
3-9. Integrating rational functions: partial fraction decomposition
We already know of a procedure to integrate polynomials. Here we shall see
how to integrate a “rational function”, i.e., a quotient of one polynomial by
another.
Occasionally, there might be a substitution available to solve a complicated
rational function, e.g.,∫

3x2 + x

2x3 + x2 − 7
dx =

∫
1

u

du

2
(subst. u = 2x3 + x2 − 7)

= ln |u|+ C

= ln
∣∣2x3 + x2 − 7

∣∣+ C.

Usually, this approach won’t work, e.g., with∫
5x− 15

x2 + 3x− 4
dx.

This integral can be solved easily, however, by noticing

7

x+ 4
− 2

x− 1
=

7(x− 1)− 2(x+ 4)

x2 + 3x− 4
=

5x− 15

x2 + 3x− 4
(4)

so that ∫
5x− 15

x2 + 3x− 4
dx =

∫
7

x+ 4
− 2

x− 1
dx

= 7 ln |x+ 4| − 2 ln |x− 1|+ C.
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Finding the decomposition (4) might look, at first, like a stroke of luck.

In fact, there is a systematic way to do this. We first note that the
denominator of the integrand, x2 + 3x− 4, factors as

x2 + 3x− 4 = (x+ 4)(x− 1).

Then we try to solve

5x− 15

x2 + 3x− 4
=

A

x+ 4
+

B

x− 1
(5)

for real numbers A and B.

Multiplying the equation by (x2 + 3x− 4) produces

5x− 15 = A(x− 1) +B(x+ 4) = (A+B)x+ (−A+ 4B).
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We view this as a system of two equations in two unknowns,

(1) : 5 = A+B,
(2) : −15 = −A+ 4B

Now we solve this system:

(1) + (2) : −10 = 5B,
B = −2,

(1) : 5 = A+ (−2),
A = 7.

Plugging this solution into (5) yields

5x− 15

x2 + 3x− 4
=

7

x+ 4
− 2

x− 1
.
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This sort of thing can be done very generally, which is the content of the
following theorem:

Theorem 3.38 (Partial Fraction Decomposition). Let f(x) be a rational
function,

f(x) =
p(x)

q1(x)n1 · · · qk(x)nkrm1
1 (x) · · · rml

l

(x),

where p(x) is a polynomial and qi are distinct monic linear polynomials,

qi(x) = x+ ai, i = 1, . . . , k

and the ri(x) are distinct monic quadratic polynomials,

ri(x) = x2 + bix+ ci where b2i − 4ci < 0, i = 1, . . . , l.

Then f(x) decomposes as

f(x) = g(x) +
k∑
i=1

ni∑
j=1

Ai,j
(x+ ai)j

+

l∑
i=1

mi∑
j=1

Bi,jx+ Ci,j
(x2 + bix+ ci)j

,

for some polynomial g(x) and some real numbers Ai,j , Bi,j , Ci,j .
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We do not prove this theorem in this course. The statement of this theorem is
fairly involved, so let us break it down a bit, and explain how to use it.

We start with a general rational function

f(x) =
p(x)

q(x)
.

We may assume that q(x) is a monic polynomial (i.e., the coefficient on its first
term is 1).

By the Fundamental Theorem of Algebra, q(x) factors into irreducible linear
and quadratic terms. (In practice, given a “random” polynomial q(x), it may
be extremely difficult to factor it; in some cases, it is not even possible to
factor it exactly. However, in all examples in this course, this factorisation will
be possible and not too difficult.)

There may be some factors repeated in the factorisation of q(x); these need to
be collected together. Altogether, this yields a factorisation

q(x) = q1(x)n1 · · · qk(x)nkr1(x)m1 · · · rl(x)ml

where qi(x) and ri(x) are as described in the above theorem.
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We can then expect to express f(x) as a sum of the following terms:

1. Some polynomial, g(x).

2. For every linear term qi(x) = x+ ai in the factorisation of q(x) (occurring
ni times) terms of the form

Ai,j
(x+ ai)j

,

where j = 1, . . . , ni. (If ni = 1, i.e., if (x+ ai) only appears once in the
factorisation of q(x), then we just have one term here.)

