γ能谱康普顿平台的反冲 电子密度分布研究

黄 铭,程敏熙,曾柳芳

(华南师范大学物理与电信工程学院,广东广州 510006)

摘 要:在γ能谱测量实验中,以刚性小球弹性碰撞作为γ光子与电子的碰撞模型,研究康普顿效应的反冲电子密度与反冲角度的关系,并对结果作出分析和讨论。
 关键词:康普顿效应;γ能谱;反冲电子;散射截面
 中图分类号: 04-34 文献标识码: A 文章编号: 1002-4956(2008)11-0044-04

The study of the density distribution of recoiling electrons in Compton effect of γ - spectrum

HUANG Ming, CHENG Min- xi, ZENG Liu- fang

(School of Physics and Telecommunications, South China Normal University, Guangzhou 510006, China)

Abstract: In the experiment of γ -spectrum measuring, it was assumed that the collision between γ - photon and electron is elastic collision so as to study the relationship of the density of recoiling electrons and their recoiling angles. The results are analyzed and discussed.

Key words: Compton effect; y- spectrum; recoiling electron; scattering cross section

康普顿效应从能量和动量两个方面证实了光子 的粒子性,在量子理论的建立和发展中起到了重要 的作用。γ射线能谱测量是核辐射探测的一个重要 的手段,它广泛应用于核物理研究、放射性分析和 其他与放射性同位素相关的工业、农业、医疗等各 种核技术应用中。在γ能谱测量中,在所测得的能 谱图中,有一段由康普顿效应产生的"康普顿平 台",利用这段能谱,以刚性小球弹性碰撞模型可 以研究反冲电子密度的分布规律。

1 测量原理

1.1 康普顿平台上电子的反冲角与反冲动能之间 的关系^[1]

在康普顿效应中, γ光子与电子发生弹性碰撞。

收稿日期: 2007-12-24

- 作者简介: 黄铭(1983一), 男, 广东省肇庆市人, 课程与教学论 专业研究生
- 通讯作者:程敏熙(1962—),男,广东省四会市人,博士,副教授,硕士生导师,主要研究方向:光电子技术与课程 论实验教学.

如图 1,设光子的散射角为 φ ,电子的反冲角为 θ 。 散射前光子能量为 $E_0 = hw$,散射后光子的能量为 E' = hv',反冲后电子的动能为 E_e ,总能量为 E, 动量为 p,电子的静止质量为 m_0 。由碰撞前后的动 量及能量守恒可得:

$$\int hv = hv' + E_e, \qquad (1)$$

$$\left|\frac{hv}{c} = \frac{hv'\cos\varphi}{c} + p\cos\theta\right|, \qquad (2)$$

$$\frac{hv'\sin\varphi}{c} = p\,\sin\theta\,. \tag{3}$$

图1 y光子-电子碰撞示意图

可得:

$$E_{\rm e} = \frac{E_0^2 (1 - \cos \varphi)}{m_0 c^2 + E_0 (1 - \cos \varphi)} , \qquad (4)$$

$$\cot \theta = \left(1 + \frac{E_0}{m_0 c^2}\right) \tan \frac{\varphi}{2} . \tag{5}$$

由(2)和(3)式,以及 $E = \sqrt{m_0c^4 + p^2c^2}$ 得出反 冲电子动能 *E*.与反冲角 θ 的关系:

$$\sin^2\theta = \frac{2a(E_0 - E_e) - E_e}{a^2(E_e + 2m_0c^2)},$$
 (6)

由(4)式可见,当散射角 $\varphi = 0^{\circ}$ 时, $E_e = 0$,反 冲电子能量最小,即入射光子没有碰撞电子而从 电子旁边掠过;当 $\varphi = 180^{\circ}$ 时,电子与 γ 光子对心 碰撞,电子沿 γ 光子入射方向飞出,反冲电子能 量最大。

1.2 电子反冲密度分布研究以及弹性碰撞模型的 预测

按照刚性小球的作用模型^[2],光子与电子的 碰撞情况如图 1 所示。如果碰撞点为小圆面时,反 冲角为 θ +d θ 。光子在球表面的同纬线上碰撞时, θ 相等。所以要使电子的反冲角为 θ ,入射光子要 打在如图 2 所示的 ds 面积内。该圈面积在与入射 光子相垂直的方向上的投影为(其中 a 为电子半 径)

dσ = 2π a^2 sin θcos θdθ = π a^2 sin2αdθ, (7) 易知,在理论上来说电子的反冲角 θ ∈ [0°~ 90°],可以预测,在康普顿平台区域,电子的计 数会有起伏。随着电子反冲角的增大,计数大小会 呈正弦变化。

