
3-6. Integration by parts

Integration by parts (IBP) is a new technique, which will enable us to solve
integrals such as ∫

xe6x dx,

which cannot be solved by substitution.
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Proposition 3.23 (Integration by parts). Let f(x), g(x) be differentiable
functions, and suppose that∫

f(x)g′(x) dx = H(x) + C.

Then ∫
f ′(x)g(x) dx = f(x)g(x)−H(x) + C′.

Proof.
This is derived from the product rule for differentiation. By assumption, we
know that

H ′(x) = f(x)g′(x).

Define F (x) = f(x)g(x)−H(x), so that

F ′(x) = f ′(x)g(x) + f(x)g′(x)− f(x)g′(x) = f ′(x)g(x),

i.e., ∫
f ′(x)g(x) dx = F (x) + C′,

as required.
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Here is a more concise way of remembering Integration by Parts. Use

u = f(x), dv = g′(x) dx

du = f ′(x), dx v = g(x)

and then IBP becomes ∫
u dv = uv −

∫
v du.

Since a new integration constant will occur for the integral
∫
v du, we have

dropped the integration constant (“+C”).
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Example 3.24. Solve ∫
xe6x dx.

Solution. Use

u = x, dv = e6x dx

du = dx, v =
1

6
e6x

to get ∫
xe6x =

∫
u dv

= uv −
∫
v du (IBP)

=
1

6

(
xe6x −

∫
e6x dx

)
=

1

6
xe6x − 1

36
e6x + C

Check:

d

dx
(
1

6
xe6x − 1

36
e6x + C) =

1

6
(e6x + 6xe6x)− 1

36
6e6x = xe6x.
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How did we choose u and dv in the above example?
Generally, we want to factor the integrand as u dv where:

1. we can find the antiderivative to dv (i.e., find v), and

2. the integral
∫
v du, is easier to solve.

(While this is generally what we want to do, there is one trick where 2 doesn’t
hold –

∫
v du isn’t any simpler; see Example 3.31.)

In the above example, it helped to remember that we knew how to integrate ex

(and, by substation, also e6x).

Through practice with computing integrals, we get to know which things we
can integrate more easily.

It might be that we need to use substitution, or even IBP again, to find v or
solve

∫
v du.
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Example 3.25. Evaluate the integral∫
x
√
x+ 1 dx

Solution. There are, in fact, two ways of doing this one: (a) Integration by

Parts, and (b) Substitution.

(a) Integration by Parts. Notice that there are no trigonometric or
exponential functions here. Although often the IBP integrals we will be solving
contain trig or exponential functions, don’t assume that you can’t use IBP if
you don’t see them. We’ll use IBP with

u = x, dv =
√
x+ 1 dx

du = dx, v =
2

3
(x+ 1)3/2.

Then ∫
x
√
x+ 1 dx =

2

3
x(x+ 1)3/2 − 2

3

∫
(x+ 1)3/2 dx (IBP)

=
2

3
x(x+ 1)3/2 − 2

3
· 2

5
(x+ 1)5/2 + C

=
2

3
x(x+ 1)3/2 − 4

15
(x+ 1)5/2 + C
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(b) Substitution. We use the following substitution

u = x+ 1, x = u− 1, dx = du.

Then ∫
x
√
x+ 1 dx =

∫
(u− 1)u1/2 du

=

∫
u3/2 − u1/2 du

=
5

2
u5/2 − 3

2
u3/2 + C′

=
5

2
(x+ 1)5/2 − 3

2
(x+ 1)3/2 + C′

We got different answers! Did we do something wrong? No, in fact, with some
algebraic manipulation, we can show that

5

2
(x+ 1)5/2 − 3

2
(x+ 1)3/2 =

2

3
x(x+ 1)3/2 − 4

15
(x+ 1)5/2.

(Note, in some cases, there might be two correct solutions that aren’t exactly
the same, but instead differ by a constant. This is also okay — it is precisely
the purpose of the integration constant.)
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Example 3.26. Solve ∫
x2 sin(10x) dx

Solution. We use IBP with

u = x2, dv = sin(10x) dx

du = 2x dx, v = − 1

10
cos(10x).

Then∫
x2 sin(10x) dx = − 1

10

(
x2 cos(10x)− 2

∫
x cos(10x) dx

)
(IBP)

At first, this might not seem helpful, since the new integral,
∫
x cos(10x) dx, is

still not something we recognise. We need to do IBP again, this time with

u = x, dv = cos(10x) dx

du = dx, v =
1

10
sin(10x).
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Then ∫
x cos(10x) dx =

1

10

(
x sin(10x)−

∫
sin(10x) dx

)
(IBP)

=
1

10
x sin(10x) +

1

100
cos(10x) + C

and thus,∫
x2 sin(10x) dx = − 1

10
x2 cos(10x) +

1

50
x sin(10x) +

1

500
cos(10x) + C′
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Example 3.27. Evaluate ∫
ln(x) dx.