3. For every quadratic term ri(x) = x2 + bix+ ci in the factorisation of q(x)
(occurring mi times) terms of the form

Bi,jx+ Ci,j
(x2 + bxi + ci)j

where j = 1, . . . ,mi. (Again, if mi = 1, i.e., if (x2 + bix+ ci) only appears
once in the factorisation of q(x), then we just have one term here.)
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Let us do some examples of how to express rational functions using this
theorem. After this, we will go on to integrating rational functions.

Example 3.39. Find the partial fraction decomposition of the following
rational functions:

(i)
x+ 7

x2 + 5x+ 6
.

(ii)
x+ 7

x2 + 4x+ 4
.

(iii)
31x+ 51

x3 + 4x2 − 15x− 18
.

(iv)
x4 + x3 + 5x2 − 10x− 1

(x+ 3)(x− 1)2
.

(v)
x3 + 7x2 + 6x+ 4

x3 − 1
.
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Solution. (i): First factor the denominator:

x2 + 5x+ 6 = (x+ 2)(x+ 3).

Hence we want to solve

x+ 7

x2 + 5x+ 6
= g(x) +

A

x+ 2
+

B

x+ 3

for a polynomial g(x) and scalars A,B ∈ R.
Multiplying both sides by (x2 + 5x+ 6) produces

x+ 7 = g(x)(x2 + 5x+ 6) +A(x+ 3) +B(x+ 2)

= g(x)(x2 + 5x+ 6) + (A+B)x+ (3A+ 2B).

If the polynomial g(x) were nonzero, then the right-hand side would have some
term involving xk for some k ≥ 2. Since the left-hand side has degree one, the
polynomial g(x) must be zero.
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This gives the system of equations

(1) : 1 = A+B,
(2) : 7 = 3A+ 2B.

We solve this as follows:

(2)− 3(1) : 4 = −B
B = −4

(1) : 1 = A− 4,
A = 5.

We therefore have
x+ 7

x2 + 5x+ 6
=

5

x+ 2
− 4

x+ 3
.
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(ii): The denominator factors as

x2 + 4x+ 4 = (x+ 2)2.

Hence we want to solve

x+ 7

x2 + 4x+ 4
= g(x) +

A

x+ 2
+

B

(x+ 2)2

for a polynomial g(x) and scalars A,B ∈ R.
Multiplying this equation by (x+ 2)2 produces

x+ 7 = g(x)(x+ 2)2 +A(x+ 2) +B = g(x)(x+ 2)2 +Ax+ (2A+B).

Again, g(x) must be zero since the left-hand side has degree < 2. This system
solves easily:

A = 1, B = 7− 2 = 5.

Therefore,
x+ 7

x2 + 4x+ 4
=

1

x+ 2
+

5

(x+ 2)2
.
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(iii): First factor the denominator:

x3 + 4x2 − 15x− 18 = (x− 3)(x+ 1)(x+ 6)

Hence we want to solve

31x+ 51

x3 + 4x2 − 15x− 18
= g(x) +

A

x− 3
+

B

x+ 1
+

C

x+ 6

for a polynomial g(x) and scalars A,B,C ∈ R.
Multiplying this equation by (x3 + 4x2 − 15x− 18) produces

31x+ 51 = g(x)(x3 + 4x2 − 15x− 18) +A(x+ 1)(x+ 6) +B(x− 3)(x+ 6)

+ C(x− 3)(x+ 1)

= g(x)(x3 + 4x2 − 15x− 18) + (A+B + C)x2 + (7A+ 3B − 2C)x

+ (6A− 18B − 3C).

