物电学院"为了明天"模拟课堂

《电容器》 教学设计

选用教材:人教版选修 3-1 第一章第八节

授课对象: 高二学生

参赛选手: 冯雯殷

选手专业: 物理学 (师范)

【课题】电容器

【教材】人教版物理选修 3-1 第一章第八节

【教学时间】15分钟

【教学对象】高中二年级学生

【教学内容分析】

1. 课程标准的要求

电容器是一种重要的电学元件,有着广泛的应用。学生已经学习了研究电容器需要 涉及的电势差,电场强度,电荷量等物理量。所以,本节教学的核心是应用静电场有关的知识研究电容器,对电容器这一个电子元件有基础的认知,认识它的作用结构和工作 过程。同时也对生活中常见的电容器有所了解。如何培养学生应用所学知识解决新问题的能力,在这里应该有所体现。

2. 教材的地位与作用

高中物理选修 3-1 第一章第八节《电容器的电容》主要是介绍电学元件的一节内容。 电容器可以储存电荷,从而在两极板之间产生静电场。本节内容是对静电场基本内容的 灵活运用。教材把本节内容放在电场强度、电势、电势差等概念之后,既有助于学生对 电容器的电容有更加深入的认识,又能帮助学生巩固之前所学的知识。此外,通过本节 课,可以为学生下节课探究的电容器储存电荷的性能,电容的概念提供知识基础。

3. 教学的内容与安排

电容器是一种重要的电学元件,有着广泛的应用。但对于电容器的概念、结构和用途,学生其实并不了解。对于它在现实中的应用也不太了解。因此在本节的教学中,需要借助实物展示,让学生了解电容器的结构,包括两块极板以及极板间的介质。同时要认识生活中常见的电容器,认识其外形和两个极板。体会物理知识与生活的联系。

结合实验和多媒体课件展示电容器的主要工作方式一充放电过程,在感性认知电容器充放电过程之外,结合静电场相关知识对充放电过程进行解释讲解。并且明确①电容器能储存电荷的原因②电容器带电量是指一块极板带电量的绝对值③充放电的能量转化④充电放电过程的电流方向相反。介绍电容器在日常生活中的应用,如照相机闪光灯以及电容汽车。将课本内容联系生活,传递物理来源于生活也作用与生活的科学理念。最

后通过实验本节课做延伸,为后面的知识做铺垫。

4. 我对教材的处理

①填充本部分教学内容

在教材中,并没有对电容器的现实应用等等的部分进行介绍。充放电过程也没有实验的呈现,因此,引入丰富的模型教具,让学生对电容器的结构,工作工程有更直观的了解。也填充了电路设计部分,培养学生从发现问题,到设计解决问题的科学思维。

②将书面静态描述变成直观实验

通过将课本上电容器的充放电过程描述,变成实验演示,能够使学生形成直观的印象。对该部分知识点有情景的感知能力。借助实验现象对现象进行解释和描述,创设良好物理情景帮助学生学习理解。

③重视联系生活实际的展示

在介绍电容器的构造,应用生活中常见的材料,组装电容器。以及联系生活实际 展示电容器的应用,帮助学生联系实际。跳出课本,走进生活,明白物理来源于生活也 作用与生活。

【学生情况分析】

1. 学生知识基础

在本节的学习中,学生已经掌握了电场力的性质、电场能的性质和电荷的定向移动,同时也知道了电势差和电荷量以及电场强度的概念和应用,这为学生学习电容器的理论知识奠定了基础。

2. 学生心理分析

本节课面对的是高二的学生,他们已经具备了一定的实验探究能力和分析总结能力,并且有自己的思维思考方式,实验现象激发的认知可以更好的引发思考,他们可以自主的对一定的现象进行整理、分析,也可以在教师的引导下将旧知识应用到新的物理场景中。并也可以在教师指导下开展探究。

3. 学生认知困难

电容器在生活中的应用广泛,但学生对电容器并不熟悉,理解起来比较抽象,尤其是对于充放电过程。因此在教学中首先需要通过直观的认识让学生了解电容器的构造。

对于电学元件背后的电学相关的知识,比如静电场相关的知识,还是不能较好地与实验现象相结合思考。物理知识与生活的联系和结合能力相对较弱。

【教学目标】

(一) 物理概念

- 1. 知道电容器的概念,认识电容器的构造,知道极板和电介质的概念
- 2. 认识常见的电容器
- 3. 认识感知电容器的充放电现象,了解现象里包含的静电场相关知识的应用。