Solution. Unlike in previous examples, the integrand doesn’t look like it can

factor at all! One choice that you might be tempted to try is

u = 1, dv = ln(x) dx.

However, this begs the question, because we don’t know how to find v (i.e.,
antidifferentiate ln(x)) in the first place!
Instead, we use

u = ln(x), dv = dx

du =
1

x
dx, v = x.

Then ∫
ln(x) dx = x ln(x)−

∫
x

1

x
dx (IBP)

= x ln(x)−
∫

1 dx

= x ln(x)− x+ C.
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Example 3.28. Solve ∫
ln(t)2 dt.

Solution. From the previous example, we know an antiderivative to ln(t). We

can use

u = ln(t), dv = ln(t) dt

du =
dt

t
, v = t ln(t)− t,

to get ∫
ln(t)2 dt = ln(t)(t ln(t)− t)−

∫
t ln(t)− t

t
dt (IBP)

= t ln(t)2 − t ln(t)−
∫

ln(t)− 1 dt

= t ln(t)2 − t ln(t)− (t ln(t)− t− t) + C

= t ln(t)2 − 2t ln(t) + 2t+ C.

This one could also have been done with u = ln(t)2, dv = 1 dt.
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Example 3.29. Solve the integral∫
x5
√
x3 + 1 dx

Solution. The most obvious way to factorise the integrand is

u = x5, dv =
√
x3 + 1 dx.

To find v, however, requires solving∫ √
x3 + 1 dx

which is not easy possible!
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But this is not the only choice! There are many others, e.g., x · x4
√
x3 + 1,

x2 · x3
√
x3 + 1, etc. The best way to do this one is by choosing

dv = x2
√
x3 + 1. This is because we can do a substitution to solve∫

x2
√
x3 + 1 dx,

namely w = x3 + 1, dw = 3x2 dx, which gives∫
x2
√
x3 + 1 dx =

1

3

∫ √
w dw =

2

9
(x3 + 1)3/2 + C.
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Thus, we use

u = x3, dv = x2
√
x3 + 1,

du = 3x2, v =
2

9
(x3 + 1)3/2

and get∫
x5
√
x3 + 1 dx =

2

9
x3(x3 + 1)3/2 − 2

3

∫
x2(x3 + 1)3/2 dx (IBP)

=
2

9
x3(x3 + 1)3/2 − 2

9

∫
w3/2 dw (subst. w = x3 + 1)

=
2

9
x3(x3 + 1)3/2 − 4

45
w5/2 + C

=
2

9
x3(x3 + 1)3/2 − 4

45
(x3 + 1)5/2 + C.
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Example 3.30. Evaluate

(i)

∫
x3ex/2 dx.

(ii)

∫
ln(t)2

t2
dt.
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Solution. (i): Use IBP with

u = x3, dv = ex/2 dx

du = 3x2 dx, v = 2ex/2

to get ∫
x3ex/2 dx = 2x3ex/2 − 6

∫
x2ex/2 dx.

Does this help? Well the new integral isn’t something we can solve directly;
but it looks less complicated (because it contains x2 instead of x3).
We simply need to use IBP again (and again). This time use

u = x2, dv = ex/2 dx

du = 2x dx, v = 2ex/2,

which gives ∫
x2ex/2 dx = 2x2ex/2 − 4

∫
xex/2 dx (IBP).
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We use IBP again; this time,

u = x, dv = ex/2 dx

du = 1 dx, v = 2ex/2,

which gives ∫
xex/2 dx = 2xex/2 − 2

∫
ex/2 dx (IBP)

= 2xex/2 − 4ex/2 + C.

Altogether, we get∫
x3ex/2 dx = 2x3ex/2 − 6[2x2ex/2 − 4

(
2xex/2 − 4ex/2 + C

)
]

= 2ex/2(x3 − 6x2 + 24x− 48) + C′.
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(ii): Use

u = ln(t)2, dv =
1

t2
dt

du =
2 ln(t)

t
dt, v = −1

t
.

Then IBP gives ∫
ln(t)2

t2
dt = − ln(t)2

t
+ 2

∫
ln(t)

t2
dt (IBP).

The situation is much like in (i): we arrive at a new integral that we can’t solve
directly, but it seems that we are getting closer to something that we can solve
directly, and so we push on.
We now use

u = ln(t), dv =
1

t2
dt

du =
1

t
dt, v = −1

t

to get ∫
ln(t)

t2
dt = − ln(t)

t
+

∫
1

t2
dt (IBP)

= − ln(t)

t
− 1

t
+ C.
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Putting these together we obtain∫
ln(t)2

t2
dt = − ln(t)2

t
+ 2

∫
ln(t)

t2
dt

= − ln(t)2

t
− 2 ln(t)

t
− 2

t
+ C′.
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In the previous example, it was clear that we should continue solving the
integral using IBP, since each time the new integral appearing became easier.
In the next example, this will not be the case; it involves a trick.

