

基于化学核心素养的板块化PCK教学设计——任务、活动与情境设计

邓峰 华南师范大学化学学院 solomon.deng@m.scnu.edu.cn

关系概览

任务分析

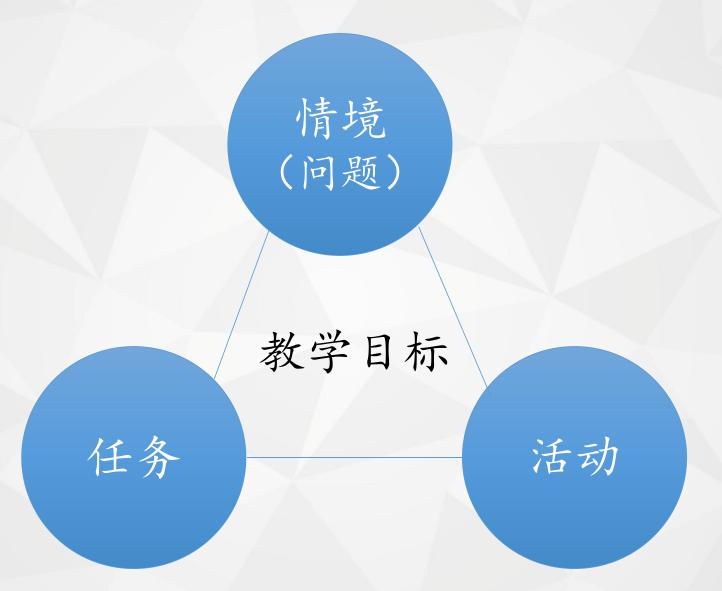
- 内容架构分析
- 板块功能分析
- 学习特征分析

策略设计

- 任务/活动设计
- 情境/问题设计

策略设计

• 评价发展设计


学什么

怎么学

学得怎样

关系概览

化学学习任务: 内涵

- 是化学教学板块的要素之一
- 为实现某种化学教学目标, 落实相应的化学教学内容
- 由教师与学生共同完成的学习课题

化学学习任务:要素

- 内容要素——回答"做什么"的问题,即任务的内容
- 方法要素——回答"怎么做"的问题,即任务的完成方法

化学学习任务&化学教学内容

任务设计1:观察实验并总结现象

Na与水的反应

教学内容

内容要素

任务设计2:理论推理与观察实验

任务设计3:设计实验并检验反应产物

方法要素

化学学习任务&化学教学板块

铁的氧化物

板块1

任务1:观察3种铁的氧化物,归纳颜色、状态及用途

任务2: 观察铁的氧化物与酸反应实验, 归纳性质

任务3:观察并比较铁盐、亚铁盐与碱反应的实验

任务4:分析氢氧化亚铁沉淀迅速变色的原因

任务5:设计制备氢氧化亚铁的实验

任务6:观察并比较铁盐、亚铁盐与KSCN反应实验

任务7: 建构基于元素价态与物质类别的认识思路

铁的氢氧化物板块2

铁盐与亚铁盐

板块3

认识思路的结构化

板块4

化学学习任务&化学教学板块

感受Redox的存在

板块1

感受Redox的本质

板块2

感受Redox的价值

板块3

任务1:实验探究食品脱氧剂的作用

任务2: 揭示氧化还原反应的本质

任务3: 建立氧化还原反应认识模型

任务4:运用氧化还原反应原理设计并讨论汽车尾气绿色化处理方案

化学学习任务&板块的素养功能

感受Redox的存在

板块1

感受Redox的本质

板块2

感受Redox的价值

板块3

宏观辨识

科学探究

微观探析

模型认知

社会责任

任务1:实验探究食品脱氧剂的作用

任务2: 揭示氧化还原反应的本质

任务3: 建立氧化还原反应认识模型

任务4:运用氧化还原反应原理设计并讨论汽车尾气绿色化处理方案

化学学习活动的内涵

- 是化学教学板块的要素之一
- 学生在教师的组织引导下完成
- 为顺利完成化学学习任务而采取的一系列学习步骤/行为

按照学习过程分类

- 预习
- ●听课
- 做笔记
- 回答问题
- 练习
- 复习
- 做作业

(郑长龙等, 2018)

按照认识过程分类

- 收集资料或事实阶段:观察、实验、调查、查阅
- 整理资料和事实阶段:绘制表格、曲线等
- 得出规律和结论阶段:比较、分类、归纳、概括、建模

- 实验类活动:观察、实验探究、小组实验、实验设计、实验验证、对比实验、实验推断、测定、鉴别、分离、配制...
- 调查类活动:调查、收集、查阅、查找、参观、观看...
- 交流类活动:交流、合作、提问、讨论、回答、汇报、辩论...

