from 2} 
* 15 │ u ∴ ∼F—{from 4} 
* 16 │ ∴ u:(M ⊃ F)—{from 1} 
* 17 │ u ∴ M—{from 3} 
* 18 │ u ∴ (M ⊃ F)—{from 6} 
* 19 └ u ∴ ∼M—{from 5 and 8} 
* 10 ∴ ∼(u:M • ∼u:F)—{from 2; 7 contradicts 9} 0408 

20. Invalid 

* *1   O∼(u:A • ∼u:B) 
* *[ ∴ (u:A ⊃ u:B) 
* *2   asm: ∼(u:A ⊃ u:B) 
* *3   ∴ u:A—{from 2} 
* *4   ∴ ∼u:B—{from 2} 
* *5   ∴ ∼(u:A • ∼u:B)—{from 1} 
** 6   asm: ∼u:A—{break 5} 
* *7   u ∴ ∼A—{from 6} 

25. Valid 

* 11   Ou:(P ⊃ OAu) 
* 12   Ou:P 
* 1[ ∴ u:Au 
* 13 ┌ asm: ∼u:Au 
* 14 │ u ∴ ∼Au—{from 3} 
* 15 │ ∴ u:(P ⊃ OAu)—{from 1} 
* 16 │ ∴ u:P—{from 2} 
* 17 │ u ∴ (P ⊃ OAu)—{from 5} 
* 18 │ u ∴ P—{from 6} 
* 19 │ u ∴ OAu—{from 7 and 8} 
* 10 └ u ∴ Au—{from 9} 
* 11 ∴ u:Au—{from 3; 4 contradicts 10} 

30. Invalid 

* 11   (x)Rx:A 
* 1[ ∴ R(x)x:A 
* 12   asm: ∼R(x)x:A 
* 13   ∴ O∼(x)x:A—{from 2} 
* 14   ∴ Ra:A—{from 1} 



 

 

* 15   D ∴ a:A—{from 4} 
* 16   D ∴ ∼(x)x:A—{from 3} 
* 17   D ∴ (∃x)∼x:A—{from 6} 
* 18   D ∴ ∼b:A—{from 7} 
* 19   Db ∴ ∼A—{from 8} 
* 10   ∴ Rb:A—{from 1} 
* 11   DD ∴ b:A—{from 10} 

Endless loop: add “∼a:A” to world DD to make the conclusion false. (You weren’t required 
to give a refutation.) 

a, b 

D a:A, ∼b:A 

DD b:A, ∼a:A 

Chapter 14 answers 

14.6 

Impartiality formula – valid. (See footnote at the end of Chapter 14.) 

* [ ∴ ∼(u:RA • ∼u:(∃F)(FA • █(X)(FX ⊃ RX))) 
* 1 ┌ asm: (u:RA • ∼u:(∃F)(FA • █(X)(FX ⊃ RX))) 
* 2 │ ∴ u:RA—{from 1} 
* 3 │ ∴ ∼u:(∃F)(FA • █(X)(FX ⊃ RX))—{from 1} 
* 4 │ u ∴ ∼(∃F)(FA • █(X)(FX ⊃ RX))—{from 3} 
* 5 │ u ∴ RA—{from 2} 
* 6 └ u ∴ (∃F)(FA • █(X)(FX ⊃ RX))—{from 5 by G5} 
* 7 ∴ ∼(u:RA • ∼u:(∃F)(FA • █(X)(FX ⊃ RX)))—{from 1; 4 contradicts 6} 

Formula of universal law – valid. (See footnote at the end of Chapter 14.) 

* 1[ ∴ ∼(u:Au • ∼u:(∃F)(F*Au • █(X)(FX ⊃ MX))) 
* 11 ┌ asm: (u:Au • ∼u:(∃F)(F*Au • █(X)(FX ⊃ MX))) 
* 12 │ ∴ u:Au—{from 1} 
* 13 │ ∴ ∼u:(∃F)(F*Au • █(X)(FX ⊃ MX))—{from 1} 
* 14 │ u ∴ ∼(∃F)(F*Au • █(X)(FX ⊃ MX))—{from 3} 
* 15 │ u ∴ Au—{from 2} 
* 16 │┌ u asm: ∼RAu 
* 17 ││ u ∴ O∼Au {from 6} 
* 18 │└ u ∴ ∼Au—{from 7} 
* 19 │ u ∴ RAu—{from 6; 5 contradicts 8} 
* 10 │ u ∴ (∃F)(FAu • █(X)(FX ⊃ RX))—{from 9 by G5} 
* 11 │ u ∴ (GAu • █(X)(GX ⊃ RX)) │{from 10} 
* 12 │ u ∴ GAu {from 11} 
* 13 │ u ∴ █(X)(GX ⊃ RX) {from 11} 
* 14 │ u ∴ (X)(∃F)F*X {rule G11} 
* 15 │ u ∴ (∃F)F*Au {from 14} 
* 16 │ u ∴ H*Au {from 15} 
* 17 │ u ∴ (HAu • (F)(FAu ⊃ ☐(X)(HX ⊃ FX))) {from 16 by G10} 
* 18 │ u ∴ HAu {from 17} 
* 19 │ u ∴ (F)(FAu ⊃ ☐(X)(HX ⊃ FX)) {from 17} 
* 20 │ u ∴ (GAu ⊃ ☐(X)(HX ⊃ GX)) {from 19} 
* 21 │ u ∴ ☐(X)(HX ⊃ GX) {from 12 and 20} 



 

* 22 │ u ∴ (F)∼(F*Au • █(X)(FX ⊃ MX)) {from 4} 
* 23 │ u ∴ ∼(H*Au • █(X)(HX ⊃ MX)) {fm 22} 
* 24 │ u ∴ ∼█(X)(HX ⊃ MX) {fm 16 & 23} 
* 25 │ uH ∴ ∼(X)(HX ⊃ MX) {fm 24 by G8} 
* 26 │ uH ∴ (∃X)∼(HX ⊃ MX) {from 25} 
* 27 │ uH ∴ ∼(HB ⊃ MB) {from 26} 
* 28 │ uH ∴ HB {from 27} 
* 29 │ uH ∴ ∼MB {from 27} 
* 30 │ uH ∴ (X)(HX ⊃ GX) {from 21} 
* 31 │ uH ∴ (HB ⊃ GB) {from 30} 
* 32 │ uH ∴ GB {from 28 and 31} 
* 33 │ uH ∴ (X)(GX ⊃ RX) {from 13 by G7} 
* 34 │ uH ∴ (GB ⊃ RB) {from 33} 
* 35 │ uH ∴ RB {from 32 and 34} 
* 36 └ uH ∴ MB {from 35 by G1} 
* 37 ∴ ∼(u:Au • ∼u:(∃F)(F*Au • █(X)(FX ⊃ MX))) {from 1; 29 contradicts 36} 
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