(二)科学思维

- 1. 通过实物展示,帮助学生进行电容器模型的构建
- 2. 基于实验现象与多媒体课件分析电容器储电原理,树立将模型学以致用的意识,用模型解决实际问题。
- 3. 学生完成充放电电路拼图,培养探究的逻辑思维
- 4. 应用静电场相关知识对电容器充放电过程进行解释,建立知识间的联系,建立理论与应用的联系。

(三)科学探究

- 1. 借助生活中常用的锡纸和塑料杯制作电容器, 启发重塑学生对电容器的刻板认识
- 2. 重视实验现象,探究电容器充放电过程,直观观察充放电过程实验现象,引发思考
- 3. 通过演示实验,联系具体生活实例,启发思考和激发探究电容器在生活中的应用的兴趣
- 4. 通过简单小实验, 思考探究电容器储存电量的能力可能与什么因素有关

(四)科学态度与责任

- 1. 强调物理来源于生活,培养学生从生活中观察寻找值得探究思考的素材,培养学生积极探究,热爱生活的精神。
- 2. 强调物理作用于生活,联系科学知识与生活应用,建立理论与实际的联系,启发学生联系生活,积极思考,对物理学习有进一步的认识体会。
- 3. 追求实事求是,重视实验现象,培养学生尊重事实,思考内在规律的观念。

【教学重点】

电容器的作用,结构和工作过程

【教学难点】

结合静电场的知识有关知识解释电容器的充放电过程

【教学策略设计】

1. 教学方法

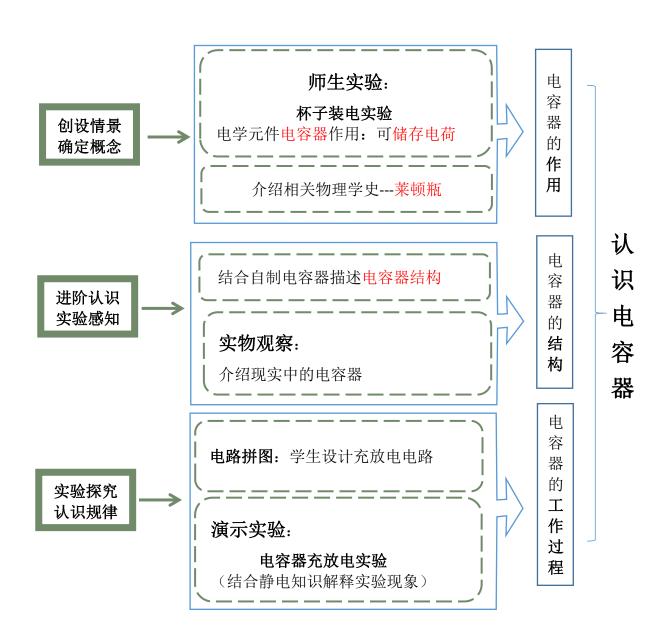
综合应用实验法,讨论法,讲授法多种方法,把教学过程设置为从感性认知电容器开始,以学生在实验中形成的直观印象为基础,借助多媒体课件以及引导式讨论和讲授,逐步引出现象背后的物理学原理。

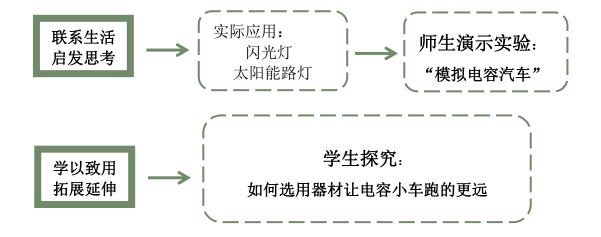
2. 教学媒体设计

充分利用多媒体课件的讲授功能,结合实验进行内部机理的展示。同时应用实物,让学生充分了解实际生活中的电容器,通过动手操作,对电子元器件的应用有更进一步的认识。例如: 学生可以仔细观察生活中的电容器,对电容器进行充放电操作,加深认识。