Since the left-hand side has degree < 3, the polynomial g(x) must be zero.
This gives a system of three equations,

(1) : 0 = A+B + C,
(2) : 31 = 7A+ 3B − 2C,
(3) : 51 = 6A− 18B − 3C.
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We now solve this system:

(4) : (2) + 2(1) : 31 = 9A+ 5B,
(5) : (3) + 3(1) : 51 = 9A− 15B,

(5)− (4) : 20 = −20B,
B = −1,

(4) : 31 = 9A− 5,
A = 36/9 = 4,

(1) : 0 = 4− 1 + C,
−3 = C.

Therefore,

31x+ 51

x3 + 4x2 − 15x− 18
=

4

x− 3
− 1

x+ 1
− 3

x+ 6
.
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(iv): The denominator has already been factored, so we go straight to the
partial fraction decomposition with variables to be solved. We want to solve

x4 + x3 + 5x2 − 10x− 1

(x+ 3)(x− 1)2
= g(x) +

A

x+ 3
+

B

x− 1
+

C

(x− 1)2
.

Multiplying by (x+ 3)(x− 1)2 yields

x4+x3+5x2−10x−1 = g(x)(x+3)(x−1)2+A(x−1)2+B(x+3)(x−1)+C(x+3).

Here, the left-hand side has degree 4, while the component of the right-hand
side that doesn’t involve g(x) can only have degree at most 2. Hence, we need
the polynomial g(x) to have degree 1, so we let g(x) = Dx+ E, giving

x4 + x3 + 5x2 − 10x− 1

= (Dx+ E)(x+ 3)(x− 1)2 +A(x− 1)2 +B(x+ 3)(x− 1) + C(x+ 3)

= Dx4 + (D + E)x3 + (A+B − 5D + E)x2

+ (−2A+ 2B + C + 3D − 5E)x+ (A− 3B + 3C + 3E),

translating into the system

(1) : 1 = D,
(2) : 1 = D + E,
(3) : 5 = A+B − 5D + E,
(4) : −10 = −2A+ 2B + C + 3D − 5E,
(5) : −1 = A− 3B + 3C + 3E.
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We now solve this system:

(2) : 1 = 1 + E,
E = 0,

(6) : (5)− 3(4) : 29 = 7A− 9B − 9(1),
38 = 7A− 9B,

(6) + 9(3) : 83 = 16A− 45
A = 128/16 = 8,

(3) : 5 = 8 +B − 5,
B = 2,

(5) : −1 = 8− 3(2) + 3C
C = −3/3 = −1.

Therefore,

x4 + x3 + 5x2 − 10x− 1

(x+ 3)(x− 1)2
= x+

8

x+ 3
+

2

x− 1
− 1

(x− 1)2
.

Generally, when the degree of the numerator is below the degree of the
denominator, the polynomial term (“g(x)”) will be zero in the Partial Fraction
Decomposition. Otherwise, the degree of g(x) is the difference between the
degree of the numerator and the degree of the numerator.
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(v): The denominator factors as

(x− 1)(x2 + x+ 1),

and we know that we can’t factor x2 + x+ 1, since the discriminant is

12 − 4(1) = −3 < 0.

We want to solve

x3 + 7x2 + 6x+ 4

x3 − 1
= g(x) +

A

x− 1
+

Bx+ C

x2 + x+ 1
.

Multiplying by x3 − 1 yields

x3 + 7x2 + 6x+ 4 = g(x)(x3 − 1) +A(x2 + x+ 1) + (Bx+ C)(x− 1).

Since the right-hand side has degree 3, we see that we need g(x) to be a
constant, g(x) = D. The above equation becomes

x3 + 7x2 + 6x+ 4 = D(x3 − 1) +A(x2 + x+ 1) + (Bx+ C)(x− 1)

= Dx3 + (A+B)x2 + (A−B + C)x+ (−D +A− C).

