function [X,k1]=gseid(A,B,P,delta, max1) % Input - A is an N x N nonsingular matrix % - B is an N x 1 matrix % - P is an N x 1 matrix; the initial guess % - delta is the tolerance for P % - max1 is the maximum number of iterations % Output - X is an N x 1 matrix: the gauss-seidel approximation to % the solution of AX = B % NUMERICAL METHODS: Matlab Programs % (c) 2004 by John H. Mathews and Kurtis D. Fink % Complementary Software to accompany the textbook: % NUMERICAL METHODS: Using Matlab, Fourth Edition % ISBN: 0-13-065248-2 % Prentice-Hall Pub. Inc. % One Lake Street % Upper Saddle River, NJ 07458 N = length(B); for k=1:max1 for j=1:N if j==1 X(1)=(B(1)-A(1,2:N)*P(2:N))/A(1,1); elseif j==N X(N)=(B(N)-A(N,1:N-1)*(X(1:N-1))')/A(N,N); else %X contains the kth approximations and P the (k-1)st X(j)=(B(j)-A(j,1:j-1)*X(1:j-1)'-A(j,j+1:N)*P(j+1:N))/A(j,j); end end err=abs(norm(X'-P)); relerr=err/(norm(X)+eps); %err=abs(norm(A*X'-B)); %relerr=err/(norm(X)+eps); P=X' if (err