第二章 原子结构之思考题和练习题参考答案

2.3 氢原子核外只有1个电子,为什么在紫外、可见和红外都有发射谱线?

解: 虽然 H 原子核外只有一个电子,但其核外存在未填充电子的空轨道。当电 子吸收的能量不同,其跃迁进入的空轨道能量也是不同的。如果被激发的电子由 n≥2 的电子层回到 n=1 层,发射出的谱线就位于紫外区;如果被激发的电子由 n ≥3 的电子层回到 n=2 层,发射出的谱线就位于可见区;如果被激发的电子由 n ≥4 的电子层回到 n=3 层,发射出的谱线就位于红外区。

- 2.11 下列轨道上的电子,在xv平面上的电子云密度为零的是(A)
 - (A) $3p_z$ (B) $3d_{z^2}$ (C) 3s (D) $3p_x$

- 2.12 量子力学中所说的原子轨道是指(A)
 - (A) 波函数

- (B) 电子云 (C) 波函数 (D) 概率密度
- 2.13 在 3p 电子云的径向分布图中有 $_{2}$ 个概率(几率)峰,有 $_{1}$ 个节面。
- 2.22 按要求填写下表

主量子数	角量子数	原子轨 道符号	磁量子数	自旋量子数	可能的状态数
5	3	5f	0;±1;±2;±3	+1/2	7
3	1	3p	0;±1	±1/2	6
4	0	4s	0	±1/2	2
	1	4 p	0;±1	±1/2	6
	2	4d	0;±1;±2	±1/2	10
	3	4f	0;±1;±2;±3	±1/2	14
3		3d	0;±1;±2	±1/2	10
4		4d	0;±1;±2	±1/2	10
5	2	5d	0;±1;±2	±1/2	10
6		6d	0;±1;±2	±1/2	10
7		7d	0;±1;±2	±1/2	10

2.26 不同元素的原子其相同能级(如 1s 能级)的能量都一样吗? 为什么?

解:不同元素的原子其相同能级(如 1s 能级)的能量是不同的,因为能级能量的高 低还与原子序数有关,该值越大,对轨道的吸引力越强,所以轨道能量越低。

2.27 Cotton 能级图中, 在 Z<21 时, 3d 能量高于 4s, 但 Z≥21 后, Z 越大, 3d

能量越低于 4s, 为什么?

解: 在 Z<21 时,3d 上无电子,由于 4s 钻穿效应强于 3d,所以能量低于 3d。但 Z≥21 后,3d 上有电子填充,则 3d 上的电子会对外层的 4s 电子产生屏蔽效应,从而使 4s 能量高于 3d。且随着原子序数的增大,核对离核近的 3d 能级的吸引力会比 4s 能级的更强,所以 3d 能级的能量越低于 4s.

2.28 请排出氢原子中 3s、3p、3d、4s 能级能量高低的顺序,并说明原因。

解: 氢原子的 3s、3p、3d 能级的能量是相等的,这是因为氢原子核外只有 1 个电子,没有电子间的屏蔽效应,所以 3s=3p=3d。因为 n 值越大,离核越远,能量越高,所以 4s 的能量高于 3s、3p、3d。

2.31 写出下列原子的核外电子排布式、价电子构型以及其轨道排布式。

E:
$$Mn^{2+}(Z=25)$$
 F: $Co^{3+}(Z=27)$

解: Mn^{2+} :Mn 原子的电子排布式(整理后)是 $1s^22s^22p^63s^23p^63d^54s^2$,则 Mn^{2+} 应为: $1s^22s^22p^63s^23p^63d^5$; 价电子构型为: $3d^5$; 价电子的轨道排布式:

 Co^{3+} :Co 原子的电子排布式(整理后)是 $1s^22s^22p^63s^23p^63d^74s^2$,则 Co^{3+} 应为: $1s^22s^22p^63s^23p^63d^6$;价电子构型为: $3d^6$;价电子的轨道排布式:

236 填空

元	原子	价层电子排布	周期和族	最高价	
素	序数			氧化物	水合物
A	24	3d ⁵ 4s ¹	四; VIB	CrO ₃	H ₂ CrO ₄
В	56	6s ²	六; II A	BaO	Ba(OH) ₂
С	53	5s ² 5p ⁵	五;VIIA	I_2O_7	H ₅ IO ₆
D	82	$6s^26p^2$	六; IVA	PbO ₂	Pb(OH) ₄
Е	48	$4d^{10}5s^2$	五; IIB	CdO	Cd(OH) ₂

2.36 完成下列问题

(4) 前六周期中电负性最大的元素是 $_{\underline{F}}$, 电负性最小的元素是 $_{\underline{Cs}}$ 。非金属元素的电负性大致在 $_{\underline{2.0}}$ 以上。化学元素中,第一电离能最小的是 $_{\underline{Cs}}$,第一电离能最大的是 $_{\underline{He}}$ 。