Our system is thus
(1) : 1 = D,
(2) : 7 = A+B,
(3) : 6 = A−B + C,
(4) : 4 = A− C −D

= A− C − 1.
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We solve this system:

(2) + (3) + (4) : 17 = 3A− 1,
A = 18/3 = 6,

(2) : 7 = 6 +B,
B = 1,

(3) : 6 = 6− 1 + C,
C = 1.

Therefore,
x3 + 7x2 + 6x+ 4

x3 − 1
= 1 +

6

x− 1
+

x+ 1

x2 + x+ 1
.
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Once we’ve decomposed a rational function using Partial Fraction
Decomposition, we should be able to integrate the various terms that appear.
Here are some examples.

Example 3.40. Solve the following integrals.

(i)

∫
x+ 7

x2 + 5x+ 6
dx.

(ii)

∫
x+ 7

x2 + 4x+ 4
dx.

(iii)

∫
x4 + x3 + 5x2 − 10x− 1

(x+ 3)(x− 1)2
dx.

(iv)

∫
7x2 − x+ 4

x3 + x
dx.

(v)

∫
x3 − 7x2

x2 − 6x+ 10
dx.

(vi)

∫
4x3 − 8x2 − x+ 1

16x4 + 8x2 + 1
dx.
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Solution. (i): Using Example 3.39 (i), we get∫
x+ 7

x2 + 5x+ 6
dx =

∫
5

x+ 2
− 4

x+ 3
dx

= 5 ln |x+ 2| − 4 ln |x+ 3|+ C.

(ii): Using Example 3.39 (ii), we get∫
x+ 7

x2 + 4x+ 4
dx =

∫
1

x+ 2
+

5

(x+ 2)2
dx

= ln |x+ 2| − 5

x+ 2
+ C.

(iii): Using Example 3.39 (ii), we get∫
x4 + x3 + 5x2 − 10x− 1

(x+ 3)(x− 1)2
dx =

∫
x+

8

x+ 3
+

2

x− 1
− 1

(x− 1)2
dx

= x2 + 8 ln |x+ 3|+ 2 ln |x− 1|+ 1

x− 1
+ C.
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(iv): We need to do Partial Fraction Decomposition on the integrand. The
denominator factors as

x3 + x = x(x2 + 1),

so we want to solve
7x2 − x+ 4

x3 + x
=
A

x
+
Bx+ C

x2 + 1
.

(We see that we don’t need to add a polynomial, because the degree of the
numerator is less than the degree of the denominator.)
We get

7x2 − x+ 4 = A(x2 + 1) + (Bx+ C)x = (A+B)x2 + Cx+A,

which easily solves as

A = 4, B = 3, C = −1.

Therefore, ∫
7x2 − x+ 4

x3 + x
dx =

∫
4

x
+

3x− 1

x2 + 1
dx.

to integrate 3x−1
x2+1

, we separate it into two sums, using the substitution

u = x2 + 1 for the first.∫
7x2 − x+ 4

x3 + x
dx =

∫
4

x
+

3x− 1

x2 + 1
dx

= 4 ln |x|+ 3

2
ln(x2 + 1)− tan−1(x) + C.
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(v): The denominator in this case cannot be further factored, since the
discriminant is

(−6)2 − 4(10) = −4 < 0.

So we just need to write the integrand as

x3 − 7x2

x2 − 6x+ 10
=

Ax+B

x2 − 6x+ 10
+ Cx+D,

x3 − 7x2 = Ax+B + (Cx+D)(x2 − 6x+ 10)

= Cx3 + (−6C +D)x2 + (A+ 10C − 6D)x+ (B + 10D).

This gives the system

1 = C,

−7 = −6C +D,

0 = A+ 10C − 6D,

0 = B + 10D,

which we can solve,

C = 1, , D = −1, A = −16, B = 10.
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Therefore,
x3 − 7x2

x2 − 6x+ 10
=
−16x+ 10

x2 − 6x+ 10
+ x− 1.