3. 学法指导

在学法指导上,让学生尝试自己观察思考、描述实验现象,分析概括,建立物理模型。 使学生在获取知识过程中,领会物理学的研究方法,受到科学思维方法训练以及协作精神、探索精神等情感态度价值观教育。


例如:展示用锡纸和塑料杯组成的电容器之后,课堂学生总结归纳出电容器的特点。通


过现实应用,让学生对电学元件的使用有进一步的思考。

【教学用具】

自制电容器(锡纸,塑料杯),毛皮,橡胶棒,充电电容小车,LED灯,电容器,闪光灯模型电路,太阳能灯模型电路

【教学流程图】

【教学流程】

教学环节和教学内容	教师活动	学生活动	设计意图
【情境激疑、确定目标】			
1. 演示实验: 杯子装电	设置悬念:	观察同学	通过观察老
请一位同学配合老师,同学手拿	演示实验, 教师	有触电的	师生电并导
杯子	摩擦验证杯子能	感觉	入杯中的过
教师通过摩擦橡胶棒生电,将电	装电的猜想	引发疑惑	程,可以引
荷用铝箔纸导入到杯中		和思考	发学生的兴
			趣,也直观
	介绍相关的一点		让学生观察
	点物理学史,让		到和认识
	学生知道世界上		到。"充电"
请同学触摸塑料杯的内侧有触	早的电容器		也就是储存
电的感觉			电荷的特
也就说明这个杯子真的把电荷			点。

装起来了。

2. 确定电容器的概念和作用:

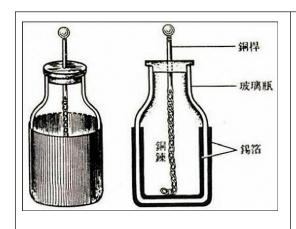
储存电荷与电能

3. 介绍电容器相关的的物理学

史

最早发现与1746年,是一位叫 马森布罗克的科学家发现的。最 初的名字叫--莱顿瓶。

【创设情境、形成概念】


1. 介绍电容器的结构:

借用自制电容器,和莱顿瓶图 片,介绍电容器的结构

展示杯子的三层 结构, 以及莱顿 瓶的结构,给出 适当提示,引导 学生思考**总结**归 纳电容器的结构

寻找莱顿|引导学生通 瓶和杯子 过观察来总 的共同点 结规律,或 尝试总结 者建立模型 电容器的 鼓励从观察 结构特点 中获取信息



介绍电容器符号

结构:由两个相距很近而又彼此 绝缘的导体组成

并介绍符 十十 号以及对符 号进行解释,确立极板和绝缘电 介质的概念

2. 让学生观察生活中常见的电 容器

通过观察生活中 的电容器, 让学 生对电容器既有 理论上的认识, 也有现实生活中 的认知。

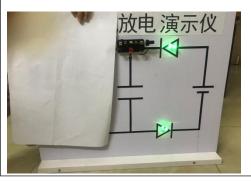
同时介绍电容器 的基本用法,为 他们课后的科学 探究做好铺垫。

构建理论和 实际的联 系,不能只 观察和认一认识理论中 识生活中 的电容器, 的电容器 | 而对现实生 活中的电容 器一无所知

【实验探究、了解规律】

1. 展示大电容导入

教师触摸没有任何感觉引出电容器的主要工作过程: 充电和放电



2. 电容器的充电和放电演示

(1) 学生进行电路组装,选择 元件,思考电路设计

(2) 教师演示充电实验

提问:

1. 要让电容器有电需要怎么做2. 应该用什么充电呢,电路中会有电流吗,如何证明的电路中有电流

3. 简单介绍发光二极管具有单向

导通的特性

解释实验现象: 电流产生的原因

有可以自由移动 的电子

金属导体极板上

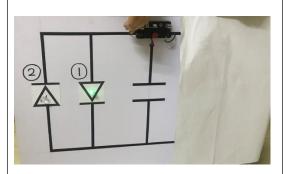
电流特点:逐渐减小,为0是充

电完成

意识到电

容器需要

充电


尝试选择 原件完成 电路设计 ①通过实验了解充电过程**有电**
流产生,且电流方向是流入上极板,流出下极板。

②结合 PPT 讲解**有电流的原因**, **为什么电容器能储存电荷**

(3) 学生完成放电电路设计

(4) 教师演示放电实验放电

①明确**放电电流方向**是从上极 板流向下极板,与充电电流方向

电容器能储存电

荷的原因:上下 极板带异种电荷 相互吸引。

提问:如何证明 电容器里有电, 仔细观察二极管 发光现象

解释实验现象:

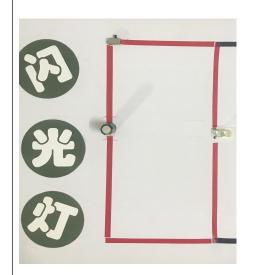
①号二极管亮了 电流方向与充电 电流方向相反

电流特点:

逐渐减小,发生 电荷中和

能量变化:

放电释放电能 充电储存电能 观察现象,一同验回学析实,所析象静识对数,但是


相反		
②理解放电过程发生了 电荷中		
和		
③能量:释放电能,电能转化为		
光能,从而引出充电实际上储存		
了能量。		

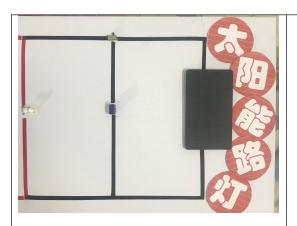
【联系生活、启发思考】

1、展示电容器在生活中的应用 实例以及模型

①闪光灯

②太阳能路灯(除了普通电池充电还可以太阳能充电)

举例说明电容 器在生活中的应 用包括并演示模 型,让学生对电 容器的充放电的 多种实际情形有 进一步认识 对电容器 的生活应 用有所了 解

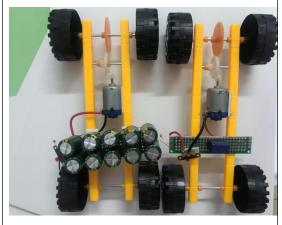

记学生对电同时举一容器的应用反三思考有进一步的在生活中了解

活

联系实际生

在生活中 有什么应 用

> 通过模型, 更直观展现 电容器在生 活中的多种 应用



③超级电容汽车

2. 展示模型

展示两辆电容小车,邀请一位学生上台,教师与学生同时用 6V 电源为小车充电 5 秒钟,观察小车行驶距离

让学生判断哪辆 小车跑得远,并 请同学代表上台 一同完成实验

观察老师 车,思 车 哪 可 远

观察实验

3. 启发思考

思考行驶距离的明显差别可能			
跟什么有关			
教学环节和教学内容	教师活动	学生活动	设计意图
教学环节和教学内容 【学以致用、拓展延伸】	教师活动	学生活动 动手尝试	设计意图 熟悉充放电
	教师活动 准备器材	V —	熟悉充放电操作
【学以致用、拓展延伸】		动手尝试	熟悉充放电 操作 并尝试进行
【学以致用、拓展延伸】 1、学生课后探究:		动手尝试小组讨论	熟悉充放电操作
【学以致用、拓展延伸】 1、学生课后探究: 教师提供了不同的电源,电		动手尝试小组讨论	熟悉充放电 操作 并尝试进行

【板书设计】

【创新点】

1. 导入试验的设计

在导入试验的设计上,使用了家常能见的铝箔纸和塑料杯,贴近学生的生活,通过毛皮摩擦橡胶棒生电,可让学生直观观察到储存电荷的整个过程。 实验中能够突破学生认知,激起疑惑。实验的教具还可以在电容器结构的 部分帮助学生理解。

2. 充分关注到物理学史在物理课堂中的地位

虽然物理学史的成分不多,但是通过介绍结合物理学史,同时让学生尝试总结电容器的结构。既增加了课堂趣味性,也增加了思维的锻炼。

3. 重视生活应用,展示模型

重视让学生了解电学元器件在生活中的实际应用,并带来闪光灯,太阳能路灯,电容小车模型,让学生对电容器的生活应用有更加感性直观的感知和认识。

4. 增设了课后探究

通过电容小车模型的运动,激发学生探究的欲望,有趣的课后探究提供了学生动手和探究的动力。在这个过程中可以复习本节课知识的同时,让学生主动思考和学习相关知识。

5. 重视学生形成探究思维的过程

通过设计简单的电路拼图游戏,让学生尝试选择元件完成电路,形成自己完整的思考,为什么要设计这个电路,这个电路里需要什么,这些元件可以给我们什么样的信息。从而培养学生解决问题的科学思维。