3-5. The Fundamental Theorem of Calculus

In general, it can be very tedious to compute a definite integral using Riemann sums. The following makes it much easier.

Theorem 3.16 (Fundamental Theorem of Calculus). Let $f : [a, b] \rightarrow \mathbb{R}$ be a continuous function.

(i) For each $x \in [a, b]$, define

$$
F(x) = \int_{a}^{x} f(t) dt.
$$

Then

$$
\int f(x) \, dx = F(x) + C
$$

(i.e., $F(x)$ is differentiable and $F'(x) = f(x)$). (ii) If $G(x)$ is any antiderivative of $f(x)$ then

$$
\int_a^b f(x) dx = G(x)|_{x=a}^b,
$$

[3](#page--1-0)23 / 424

where $G(x)\big|_{x=a}^b$ means $G(b) - G(a)$. Again, we won't discuss the proof of this theorem, leaving it for MA2509 "Analysis II".

The purpose of this theorem is two-fold.

Part (i) tells us that every continuous function has an antiderivative (even though we may not have a closed form expression).

Part (ii) (which is more important in this course) tells us how to use indefinite integrals to compute definite integrals. Concisely, it says

$$
\int_{a}^{b} f(x) dx = \left(\int f(x) dx \right) \Big|_{x=a}^{b}
$$

One interpretation of the integral is as a way of defining the average value of a continuous function: if $f(x)$ is a continuous function, then its average value on $[a, b]$ is

$$
\frac{1}{b-a} \int_{a}^{b} f(x) dx.
$$
 (1)

[3](#page--1-0)24 / 424

.

Consider the case that the function $f(t)$ represents the speed of a car, at time t. If $p(t)$ represents the position of the car, then $p'(t) = f(t)$.

Two ways of measuring the average speed between times a and b are: divide the total distance travelled by the total time:

$$
\frac{p(b)-p(a)}{b-a},
$$

or use the integral formula [\(1\)](#page-1-0)

$$
\frac{1}{b-a}\int_{a}^{b}f(t) dt.
$$

Since $p'(t) = f(t)$, FTC tells us that these two ways of measuring the average are the same:

$$
\frac{p(b) - p(a)}{b - a} = \frac{1}{b - a} \int_{a}^{b} p'(t) dt = \frac{1}{b - a} \int_{a}^{b} f(t) dt.
$$

Example 3.17. Compute the area enclosed by the x-axis and the curve $y = 4 - x^2$.

Solution. Note that the curve $y=4-x^2$ intersects the x-axis at the points $(-2, 0)$ and $(2, 0)$. The area we need to compute is thereby given by the integral

$$
\int_{-2}^{2} 4 - t^2 dt.
$$

We compute

$$
\int 4 - t^2 \, dt = 4t - \frac{t^3}{3} + C,
$$

so that

$$
\int_{-2}^{2} 4 - t^2 dt = 4t - \frac{t^3}{3} \bigg|_{t=-2}^{2} = 8 - \frac{8}{3} - (-8 + \frac{8}{3}) = \frac{32}{3}.
$$

When computing a definite integral using FTC, we always drop the integration constant (i.e., the "+ C "). (If we left it in, it would cancel with itself.)

Example 3.18. Differentiate the following functions.

(i)
$$
f(x) = \int_5^x e^{7t^2} \sqrt{5 + \cos(t)^3} dt
$$

\n(ii) $g(x) = \int_{x^2}^5 e^{7t^2} \sqrt{5 + \cos(t)^3} dt$.

Solution. (i): It would be a mistake to try to compute this integral first! Rather, we can appeal directly to FTC (Theorem [3.16](#page-0-0) (i)), which tells us that

$$
f'(x) = e^{7x^2} \sqrt{5 + \cos(x)^3}.
$$

(ii): Again, we don't want to try to compute the integral. However, we can't appeal immediately to FTC since our interval of integration is $[x^2,5]$, rather than something of the form $[a, x]$. We first reverse the endpoints:

$$
g(x) = \int_{x^2}^5 e^{7t^2} \sqrt{5 + \cos(t)^3} dt = -\int_5^{x^2} e^{7t^2} \sqrt{5 + \cos(t)^3} dt.
$$

Next, we note that what we get is a function of x^2 , namely

$$
g(x) = -f(x^2),
$$

where f is from part (i). We may therefore use the Chain Rule:

$$
g'(x) = -f'(x^2)\frac{d}{dx}x^2 = -e^{7(x^2)^2}\sqrt{5 + \cos(x^2)^3}2x.
$$

 $\begin{array}{ccc} 327 & 424 & 424 & 424 & 424 \end{array}$ $\begin{array}{ccc} 327 & 424 & 424 & 424 & 424 \end{array}$ $\begin{array}{ccc} 327 & 424 & 424 & 424 & 424 \end{array}$

Example 3.19. Evaluate the following

(i)
$$
\int_0^8 2x - 7 \sqrt[3]{x^4} dx
$$
.
\n(ii) $\int_0^{\pi/2} 2 \cos(t) dt$.
\n(iii) $\int_{-5}^5 5^x + x^5 dx$.
\n(iv) $\int_1^6 x + \frac{1}{x} dx$.