When we integrate this, we’ll want to use the substitution

u = x2 − 6x+ 10, du = (2x− 6) dx

to deal with part of the fractional term. We therefore break apart this
fractional term,

−16x+ 10

x2 − 6x+ 10
= −8 · 2x− 6

x2 − 6x+ 1
− 38

x2 − 6x+ 10
.

The second term here we handle by completing the square in the denominator:

x2 − 6x+ 10 = (x− 3)2 + 1.

Putting this together, we get∫
x3 − 7x2

x2 − 6x+ 10
dx

= −8

∫
2x− 3

x2 − 6x+ 1
dx− 38

∫
1

(x− 3)2 + 1
dx+

∫
x− 1 dx

= −8

∫
1

u
du− 38

∫
1

(x− 3)2 + 1
dx+

∫
x− 1 dx

= −8 ln |u| − 38 tan−1(x− 3) +
x2

2
− x+ C

= −8 ln(x2 − 6x+ 10)− 38 tan−1(x− 3) +
x2

2
− x+ C.

421 / 424



(vi): Factor the denominator,

16x4 + 8x2 + 1 = (4x2 + 1)2,

so our Partial Fraction Decomposition looks like

4x3 − 8x2 − x+ 1

16x4 + 8x2 + 1
=
Ax+B

4x2 + 1
+

Cx+D

(4x2 + 1)2
,

4x3 − 8x2 − x+ 1 = (Ax+B)(4x2 + 1) + Cx+D

= 4Ax3 + 4Bx2 + (A+ C)x+ (B +D)

This solves as
A = 1, B = −2, C = −2, D = 3,

so that
4x2 + 2x− 2

16x4 + 8x2 + 1
=

x− 2

4x2 + 1
− 2x− 3

(4x2 + 1)2
.
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To integrate this, we note that∫
x

4x2 + 1
dx =

ln(4x2 + 1)

8
+ C1, (subst. u = 4x2 + 1)∫

1

4x2 + 1
dx =

tan−1(2x)

2
+ C2,∫

x

(4x2 + 1)2
dx = − 1

8(4x2 + 1)
+ C3, (subst. u = 4x2 + 1),∫

1

(4x2 + 1)2
dx =

tan−1(2x)

4
+

x

2(1 + x2)
+ C4,

while the last one is done with the trig substitution 2x = tan(u), similarly to
Example 3.37 (iii). Hence,∫

4x2 + 2x− 2

16x4 + 8x2 + 1
dx =

∫
x− 2

4x2 + 1
− 2x− 3

(4x2 + 1)2
dx

=
ln(4x2 + 1)

8
− 2 · tan−1(2x)

2
− 2

(
− 1

8(4x2 + 1)

)
+ 3

(
tan−1(2x)

4
+

x

2(1 + x2)

)
+ C

=
ln(4x2 + 1)

8
− tan−1(2x)

4
− 1 + 6x

4(4x2 + 1)
+ C.
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Here is a table summarising the integration techniques needed for different
Partial Fraction Decomposition terms:

Term: Integration technique:

1
x+a

ln |x+ a|.
1

(x+a)k
, k ≥ 2 − 1

(k−1)(x+a)k−1 .

1
x2+bx+c

, b2 − 4c < 0 Complete the square, then use tan−1(·).

1
(x2+1)k

, k ≥ 2 Trig substitution, x = tan(u).

1
(x2+bx+c)k

, b2 − 4c < 0 Complete the square, then use a trig

substitution ·· = tan(u).

x
(x2+c)k

, k ≥ 1 Substitute u = x2 + c.

(2x+b)

(x2+bx+c)k
, k ≥ 1 Substitute u = x2 + bx+ c.

Ax+B
(x2+bx+c)k

, k ≥ 1 Rewrite this as
∑k
i=1

Ai(2x+b)+Bi

(x2+bx+c)k
, then use above.
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