动力学作业(2)反应级数的确定与复杂反应计算作业点评

1. (微分法)设将 100 个细菌放入 1 升的烧杯中, 瓶中有适宜的细菌生长的介质, 温度为 40℃,得到下列结果

时间 t/min	0	;	30	60	90	120
细菌数目/个	100	200	400		800	1600

- (1) 预计3小时后细菌的数目 (2) 此动力学过程的级数
- (2) 经过多少时间可得到 10^6 个细菌 (4) 细菌繁殖的速率系数
- 解 (1)3 小时=180 分钟。以上表类推,每隔 30 分钟细菌数目翻一倍,

所以 3 小时后细菌个数为 $(1600 \times 2 \times 2)$ 个 = 6400 个

(2)
$$n = \frac{\ln r_1 - \ln r_2}{\ln c_1 - \ln c_2} = \frac{\ln \frac{200 - 100}{30} - \ln \frac{400 - 200}{60 - 30}}{\ln 200 - \ln 400} = 1$$
 (为1级反应)

(3)设c为细菌浓度,细菌是增加的 ,故速率方程写为

$$\frac{\mathrm{d}c}{\mathrm{d}t} = kc \qquad \qquad k = \frac{1}{t} \ln \frac{c_t}{c_0}$$

$$k = \frac{1}{t_1} \ln \frac{c_{t,1}}{c_0} = \frac{1}{t_2} \ln \frac{c_{t,2}}{c_0} \qquad (k \wedge 2)$$

代入数据
$$\left\{\frac{1}{30}\ln\frac{200}{100}\right\}$$
 $\min^{-1} = \left\{\frac{1}{t_2}\ln\frac{10^6}{100}\right\}$ \min^{-1}

解得 $t_2 = 399$ min

(4)繁殖速率系数
$$k = (\frac{1}{30} \ln \frac{20}{100}) \min^{-1} = 0.02 \ln \ln 1^{-1}$$

【点评】观察细菌生长过程时间与细菌数目个数的关系,可得出细菌的数目是每隔 $30 ext{min}$ 就翻一倍,见实验结果。在某时段内假设增加的速率是均匀的,将平均速率视为即时速率:即第 $30 ext{min}$ 时 $r_1 = \left\{ \frac{200-100}{30-0} \right\} \wedge / \mathcal{O}$,第 $60 ext{min}$ 时 $r_2 = \left\{ \frac{400-200}{60-30} \right\} \wedge / \mathcal{O}$,等,可用微分法先求出出反应级数 n=1,以后就可用一级动力学方程来求速率系数。必须注意由于细菌数是增加的,不同于一般反应中反应物是减少的,故速率方程要应写为 $+ \frac{\mathrm{d}c}{\mathrm{d}t} = kc$ 表示。 $2.(积分法)某抗菌素 A 注入人体后,在血液中呈现简单的级数反应。如果在人体中注射 <math>0.5 ext{ g}$ 该抗菌素,然后在不同时刻 t ,测定 A 在血液中的浓度 c_{A} (以 $\mathrm{mg}/100 \mathrm{cm}^3$ 表示),得到下面的数据:

$$t/h$$
 4 8 12 16 $c_{\rm A}/({\rm mg}/100{\rm cm}^3)$ 0.480 0.326 0.222 0.151

- (1) 确定反应的级数。
- (2) 计算反应的速率系数。
- (3) 求 A 的半衰期。
- (4) 若要使血液中抗菌素浓度不低于 0.370mg/100cm³, 计算需要注射第二针的时间。

解:(1)有多种方法可以确定该反应的级数。

方法 1.因为测定时间的间隔相同, t=4 h 。利用一级反应的定积分式 $\ln \frac{c_0}{c}=kt$,则 $\frac{c_0}{c}=\exp(kt)$ 。在时间间隔相同时,等式右边是常数,则看等式左边 c_0/c 的值,是否也基本相同。将实验数据代入 c_0/c 计算式进行计算,得

$$\frac{c_0}{c} = \frac{0.480}{0.326} = \frac{0.326}{0.222} = \frac{0.222}{0.151} \approx 1.47$$