 $\begin{array}{rcl} 4\;\square\;\vdash& 4\;\overline{\ominus\hspace{-0.2cm}1} & 4\;\overline{\ominus\hspace{-$

Solution. (i): We have

$$
\int 2x - 7\sqrt[3]{x^4} \, dx = \int 2x - 7x^{4/3} \, dx = \frac{2}{2}x^2 - \frac{7}{7/3}x^{7/3} = x^2 - 3x^{7/3}.
$$

Hence,

$$
\int_0^8 2x - 7\sqrt[3]{x^4} dx = x^2 - 3x^{7/3} \Big|_{x=0}^8
$$

= 8² - 3 \cdot 8^{7/3} - (0² - 3 \cdot 0^{7/3})
= 64 - 3 \cdot 128 = -320.

(ii): From now on, when the indefinite integral isn't too complicated, we won't do it separately.

$$
\int_0^{\pi/2} 2\cos(t) dt = 2\sin(t)|_{t=0}^{\pi/2}
$$

= $2\sin(\pi/2) - 2\sin(0)$
= $2 \cdot 1 - 2 \cdot 0 = 2$.

(iii): We have

$$
\int_{-5}^{5} 5^{x} + x^{5} dx = \frac{5^{x}}{\ln(5)} + \frac{x^{6}}{6} \Big|_{x=-5}^{5}
$$

$$
= \frac{5^{5}}{\ln(5)} + \frac{5^{6}}{6} - \frac{5^{-5}}{\ln(5)} - \frac{(-5)^{6}}{6}
$$

$$
= \frac{1}{\ln(5)} \left(5^{5} - \frac{1}{5^{5}}\right).
$$

(iv): We have

$$
\int_{1}^{6} x + \frac{1}{x} dx = \frac{x^{2}}{2} + \ln(x) \Big|_{x=1}^{6}
$$

= $\frac{6^{2}}{2} + \ln(6) - \frac{1^{2}}{2} - \ln(1)$
= $\frac{36}{2} + \ln(6) - \frac{1}{2} - 0 = \frac{35}{2} + \ln(6)$.

[3](#page--1-0)30 / 424

Example 3.20. Compute

(i)
$$
\int_{1}^{2} x^{2} \sqrt{8 + x^{3}} dx
$$
.
\n(ii) $\int_{0}^{\sqrt{\pi}} t \cos(\frac{\pi}{3} - t^{2}) dt$.
\n(iii) $\int_{2}^{4} \frac{1 + t}{1 + t^{2}} dt$.

Solution. (i): Here the indefinite integral is more complicated, so it is best to solve it first, then plug the answer into the FTC formula for the definite integral. To solve

$$
\int x^2 \sqrt{8+x^3} \, dx,
$$

use the substitution

$$
u = 8 + x^3, \quad du = 3x^2 dx.
$$

Thus we have

$$
\int x^2 \sqrt{7 + x^3} \, dx = \int \sqrt{u} \, \frac{du}{3}
$$

$$
= \frac{2}{9} u^{3/2} + C = \frac{2}{9} (8 + x^3)^{3/2} + C.
$$

Therefore,

$$
\int_{1}^{2} x^{2} \sqrt{8 + x^{3}} dx = \frac{2}{9} (8 + x^{3})^{3/2} \Big|_{x=1}^{2}
$$

= $\frac{2}{9} 16^{3/2} - \frac{2}{9} 9^{3/2} = \frac{2}{9} (64 - 27) = \frac{74}{9}.$

It is crucial that we finished up the indefinite integration with an expression in terms of x and not the substituted variable u . It is not correct that

$$
\int_{1}^{2} x^{2} \sqrt{8 + x^{3}} \, dx = \left. \frac{2}{9} u^{3/2} \right|_{u=1}^{2} \, .
$$