2 实验过程

γ光子碰撞闪烁体,和闪烁体中的原子、分子 及晶体系统发生相互作用(光电效应,康普顿散 射和电子对效应等),产生次级电子,激发荧光。 这些光子再射向光电倍增管产生电信号。其中,康 普顿效应产生的反冲电子激发的信号在γ能谱中形 成了"康普顿平台"。利用 Nal(TI)能谱仪进行 ¹³⁷Cs 的能谱测量,可以得出对应道数的反冲电子 计数,根据谱仪的能量定标可以得出对应道数的反 冲电子的能量。利用(6)式可以得出反冲电子的 反冲角,从而建立起反冲电子的反冲角大小和电子 计数的关系。

为了对多道分析器进行定标,采用已知辐射能 量的一组标准放射源⁶⁰ Co(1.17 MeV,1.33 MeV)、¹³⁷ Cs(0.662 MeV)、²² Na(0.551 MeV、 1.27 MeV)测量相应的能谱全能峰处对应的道数。 把数据记录下来并画出能量一道数图线,从而可以 根据道数知道相应的反冲电子能量。其次,在¹³⁷ Cs 样品能谱上,记录道数以及对应的计数。从能量一 道数图线上分析,只要知道道数就可以求出能量。 另外,在¹³⁷ Cs 能谱选取反散射峰之后的一段平台 状曲线作研究,它是理论上的康普顿平台。

原子核的放射性衰变是一个随机过程,某个时 刻究竟那些核要发生衰变是不确定的,它们的衰变 完全是随机独立的,但是由于任一放射性样品都含 有大量的放射性原子核,而大量的随机过程又服从 统计分布规律^[3]。

根据核衰变的统计规律,通常测量精度用相对 误差来直接反映。在放射性测量中测量的方均根差 $\sigma_{\rm N} = \sqrt{N}$,由于 N 较大,可以用一次计数来代替平 均值 \overline{N} 。即 $\sigma_{\rm N} \approx \sqrt{N}$ 。则相对误差为

$$E_{\rm n} = \frac{\sigma_{\rm N}}{N} \approx \frac{\sqrt{N}}{N} = \frac{1}{N} \,. \tag{8}$$

可见,在本实验中为了减少测量误差,可以通 过提高测量计数来实现,N越大,相对误差越小。 当累计测量计数超过 2 500,其误差为 2%,超过 10 000,其误差为 1%,在本实验中,适当延长测 量时间,使康普顿平台的各道计数在 2351 ~ 5135, 即每道的测量误差为 1.4% < E_n < 2.1%,所以不 必对能谱作重复测量。

3 实验结果及分析

3.1 能量定标

记录各放射源全能峰道数,利用 origin 软件描 画数据点并进行线形拟合。拟合的线性回归系数 r 为 0. 99437。得能量校正曲线方程:

E = (0.00174N - 0.28849) ,

E 单位为 MeV, N 为道数。定标数据及定标曲线如表1 和图 3。

	表1 能量	Ⅰ 定标数据
种类	道数 N	<u>峰值能量 E</u> MeV
⁶⁰ Co	903	1.33
	861	1.17
¹³⁷ Cs	567	0.662
²² Na	440	0.511
	889	1.27

图 3 能量定标曲线

3.2 在¹³⁷Cs 能谱上合理选取康普顿平台区域

根据(4)式,可以求出反冲电子能量的最大 值为0.447 MeV,从而在能谱上确定康普顿平台的 最大道址。根据能量定标,可以算出该道址位于γ 能谱的420 道的位置,如图4 所示。

图 4 数据采集器下的¹³⁷ Cs 的能谱

3.3 用弹性碰撞模型解释反冲电子密度的结果与 实验结果比较

根据模型易知,当电子的反冲角 θ =45°时, 反冲电子的计数最大。通过式(4)和式(5)可 以算出 θ =45°时,电子的对应能量 E_s 为0.194 MeV。根据能量定标可以算出对应于能谱在 255 道。