等式左边 c_0/c 也基本是一常数,所以可以确定该反应为一级。

方法 2. 利用尝试法,假设反应是一级,将 $c_{\rm A}$ 与 t 的值代入一级反应的积分式,用每

两组实验数据计算一个速率系数值,看是否基本为一常数,

$$\ln \frac{0.480}{0.326} = k \times 4 \text{ h}$$

$$k = 0.0967 \text{ h}^{-1}$$

$$\ln \frac{0.326}{0.222} = k \times 4 \text{ h}$$

$$k = 0.0961 \text{ h}^{-1}$$

$$\ln \frac{0.222}{0.151} = k \times 4 \text{ h}$$

$$k = 0.0963 \text{ h}^{-1}$$

计算得到的速率系数值基本为一常数,所以原来的假设是正确的,该反应为一级反应。

也可以用 $\ln \frac{1}{a-x} \sim t$ 作图,也就是用 $\ln \frac{1}{c_{\rm A}} \sim t$ 作图,若得到一条直线,说明是一级反

- (2) 将(1)中得到的几个速率系数,取一个平均值,得 $\bar{k} = 0.0964 \text{ h}^{-1}$ 。
- (3) 利用一级反应的半衰期公式

$$t_{1/2} = \frac{\ln 2}{\overline{k}} = \frac{\ln 2}{0.0964 \text{ h}^{-1}} = 7.19 \text{ h}$$

(4) **方法 1。**利用一级反应的积分式,以在 4 h 时测试的浓度为起始浓度,不低于 $0.37 mg/100 cm^3$ 的浓度为终态浓度,计算从 4 h 起到这个浓度所需的时间,

$$t = \frac{1}{k} \ln \frac{a}{a - x}$$

$$= \frac{1}{0.0964^{1}} \times \ln \frac{0.480}{0.370} = 2.70$$

所以,注射第二针的时间约是:

$$t = (2.7 + 4.0) \text{ h} = 6.7 \text{ h}$$

方法 2。利用实验数据和已经得到的速率系数值,先计算抗菌素的初始浓度

$$\ln \frac{a}{a-x} = k_1 t$$

$$1 \frac{a}{0.480 (\text{mg}/1000 \text{cm})} = 0.0964 \times \text{h}$$

解得抗菌素的初始浓度 $a = 0.706 (mg/100 cm^3)$,则注射第二针的时间约为

$$t = \frac{1}{k_1} \ln \frac{a}{a - x} = \frac{1}{0.0964 \text{ h}^{-1}} \ln \frac{0.706}{0.370} = 6.70 \text{ h}$$

3.(孤立法) 1099K 时,氧化氮按下式反应时,测得反应物的初始浓度及初始速率数据如下

2N O	+2H2	N.	ЭΗ.	Λ
	+ 4112	→ IN2 -	- 400	v

$p_{\rm H_2,0} = 53.196 \text{kPa}$			$p_{NO,0} = 53.196$ kPa			
组别	$p_{NO,0}/kPa$	$r_0 = -\left(\frac{\mathrm{d}p}{\mathrm{d}t}\right)_0$	组别	$p_{\rm H_2,0}/{\rm kPa}$	$r_0 = -\left(\frac{\mathrm{d}p}{\mathrm{d}t}\right)_0$	
1	47.623	0.1975	4	38.301	0.211	
2	40.023	0.135	5	27.358	0.145	
3	20.265	0.033	6	19.657	0.104	

求该反应的级数。

解 该反应提供先固定 ${
m H}_2$ 的压力(浓度),改变 ${
m NO}$ 初压力(初浓度),求相应的初速率 r_0 ,再固定 ${
m NO}$ 的压力(浓度),改变 ${
m H}_2$ 初压力(初浓度)求相应的初速率 r_0 ,故可用微分法求反应级数,因为 $r_0=kp_{{
m H}_2,0}^{lpha}p_{{
m NO},0}^{eta}$

根据 1、2 组数据,得:
$$\frac{0.1975}{0.1350} = \left(\frac{47.623}{40.023}\right)^{\beta}$$
 解 $\beta = 2.19 \approx 2$

3、4组数据,得
$$\frac{0.1350}{0.0330} = \frac{40.00}{20.02}$$
 解 $\beta = 2.07 \approx 2$

再根据 4、5 组数据,得
$$\frac{0.21}{0.14} = \frac{1}{5} \left(\frac{38.3\%}{27.35} \right)$$
 解 $\alpha = 1.11 \approx 1$

5、6 组数据,得
$$\frac{0.145}{0.10} = \frac{1}{4} \left(\frac{27.5\%}{19.5\%} \right)$$
 解 $\alpha = 1.00 \approx 1$

