第二章原子结构作业参考答案

- 8. 描述核外电子运动状态的下列每一组量子数是否合理,说明原因,并改正。
 - (1) n=1, l=1, m=0
 - (2) n=2, l=0, $m=\pm 1$
 - (3) n=3, l=3, $m=\pm 3$
 - (4) n=4, l=3, $m=\pm 2$
- **解:** (1) 错。因 n=1 时 l 只能取 0。改正为 l=0,或者 $n\geq 2$ 均可。
 - (2) 错。l=0 时 m 只能取 0。改正为 m=0,或者改为 l=1。
 - (3) 错。n=3 时 l 只能取(n-1)的正整数。改正为 l=2,m=0 或 1 或-1;或者改为 n≥4。
 - (4) 正确。均满足n、l、m 的取值要求。
- 13. 已知 M²⁺离子的 3d 轨道上有 5 个电子, 试指出:
 - (1) M 原子的核外电子排布式:
 - (2) M 原子的名称及在周期表中的位置;
 - (3) 用四个量子数表示 3d 轨道中 5个电子的运动状态。
- **解:** (1) M 原子的核外电子排布式: 1s²2s²2p⁶3s²3p⁶3d⁵4s²
 - (2) 该元素为 Mn, 位于第四周期VIIB 族

(3)	n	1	m	m_s
$3d^1$	3	2	0	+1/2
$3d^1$	3	2	+1	+1/2
$3d^1$	3	2	-1	+1/2
$3d^1$	3	2	+2	+1/2
$3d^1$	3	2	-2	+1/2

(说明: m_s也可以全部都写成-1/2; 同样, m 写五个数字中任何一个均对, 但它们中不得出现相同的值。)

22. 不看元素周期表,填写下表的空格

解:

原子序 数	电子排布式	价电子构型	周期	族	分区
24	$1s^22s^22p^63s^23p^63d^54s^1$	$3d^54s^1$	四	VIB	d
18	$[\mathrm{Ne}]3\mathrm{s}^23\mathrm{p}^6$	$3s^23p^6$	三	VIIIA(0A)	p
35	$1s^22s^22p^63s^23p^63d^{10}4s^24p^5$	$4s^24p^5$	四	VIIA	p
48	$1s^22s^22p^63s^23p^63d^{10}4s^24p^64d^{10}5s^2$	$4d^{10}5s^2$	五.	IIB	ds

- **25.** 现有X、Y、Z三种元素的原子,电子最后排布在相同的能级组上,而且Y的核电荷比X大12个单位,Z的质子数比Y多4个。1 mol的X同酸反应能置换出1克氢气,这时X转化为氩原子型电子层结构的离子。
 - (1) 判断X、Y、Z为何元素;
 - (2) 写出X的原子、Y的阳离子、Z阴离子的电子排布式。

解: (1) X为K,Y为Ga,Z为Br

(2) K: $1s^22s^22p^63s^23p^64s^1$

 Ga^{3+} : $1s^22s^22p^63s^23p^63d^{10}$

Br: $1s^22s^22p^63s^23p^63d^{10}4s^24p^6$