(郑长龙等, 2018)

● 科学实践活动:科学观察、科学调查、科学实验...

科学思维活动:描述、比较、推理、分类、判断、预测、假设、 分析、说明、解释、设计、评价、选择...

(郑长龙等, 2018)

化学学习活动的构成环节

执行环节

反馈环节

明确所要解决的问题(包括做什么和怎么做)

实施解决问题的方案, 并得出相应的结论

对所要解决的问题及解决问题的过程进行总结、反馈或评价

活动设计——化学学习活动的构成环节(例1)

定向环节

执行环节

反馈环节

教师请学生分享与 展示关于"影响肥 皂价格因素研究" 的过程与结果

负责小组根据从网络、 报纸、杂志和书籍收 集资料,展示、交流、 讨论并归纳影响肥皂 价格的因素

教师总结与并给出具体反馈

活动设计——化学学习活动的构成环节(例2)

定向环节

执行环节

反馈环节

教师准备演示钠与 水的反应,并要求 学生注意观察与汇 报所观察到的实验 现象

学生观察演示实验、 学生代表回答所观察 到的实验现象 教师对学生回答作出 反馈,并用口诀总结 钠与水反应的现象

任务/活动设计——依据

- 基于板块对应的教学内容(A2)——能落实什么教学内容?
- 基于板块的素养功能 (A2) ——能培养什么核心素养?
- 基于迁移性教学目标/发展需求 (A3) ——能达成什么教学目标?
- 基于学习困难障碍(A3)——能解决什么学习困难?
- 基于教科书内容的编排 (A1)
- 基于课标中的"教学策略"与"学习活动建议"

化学教学情境:内涵

教师在化学课堂教学中,为<u>引发学生积极主动</u> 地发现学习问题、进行化学学习活动、完成特定的 化学学习任务、实现一定的化学教学目标而创设的 化学学习氛围或化学学习环境。

(郑长龙等, 2018)

化学教学情境:素材

- 社会新闻类素材——如:酸雨防治、尾气处理、能源利用
- 生活生产类素材——如:84消毒液、制碱工业、化肥生产
- 科学技术类素材——如:应用于航空业的金属材料
- 知识基础类素材——如: 已学的有关知识、思维或观念

化学教学情境:素材

- 学科交叉类素材——如: 古诗化学、数学集合与反应类型
- 化学史实类素材——如: 氯气的发现与性质、氧化还原反应
- ●实验探究类素材——如: 盐溶液的酸碱性、吹气生火
- 科学研究类素材——如: 苯的结构的测定、青蒿素的研究

化学教学情境:作用

- 引发与知识相关联的学科问题(故常被称为"问题情境")
- 激发学生的化学学习兴趣与动机("情")
- 促进学生对化学知识的主动建构与关联(学科理解)
- 帮助学生应用与迁移化学知识(核心素养)

(郑长龙等, 2018)

化学教学情境: 创设原则

- 问题性原则(Driving questions)
- 真实性原则(Real-world, Core literacy)
- 正面性原则(正能量、Beauty of Chem.)

化学教学情境:"简单型"布局

- 导入式 (如:"喝酒脸红"导课,接着进行乙醇性质学习)
- 迁移式 (如: 学完乙醇性质, 结课时讲解"喝酒脸红")
- 呼应式(如:引入+知识学习+迁移/应用)

- 交替式 (板块之间交替使用不同类型的情境素材)
- 关联式(板块之间关联使用相同类型的情境素材)
- 贯穿式(自始至终均基于同一情境素材)

● "交替式"示例

板块1: 生活类情境(日常生活中的氧化还原反应)

板块2: 知识类情境(初中知识、化合价、电子转移)

板块3: 化学史情境("氧化还原反应"的认识发展史)

板块4: 社会问题情境(汽车尾气处理)

● "关联式"示例

板块1:1774年舍勒发现氯气(Clo的物理性质)

板块2: 1785年贝托莱证实氯水具有漂白作用(Cl2+H2O)

