
Cooperative Learning and Object-Orientated

Development Methods

Theda Thomas
School of Business and Informatics

Australian Catholic University
115 Victoria Parade, Fitzroy

Victoria 3065
Australia

t.thomas@patrick.acu.edu.au

Keywords: cooperative learning, object orientation,
pedagogical theory and practice..

Introduction

Cooperative learning has been shown to promote higher
achievement, enhance critical thinking, improve
motivation, deepen students’ understanding, foster
interpersonal relationship skills and improve students’
self esteem (Phipps, Phipps, Kask and Higgins 2001).
These skills are obviously ones that we would like to
develop in our students at whatever level in order to
prepare them for the workforce of the future.

The use of Object Orientation and component-based
software is on the increase. Object-Orientated techniques
are said to improve productivity, allow reuse of
components or objects, improve reliability, make for
easier maintenance and offer a disciplined method of
design (Johnson 2002). Major players in the software
development environment field are moving to a more
Object-Orientated / component-based approach.
Aschbacher (2001) states that “You would have to be the
programming equivalent of a cave dweller to believe
components will not become a dominant technology in
the very near future.” Our teaching in the future will need
to encompass these technologies and design methods.

This paper will briefly describe some of the principles of
cooperative learning and object orientation and will then
show the synergy between these principles. It will close
by showing how a particular type of cooperative learning
technique could be used to enhance the learning of object
orientation while showing how the object orientation
applies the principles of cooperative learning.

Cooperative Learning

Hilke (1990) defines cooperative learning as “an
organisational structure in which a group of students

Copyright © 2003, Australian Computer Society, Inc.
This paper was presented at the IFIP Working Groups 3.1
and 3.3 Working Conference: ICT and the Teacher of the
Future, held at St. Hilda’s College, The University of
Melbourne, Australia 27th–31st January, 2003.
Reproduction for academic, not-for profit purposes
permitted provided this text is included.

pursue academic goals through collaborative efforts.
Students work together in small groups, draw on each
other’s strengths, and assist each other in completing the
task. The method encourages supportive relationships,
good communication skills and higher-level thinking
abilities.”

Johnson, Johnson and Smith (1991) suggest that there are
five principles in cooperative learning. These are
individual accountability, face-to-face promotive
interaction, positive interdependence, social skills and
group processing. Students need to be held individually
accountable for the part of the work for which they have
been allocated responsibility. They should also be
individually accountable for learning everything that the
group learns. Face-to-promotive interaction occurs when
students in the group support and interact with one
another. Positive interdependence is achieved when each
member of the group realises that he or she cannot
achieve without interacting with the rest of the group.
Social skills need to be taught to the students before
expecting them to cooperate. The teacher should also
monitor these skills during the interaction. Group
processing involves the students being aware of how they
are achieving as a group and monitoring their own
interaction and progress. This is a reflective process.

Object Orientation

Object-Orientated development is based on four major
principles according to Kafura (2000). These are the
principles of abstraction, separation, composition and
generalisation.

Abstraction involves taking an entity and focussing on the
essential aspects of that entity while ignoring or hiding
the non-essential elements. This allows the simplification
of complex phenomena. Abstraction is implemented in
Object-Orientation via classes and objects.

The principle of separation refers to separating the class
or object’s observable behaviour from the methods that it
uses to achieve this behaviour. Abstraction in Object-
Orientation includes separating the interface to the rest of
the “world” (public part of the class or object) from the
private data and code thus protecting the private code and
data. This reduces complexity. Within an object or class,
the data can only be manipulated by its methods. This is
called encapsulation.

mailto:t.thomas@patrick.acu.edu.au

Composition is the third principle of object orientation
according to Kafura (2000). It involves building a
complex whole system by assembling the parts into a
coherent unit. There are two forms of composition in
Object-Orientation, namely association and aggregation.
Association involves interacting parts that are externaly
visible and can be shared among compositions, whereas
in aggregation only the whole is visible and accessible
with the components being inside the whole.

The last principle of Object-Oriented development is
generalisation. Generalisation involves the identification
and possible organization of common properties of
abstraction. This is implemented by inheritance and
polymorphism among other methods.

The Synergy Between the Principles of
Cooperative Learning and Object-
Orientation

The first principle of cooperative learning is individual
accountability. In Object-Orientation each object can be
thought of as individually accountable for the methods
and data that are private to it. This is the aspect that
enables software reuse. Individual accountability of the
separate objects is also evident in the separation principle
of Object-Orientation, where objects have both private
and public parts. The objects need to interact with other
objects or classes as team members need to do in a
cooperative learning environment. There is thus
interaction through the defined interfaces. These
interactions can be via aggregation or association.
Interaction within cooperative learning groups can be
within the group itself, within subgroups or between
group members or subgroups. This face-to-face
interaction is the second principle of cooperative learning.

Positive interdependence is involved in both the
composition and generalisation principles of Object-
Orientation. When one object interacts within another it
is dependent on the other object to give valid results. This
is especially true if the object inherits the properties of
another object. As the components are put together to
form a system, each component is positively
interdependent on the other components.