(ii): Using the substitution

$$
u = \frac{\pi}{3} - t^2, \quad du = -2t \, dt,
$$

we have

$$
\int t \cos\left(\frac{\pi}{3} - t^2\right) dt = \int \cos(u) \frac{du}{-2}
$$

$$
= -\frac{1}{2} \sin(u) + C
$$

$$
= -\frac{1}{2} \sin\left(\frac{\pi}{3} - t^2\right) + C.
$$

Therefore,

$$
\int_0^{\sqrt{\pi}} t \cos\left(\frac{\pi}{3} - t^2\right) dt = -\frac{1}{2} \sin\left(\frac{\pi}{3} - t^2\right) \Big|_{t=0}^{\sqrt{\pi}}
$$

= $-\frac{1}{2} (\sin\left(\frac{\pi}{3} - \pi\right) - \sin\left(\frac{\pi}{3}\right))$
= $-\frac{1}{2} (\sin\left(-\frac{2\pi}{3}\right) - \sin\left(\frac{\pi}{3}\right))$
= $-\frac{1}{2} \left(-\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{2}.$

 $\begin{array}{rcl} 4 & \Box \rightarrow & 4 \stackrel{\overline{13}}{12} \rightarrow & 4 \stackrel{\overline{2}}{12} \rightarrow & \overline{2} & 333 / 424 \end{array}$ $\begin{array}{rcl} 4 & \Box \rightarrow & 4 \stackrel{\overline{13}}{12} \rightarrow & 4 \stackrel{\overline{2}}{12} \rightarrow & \overline{2} & 333 / 424 \end{array}$ $\begin{array}{rcl} 4 & \Box \rightarrow & 4 \stackrel{\overline{13}}{12} \rightarrow & 4 \stackrel{\overline{2}}{12} \rightarrow & \overline{2} & 333 / 424 \end{array}$

(iii): We split the indefinite integral into two parts, and use the substitition $u=1+t^2$ on the second part:

$$
\int \frac{1+t}{1+t^2} dt = \int \frac{1}{1+t^2} dt + \int \frac{t}{1+t^2} dt
$$

= $\tan^{-1}(t) + \int \frac{1}{2u} du$
= $\tan^{-1}(t) + \frac{\ln(u)}{2} + C$
= $\tan^{-1}(t) + \frac{\ln(1+t^2)}{2} + C$.

Hence,

 \int

$$
\int_{2}^{4} \frac{1+t}{1+t^{2}} dt = \tan^{-1}(t) + \frac{\ln(1+t^{2})}{2} \Big|_{t=2}^{4}
$$

$$
= \tan^{-1}(4) + \frac{\ln(17)}{2} - \tan^{-1}(2) - \frac{\ln(5)}{2}.
$$

 $\begin{array}{rcl} 4 & \Box \rightarrow & 4 \stackrel{\overline{13}}{12} \rightarrow & 4 \stackrel{\overline{2}}{12} \rightarrow & \overline{2} \rightarrow & \overline{2} & \sqrt{2} \, \zeta \, \zeta \, \\ 334 \, / \, 424 & & & \end{array}$ $\begin{array}{rcl} 4 & \Box \rightarrow & 4 \stackrel{\overline{13}}{12} \rightarrow & 4 \stackrel{\overline{2}}{12} \rightarrow & \overline{2} \rightarrow & \overline{2} & \sqrt{2} \, \zeta \, \zeta \, \\ 334 \, / \, 424 & & & \end{array}$ $\begin{array}{rcl} 4 & \Box \rightarrow & 4 \stackrel{\overline{13}}{12} \rightarrow & 4 \stackrel{\overline{2}}{12} \rightarrow & \overline{2} \rightarrow & \overline{2} & \sqrt{2} \, \zeta \, \zeta \, \\ 334 \, / \, 424 & & & \end{array}$

Example 3.21. There is a bounded region enclosed by the curves

$$
y = 2\sqrt[3]{x}
$$

and

$$
y = \sqrt{x}.
$$

Find its area. Solution. Let's first determine where these curves intersect.

They intersect when

$$
2\sqrt[3]{x} = y = \sqrt{x},
$$

giving

$$
64x2 = x3
$$

\n
$$
\Rightarrow x2(x - 64) = 0,
$$

and the solutions are $(x,y)=(0,0)$ and $(x,y)=(64,8)$ $(x,y)=(64,8)$ $(x,y)=(64,8)$ [.](#page-13-0)

Thus far, we've learned how to find the area between a region bound by the x -axis and a curve. The area we need to find for this problem can be viewed as the difference of two areas that we already know. Namely, if R_1 is the region enclosed by $y = 2\sqrt[3]{x}$, $x = 0$, $y = 0$, and $x = 4$, and R_2 is the region enclosed by $y=\sqrt{x}$, $x=0$, $y=0$, and $x=4$, then the area we need to find is

