function [lambda,V,k]=invpowerm(A,X,alpha,epsilon,max1) %Input - A is an nxn matrix % - X is the nx1 starting vector % - alpha is the given shift % - epsilon is the tolerance % - max1 is the maximum number of iterations %Output - lambda is the dominant eigenvalue % - V is the dominant eigenvector % - k is the number of iteration % NUMERICAL METHODS: Matlab Programs % (c) 2007 by Xie Liling % Complementary Software to accompany the textbook: % Information and Computing Science: A Laboratory Course %Initialize the matrix A-alpha*I and parameters [n n]=size(A); A=A-alpha*eye(n); lambda(1)=0; err=1; k=1; while ((k<=max1)&(err>epsilon)) %Solve system AY=X Y=A\X; %Normalize Y m=max(abs(Y)); dc=abs(lambda-m); Y=(1/m)*Y; %Update X and lambda and check for convergence dv=norm(X-Y); err=max(dc,dv); X=Y; k=k+1; lambda(k)=m; end k=k-1; lambda(end)=alpha+1/m; V=X;