板块3: 1789年台耐特利用Cl₂制得漂白粉(Cl₂+Ca(OH)₂)

板块4: 1890年吕萨克用Cl₂制得盐酸(Cl₂与非金属单质反应)

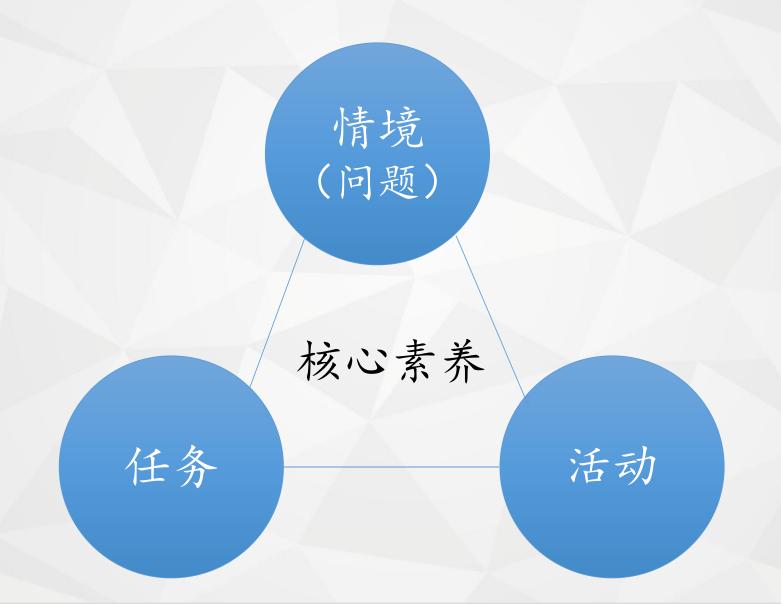
板块5: 1810年戴维证明这种气体是单质并命名(Cl₂的认识)

●"贯穿式"示例

板块1: 补铁剂是否含Fe3+? (Fe3+的检验)

板块2: 补铁剂是否含Fe2+? (Fe2+转化为Fe3+)

板块3:如何保存补铁剂 (Fe3+转化为Fe2+)


情境设计——依据

- 基于对应的任务或活动——能为任务/活动提供什么素材或学习环境
- 基于课标中的"情境素材建议"或素材资源搜索(网络)

- 基于板块对应的教学内容(A2)——能落实什么教学内容?
- 基于板块的素养功能 (A2) ——能培养什么核心素养?
- 基于<u>迁移性</u>教学目标/发展需求 (A3) ——能达成什么教学目标?
- 基于学习困难障碍(A3)——能解决什么学习困难?

任务-活动-情境(问题)-素养:四位一体

任务-活动-情境(问题)-素养:四位一体

感受Redox的存在

板块1

宏观辨识

科学探究

情境——月饼中的小包装袋,提问:为什么要 放小包装袋?包装袋中有什么物质?这种物质 有什么作用?

任务1:实验探究食品脱氧剂的作用

活动1: S设计实验,探究小包装袋中物质的作用

活动2: S小组汇报实验方案, 讨论化学概念(如氧化剂、还原剂)与原理, 书写反应的化学方程式

活动3: T对S的表现给予鼓励性评价, 并总结知识

任务-活动-情境(问题)-素养:四位一体

任务1: 找出碱金属原

子结构的异同点

证据推理

宏观辨识

情境 (问题):

碱金属元素的 性质、原子结 构有何特点? 二者存在什么 关系?

任务2: 探讨碱金属元

素性质的异同点

科学探究

证据推理 模型认知

任务3:交流碱金属原 子结构与元素性质关系 活动1: S搜集资料, 寻找规律

活动2.1: T提问碱金属在性质上有何关系

活动2.2: S回忆钠与氧气和水的反应

活动2.3: S实验探究K与氧气和水的反应

活动2.4: T展示铷、铯的实验视频; S观看

活动2.5: S讨论碱金属性质的异同点

活动3:讨论并得出原子结构与碱金属元 素性质关系的结论

Activity: 小组合作

- 完成333设计导引中的B1和B2 (可加页)
- 设计每个板块的任务、活动、情境(问题) (说明情境的布局)
- 分析上述三要素是如何对应各板块的素养目标或学生发展需求
- 分析上述三要素是如何对应学生的已有基础与学习困难