Example 3.31. Evaluate ∫
et cos(t) dt.

Solution. Try

u = et, dv = cos(t) dt,

du = et dt, v = sin(t),

and we find ∫
et cos(t) dt = et sin(t)−

∫
et sin(t) dt (IBP). (2)

The new integral,
∫
et sin(t) dt, looks no easier than the original!
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We might have instead tried

u = cos(t), dv = et dt,

du = − sin(t) dt, v = et,

which gives ∫
et cos(t) dt = et cos(t) +

∫
et sin(t) dt (IBP). (3)

This still leads to something involving the integral
∫
et sin(t) dt. It seems that

there is no way to get around something involving this other integral.
So let’s perservere and try

u = sin(t), dv = et dt,

du = cos(t) dt, v = et,

which gives ∫
et sin(t) dt = et sin(t)−

∫
et cos(t) dt (IBP),

which expresses the new integral
∫
et sin(t) dt in terms of the original integral.
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Does this help? Well, combining this with either (2) or (3) leads to an equation
involving only the original integral. With (2), we get∫

et cos(t) dt = et sin(t)−
∫
et sin(t) dt

= et sin(t)− (et sin(t)−
∫
et cos(t) dt)

=

∫
et cos(t) dt.

This is not helpful at all — what has happened was that second IBP undid the
first IBP.
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However, with (3), we get∫
et cos(t) dt = et cos(t) +

∫
et sin(t) dt

= et cos(t) + et sin(t)−
∫
et cos(t) dt

and rearranging, this becomes

2

∫
et cos(t) = et cos(t) + et sin(t),

or ∫
et cos(t) =

1

2
et(cos(t) + sin(t)).

Note that there should be a constant of integration, so we add it, to get∫
et cos(t) =

1

2
et(cos(t) + sin(t)) + C.

(There should always be a constant of integration when solving an indefinite
integral; the only reason it wasn’t there in our original solution is that we’ve
established a habit of not adding one every time we do IBP, because usually it
appears later when we get to an integral we can solve.)
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Example 3.32. Solve the following.

(i)

∫
cos(

√
1− y) dy.

(ii)

∫
ex sin−1(ex) dx.
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Solution. (i): Initially it looks like there isn’t much that can be done here. In
fact, we want to start with the substitution

w =
√

1− y, dw = − 1

2
√

1− y
dy = − 1

2w
dy

(Note that we could have equally done this as

w2 = 1− y, 2w dw = −1 dy.)

This gives ∫
cos(

√
1− y) dy =

∫
−2w cos(w) dw,

and this looks like something we can handle using IBP (we’ve done something
very similar in Example 3.26).
We set

u = w, dv = cos(w) dw

du = dw, v = sin(w)

and use this with IBP, to get∫
cos(

√
1− y) dy = −2

∫
w cos(w) dw

= −2

(
w sin(w)−

∫
sin(w) dw

)
(IBP)

= −2 (w sin(w) + cos(w))

= −2(
√

1− y sin(
√

1− y) + cos(
√

1− y)).
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(ii): Again, we start with a substitution:

w = ex, dw = ex dx,

which gives ∫
ex sin−1(ex) dx =

∫
sin−1(w) dw.

Now we do IBP with

u = sin−1(w), dv = 1 dw

du =
1√

1− w2
dw, v = w.

In the following, we will find we need to do another substitution:∫
ex sin−1(ex) dx =

∫
sin−1(w) dw

= w sin−1(w)−
∫

w√
1− w2

dw (IBP)

= w sin−1(w)−
∫
− 1

2
√
z
dz (subst. z = 1− w2)

= w sin−1(w) + 2 · 1

2

√
z + C

= w sin−1(w) +
√

1− w2 + C

= ex sin−1(ex) +
√

1− e2x + C.
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Summary of IBP techniques
(a) IBP to reduce a power of the integration variable. If the integrand
factors as xkg(x), and we know how to integrate g(x), then we set u = xk and
v = g(x) (Examples 3.24, 3.25). When k > 1, we will probably need to do this
again (and again ...) (Examples 3.26, 3.30 (i)).

(b) IBP with u 6= xk. Sometimes we don’t have a factor of xk, or we do but
we can’t integrate the other factor. Then we need to try something else. Don’t
forget to try dv = 1 dx. (Examples 3.27, 3.28, 3.29, 3.30 (ii).)

(c) IBP twice, returning something involving the original integral. Provided
the second IBP didn’t undo the first one, we get an equation which we can
solve, yielding a solution to the original integral (Example 3.31).

(d) Combining substitution and IBP. Example 3.32 (i), which starts with
substitution then uses (a). Example 3.32 (ii), which starts with substitution
and then uses (b), and finishes with another substitution.
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