The social skills aspects and group processing principles
are not evident in Object-Orientation itself, but are
evident in Object-Orientated development. It is essential
for developers of Object-Orientated systems to be able to
work in a team, develop good interpersonal skills and
resolve conflicts. As each object is independent and yet
needs to interact with other objects this is especially
important throughout the project life cycle. Planning the
system involves defining objects and their relationships to
one another. When putting the system together there must
be a lot of cooperation and evaluation to make sure that
all the parts work well together.

 Examples of Using Cooperative Learning
Methods for Learning Object-Orientated
Development

Because Object-Orientated development involves writing
components that can stand alone and then combining
those components into a system, it is easy to create
cooperative learning projects that adhere to the principles
described above. In order to avoid using the terms
component / object / class or class library, the term
component has been used in the discussion that follows.
The general cooperative-learning techniques are in
standard text form with the Object-Orientated
/component-based applications of those in italics.

The first example of cooperative learning methods is the
Jigsaw method (Johnson, Johnson and Smith 1991),
where the teacher is involved in putting students into
situations where they must depend on one another. This
would be suitable for a lower-level class.

• The teams are heterogeneous with regard to ability
level, sex and race. Students are given training in
team building and communications as well as group
leadership. This would need to be done for Object-
Orientated teams.

• The study material is designed in such a way that
each student can be given a piece without having to
understand the rest of the material. Although each
student is given only part of the material, each is
evaluated on the whole unit. This could be done by
dividing the components between the students with
different aspects that need to be applied being
expected in each component.

• The student learns his or her own material and is
then responsible for teaching that material to the
rest of the students. Each team member is expected
to be expert in his or her particular “part of the
puzzle.” In order to become expert the team
members become members of a second group made
up of the members from the other teams who have
been assigned the same part of the material (piece
of the puzzle). Team members from different
groups who have the same component, then get
together to determine how to write that component
with its data and its methods. They write the
component as a group and then go back to their
original groups and teach them how they have done
this.

• The group then puts together all its parts of the “jig
saw.” The group then puts together all the
components and does integration testing.

• The students are evaluated individually, not as a
group. Further evaluation of the students would be
done through tests and assignments.

Group Investigation is another example of a specific
method of cooperative learning that would work well in
Object-Orientated development with a higher-level
student group as the students themselves have to do the
design and divide up the work. It is similar to the Jigsaw
method, except that the students plan the learning task
and divide the task into subtopics for investigation. They

do not join up with other members of other groups when
becoming “experts” in their part of the investigation.

In Object-Orientation, the group will then design their
solution using UML models and determining the different
components to be programmed, the interfaces that will be
needed and the order in which the components must be
developed. These components are then assigned to the
various team members. This promotes positive
interdependence and the use of group skills.

The project itself is also evaluated in the group
investigation method with the students preparing a final
integrated report and presenting it to the class.

The components need to be integrated into the system or
program. Integration testing is also involved. The
students will evaluate their group processing and test the
interaction of their components with those of the rest of
the group. The final program can then be presented to the
class or to the teacher. Each student can be responsible
for discussing his or her own part of the code. The
evaluation can be based on the individual component/s
that the student has created as well as the integrated
system or program. This enhances the individual
accountability and the positive interdependence of the
group.

Conclusion

As can be seen from the above examples, as Object-
Orientated development is based on principles of
abstraction and separation (individual accountability and
interaction between objects) as well as composition and
generalisation (positive interdependence) it lends itself to
a cooperative learning approach. There are many
different types of cooperative learning methods, most of
which would adapt easily to Object-Orientated
development methods. By using the cooperative learning
methods, students will gain the benefits of this type of
learning but are also “forced” into creating well-designed,
truly reusable, stand-alone objects with well-defined
interfaces. These methods are not only applicable to
component-based development but can be of benefit
across the Information Technology curriculum where
educators strive for improved teaching and learning.

References

ASCHBACHER, C. (2001): UML components: A simple
process for specifying component-based software,
Journal of Object-oriented Programming 14(3): 21.

GREY, N. (1996): Teaching object orientation: Patterns
and reuse. Australian Software Engineering
Conference, Melbourne July 1996.

HILKE, E.V. (1990): Cooperative Learning. Phi Delta
Kappa International.

JOHNSON, R.A. (2002): Object-oriented analysis and
design – what does the research say? The Journal of
Computer Information System, 42(3): 11–15.

JOHNSON, R.T., JOHNSON, D.W. and SMITH, K.A.
(1991): Co-operative learning: Increasing college
faculty instructional productivity, ASHE-ERIC Higher

Education Report no 4, Washington D.C.: The George
Washington University School of Education and
Human Development.

KAFURA, D. (2000): Object-oriented software design
and construction with Java. Upper Saddle River, New
Jersey, Prentice Hall.

PHIPPS, M., PHIPPS, C., KASK, S. and HIGGINS, S.
(2001): University students’ perceptions of cooperative
learning: Implications for administrators and
instructors. Journal of Experiential Education 24(1):
14–21.