利用(6)式,可以算出反冲角的大小,并根 据相应的能谱计数,可以作出计数-反冲角角度的 关系图。

本实验能作出 0°~45° 区域的图像。从图 5 可 以看出实验结果和理论结果^[4](见图 6)符合较 好。选取 250 道至 420 道作为本实验研究的康普顿 平台区域,是因为当 θ>45°时,反冲电子和散射 光子可能已经飞出闪烁体,在屏蔽物质的作用下产 生反散射,所以能谱上小于 250 道的谱线上含有反 散射峰的信息,两者不可混合分析^[5]。要测量 θ> 45°的反冲电子,需要在原有探头外设置相应的探 测器。

图 5 实验测得的康普顿反冲电子角分布

图6 理论计算的康普顿反冲电子角分布

道数	反冲角 <i>θ/</i> (°)	计数	道数	反冲角 0 /(°)	计数
255	44.9	5135	340	28.0	5115
260	43.8	5018	350	26.0	5008
270	41.8	5057	360	23.8	4966
280	39.8	5070	370	21.6	4654
290	37.8	5051	380	19.3	4231
300	35.9	5084	390	16.7	3694
310	33.9	5093	400	13.8	3247
320	31.9	5134	410	10.3	2788
330	30.0	5077	420	4.98	2351

表 2 康普顿反冲电子角度一计数表

3.4 对康普顿反冲电子密度的解释^[6]

康普顿效应在闪烁体中所产生的次级电子将产 生一个从0~ hv 2a 1+2a的一个连续分布的能谱。根 据克莱茵——仁科散射微分截面可导出康普顿反冲 电子的数目对能量的谱为

$$\frac{\mathrm{d}(\sigma_{\epsilon})}{\mathrm{d}E} = \frac{\pi r_0^2}{a^2 m_0 c^2} \cdot \left\{ 2 + \left(\frac{E}{hv_0 - E}\right)^2 \left[\frac{1}{a^2} + \frac{hv_0 - E}{hv_0} - \frac{2(hv_0 - E)}{E}\right] \right\}.$$
(9)

根据(9)式易作出康普顿电子的理想分布,如图 7 中实线所示,电子能量正好出现分布最大值,由 于辐射测量固有的统计涨落,使康普顿平台边有所 加宽,修正后的 Cs 康普顿平台如图 7 虚线所示。 从图中可以看出,康普顿反冲电子能量最大值对应 在康普顿平台下降沿约最大值的一半处。修正后的 曲线与实验曲线(图4)吻合得比较好。

4 结束语

本实验用NaI(TI)单晶能谱仪测量γ射线强

图7 康普顿平台理论曲线和修正后的曲线

度与能量的关系,即γ能谱图。通过γ能谱图,获得 了不同能量的反冲电子相应的计数信息。利用弹性 碰撞模型解释康普顿反冲电子的反冲角分布具有模 型简单,易于分析的特点,可以运用动量,能量以 及相对论的规律来解释粒子的行为。根据由反冲电 子角度和反冲电子计数组成的实验图像可见,电子 刚性小球模型对于反冲电子角度在0°~45°区域内 与理论结果相符。当θ>45°时,部分的γ光子没有 被吸收而逸出,这部分逸出的光子与周围的屏蔽物 质发生作用时,反射光子有可能再进入闪烁体发生 光电效应,其能谱图就形成了反散射峰,超出了本 实验的研究范围。

参考文献 (References):

- [1] 林木欣. 近代物理实验教程 [M]. 北京:科学出版社, 1999: 75-81.
- [2] 赵凯华,罗蔚茵,量子物理[M].北京:高等教育出版社, 2000;17-20.
- [3] 戴道宣,戴乐山.近代物理实验[M].2版.北京:高等教育出版社,2006:200-223.
- [4] 戴霁昕,刘弋.一种测量康普顿反冲电子角分布的方法 [J].
 物理实验,1998,18 (1): 32-33.
- [5] 郑碧华, 熊正烨. 在y能谱中验证康普顿效应 [J]. 中山大学学报: 自然科学版, 2003, 42 (65): 154-156.

·词义辨析· 连接与链接
连接(connection)是互相衔接之意,指一般在程序设计语言中允许模块之间交互作用;各种功能部件之间为了传递信息所建立的联系,如级联连接、多点连接。
链接(chajning)在计算机程序的各模块之间传递参数和控制命令、并把它们组成一个可执行的整体过程,如果第一个程序能引发第二个程序的执行,则称这2个程序是链接的,如:数据链接、反向链接、搜索链接。