动力学作业(2)反应级数的确定与复杂反应计算

1. 设将 100 个细菌放入 1 升的烧杯中,瓶中有适宜的细菌生长的介质,温度为 40℃,得 到下列结果

时间 t/min	0	30	60	90	120
细菌数目 / 个	100	200	400	800	1600

- (1) 预计3小时后细菌的数目
- (2) 此动力学过程的级数
- (2) 经过多少时间可得到 106个细菌 (4) 细菌繁殖的速率系数

2.某抗菌素 A 注入人体后, 在血液中呈现简单的级数反应。如果在人体中注射 0.5 g 该抗菌 素,然后在不同时刻t,测定 A 在血液中的浓度 c_A (以 $mg/100cm^3$ 表示),得到下面的数据:

$$t/h$$
 4 8 12 16 $c_A/(\text{mg/}100\text{cm}^3)$ 0.480 0.326 0.222 0.151

- (1) 确定反应的级数。
- (2) 计算反应的速率系数。
- (3) 求 A 的半衰期。
- (4) 若要使血液中抗菌素浓度不低于 0.370mg/100cm3, 计算需要注射第二针的时间。
- 3.1099K 时,氧化氮按下式反应时,测得反应物的初始浓度及初始速率数据如下

$$2N\ O+2H_2 \rightarrow N_2+2H_2\ O$$

$p_{\rm H_2,0} = 53.196 \text{kPa}$			$p_{\text{NO},0} = 53.196\text{kPa}$			
组别	$p_{{ m NO,0}}$ / kPa	$r_0 = -\left(\frac{\mathrm{d}p}{\mathrm{d}t}\right)_0$	组别	$p_{\mathrm{H}_2,0}$ / kPa	$r_0 = -\left(\frac{\mathrm{d}p}{\mathrm{d}t}\right)_0$	
1	47.623	0.1975	4	38.301	0.211	
2	40.023	0.135	5	27.358	0.145	
3	20.265	0.033	6	19.657	0.104	
17.77.	wald for Mr.					

求该反应的级数。

4. 同位素硒的 β+衰变可表示为: ${}^{70}_{34}Se^{-\frac{k_1}{33}}As^{-\frac{k_2}{32}}Ge^{-\frac{k_1}{32}}$

已知 $k_1=0.0158 \text{ min}^{-1}$, $k_2=0.0133 \text{ min}^{-1}$,假定原始反应物 Se 的物质的量为 no,10 min 后将有多少 As 原子生成? 〔 0.137 n0]

5. 在 1189K 下, 乙酸的气相分解有两条平行的反应途径:

CH₃COOH
$$\rightarrow$$
 CH₄ + CO₂ $k_1 = 3.74 \text{ s}^{-1}$
CH₃COOH \rightarrow H₂C=C=O + H₂O $k_2 = 4.65 \text{ s}^{-1}$

- (1) 求乙酸反应掉99%所需的时间;
- (2) 求在此温度下乙烯酮的最大产率。
- 6. 有正逆方向均为一级的对峙反应:

D-R₁R₂R₃C-Br
$$\frac{k_1}{k_1}$$
 L-R₁R₂R₃C-Br

已知两反应的半衰期均为 $10 \min$,反应从 $D-R_1R_2R_3C-Br$ 的物质的量为 $1.00 \mod$ 开始,试计算 $10 \min$ 之后可得 $L-R_1R_2R_3C-Br$ 若干?