考虑到实验中的误差,可以认为 eta = 2 , lpha = 1

反应级数n=3,即反应为三级反应

速率方程为
$$r = k \, {\stackrel{2}{\varsigma}}_{\rm O} \, \, {\varsigma}_{\rm H}$$

【点评】动力学问题之一就是求反应级数。这里是运用起始速率法求解反应级数中的一种方法,在实验数据较为充分的情况下经常会用到。测起始速率时,反应系统需纯净,不受其他因素如产物等的干扰与影响,因此求得的级数较为可靠(也称浓度级数)。

4.同位素硒的 β+衰变可表示为: ${}^{70}_{34}Se \xrightarrow{k_1} {}^{70}_{33}As \xrightarrow{k_2} {}^{70}_{32}Ge$

已知 $k_1 = 0.0158 \text{ min}^{-1}$, $k_2 = 0.0133 \text{ min}^{-1}$, 假定原始反应物 Se 的物质的量为 no ,10 min 后将有多少 As 原子生成? 〔 0.137 n0]

解:这是1,1级连续反应,中间产物I的浓度与时间关系为:

$$[I] = \frac{k_1 a}{k_2 - k_1} \left(e^{-k_1 t} - e^{-k_2 t} \right)$$
 数值代入:

[As]=
$$\frac{0.0158 n_0}{0.0133 - 0.0158} \left(e^{-0.0158 \cdot 10} - e^{-0.0133 \cdot 10} \right) = 0.137 n_0$$

点评:上述反应为连续反应,已知反应的速率系数、反应进行时间,根据中间产物浓度与时间的关系式,可计算一定时间后中间产物浓度。

5. 在 1189K 下, 乙酸的气相分解有两条平行的反应途径:

CH₃COOH
$$\rightarrow$$
 CH₄ + CO₂ $k_1 = 3.74 \text{ s}^{-1}$
CH₃COOH \rightarrow H₂C=C=O + H₂O $k_2 = 4.65 \text{ s}^{-1}$

- (1) 求乙酸反应掉 99%所需的时间;
- (2) 求在此温度下乙烯酮的最大产率。

解:解:(1) 乙酸 甲烷 丙烯酮
$$t = 0 \qquad a \qquad 0 \qquad 0$$

$$t = t \qquad a-x_1-x_2 = a-x \qquad x_1 \qquad x_2$$

(1) 根据一级平行反应动力学公式

$$\ln(a/a-x) = (k_1 + k_2) t$$
 $\stackrel{\text{def}}{=}$ $a-x = 0.01 a$
 $t = [1/(k_1 + k_2)] \ln(a/0.01a)$
 $= [1/(3.74 + 4.65)] \ln(1/0.01)$

(2) 因为反应为一级平行反应,且两个平行反应级数相同,因此根据题意

$$x_1 + x_2 = 0.99a$$

= 0.549 s

$$x_1/x_2 = k_1/k_2$$

解上述联立方程得 $x_2 = 0.5487a$

所以 $CH_2 = CO$ 的产量 = 0.5487a/0.99a = 55.42% (占分解的百分比)

点评:此题为一级平行反应,且两个平行反应级数相同,解题关键是平行反应动力学方程式的应用。

6. 有正逆方向均为一级的对峙反应:

D -
$$RR_2 R_3 C$$
 - Br $\frac{k_1}{k_1}$ L- $R_1 R_2 R_3 C$ - Br

已知两反应的半衰期均为 10 min ,反应从 $D-R_1R_2R_3C-Br$ 的物质的量为 1.00 mol 开始,试计算 10 min 之后可得 $L-R_1R_2R_3C-Br$ 若干?

解: A B

$$t = 0$$
 1.0

$$t = t$$
 $a - x$ x

$$t_{1/2} = 10 \text{ min}$$
 $k_1 = 0.693/10 = 0.0693 \text{ min}^{-1}$ $k_{-1} = 0.0693 \text{ min}^{-1}$

$$x_n/(a - x_n) = k_1/k_{-1} = 1$$
 $x_n = a - x_n$ $x_n = a = x_1.0 = 0.5$

$$ln[x_n/(x_n - x)] = (k_1 + k_{-1})t = 0.0693 \times 2 \times 10 = 1.386$$

 $x_n/(x_n - x) = 4.0$ $0.5 = 4.0 \times (0.5 - x)$ $x = 0.375 \text{ mol/dm}^3$

可得 L-R₁R₂R₃C-Br 0.375 mol

点评:此题为 1-1 级平行反应,求解一定反应时间后产物浓度。根据题目给出的正、逆反 应半衰期数据,通过反应平衡常数与正、逆向反应速率系数的关系,即可求求解一定反应时间 后产物浓度。