 $Area(R_1) - Area(R_2).$

We now compute this,

Area(R₁) - Area(R₂) =
$$
\int_0^{64} 2 \sqrt[3]{x} dx - \int_0^{64} \sqrt{x} dx
$$

=
$$
2\frac{3}{4} x^{4/3} - \frac{2}{3} x^{3/2} \Big|_{x=0}^{64}
$$

=
$$
\frac{3}{2} (256 - 0) - \frac{2}{3} (512 - 0)
$$

=
$$
\frac{1152 - 1024}{3} = \frac{128}{3}.
$$

More generally, for functions $f(x), g(x)$ with $f(x) \le g(x)$, the area of a region enclosed by $y = f(x)$, $y = g(x)$, $x = a$, and $x = b$ is computed by the integral

$$
\int_a^b g(x) - f(x) \, dx.
$$

 $\begin{array}{rcl} 4\ \Box\ \rightarrow\ \begin{array}{rcl} 4\ \overline{\Box}\ \end{array} & 4\ \overline{\Box}\ \rightarrow\ \begin{array}{rcl} 4\ \overline{\Box}\ \end{array} & 4\ \overline{\Box}\ \vdash\ \begin{array}{rcl} 4\ \overline{\Box}\ \end{array} & \overline{\Box}\ \begin{array}{rcl} 337/424 \end{array} \end{array}$ $\begin{array}{rcl} 4\ \Box\ \rightarrow\ \begin{array}{rcl} 4\ \overline{\Box}\ \end{array} & 4\ \overline{\Box}\ \rightarrow\ \begin{array}{rcl} 4\ \overline{\Box}\ \end{array} & 4\ \overline{\Box}\ \vdash\ \begin{array}{rcl} 4\ \overline{\Box}\ \end{array} & \overline{\Box}\ \begin{array}{rcl} 337/424 \end{array} \end{array}$ $\begin{array}{rcl} 4\ \Box\ \rightarrow\ \begin{array}{rcl} 4\ \overline{\Box}\ \end{array} & 4\ \overline{\Box}\ \rightarrow\ \begin{array}{rcl} 4\ \overline{\Box}\ \end{array} & 4\ \overline{\Box}\ \vdash\ \begin{array}{rcl} 4\ \overline{\Box}\ \end{array} & \overline{\Box}\ \begin{array}{rcl} 337/424 \end{array} \end{array}$

Example 3.22. Find the area of the region enclosed by the curves $x = y^2 - 5$ and $y = x - 1$.

Solution. This problems differs a bit from previous ones, because the first curve is not in the form $y = f(x)$. Let's first compute where the curves intersect, by solving the two equations as a system. Substituting $y = x - 1$ into the first equation gives

$$
x = (x - 1)^{2} - 5
$$

= $x^{2} - 2x - 4$,

$$
0 = x^{2} - 3x - 4
$$

= $(x - 4)(x + 1)$.

[3](#page--1-0)39 / 424

There are two ways that we can attack this problem.

(a): We divide the region by the line $x = -1$. On the left-hand side (L in the diagram below), we want to find the area between $y=-\surd x+5$ and $y = \sqrt{x+5}$ (from $x = -5$ to $x = -1$). On the right-hand side (R in the diagram below), we want to find the area between $y = x - 1$ and $y = \sqrt{x+5}$ (from $x = -1$ to $x = 4$).

Altogether, the area can be computed as

Area
$$
= \int_{-5}^{-1} \sqrt{x+5} - (-\sqrt{x+5}) dx + \int_{-1}^{4} \sqrt{x+5} - (x-1) dx
$$

$$
= 2 \cdot \frac{2}{3} (x+5)^{3/2} \Big|_{x=-5}^{-1} + \frac{2}{3} (x+5)^{3/2} - \frac{x^2}{2} + x \Big|_{x=-1}^{4}
$$

$$
= \frac{4}{3} (8-0) + \frac{2}{3} (27-8) - \frac{1}{2} (16-1) + (4-(-1))
$$

$$
= \frac{125}{6}
$$

(b): Looking at this sideways, we see that an easier approach is to swap the roles of the x and y coordinates.

Both curves can be put into the form $x = f(y)$; for the second one, it is $x = y + 1.$

The area is thus given by

Area
$$
= \int_{-2}^{3} y + 1 - (y^2 - 5) dy
$$

$$
= -\frac{y^3}{3} + \frac{y^2}{2} + 6y \Big|_{y=-2}^{3}
$$

$$
= -\frac{1}{3}(27 - (-8)) + \frac{1}{2}(9 - 4) + 6(3 - (-2))
$$

$$
= \frac{125}{6}.
$$