3-5. The Fundamental Theorem of Calculus
In general, it can be very tedious to compute a definite integral using Riemann
sums. The following makes it much easier.

Theorem 3.16 (Fundamental Theorem of Calculus). Let f : [a,b] — R be
a continuous function.
(i) For each x € [a,b)], define

Flz) = / F(t)dt.

Then

/f(x)dsz(a:)—i—C
(i.e., F(x) is differentiable and F'(x) = f(z)).
(ii) If G(x) is any antiderivative of f(x) then

b
[ f@ s =6,
where G(m)|’;:a means G(b) — G(a).

Again, we won't discuss the proof of this theorem, leaving it for MA2509
“Analysis II".



The purpose of this theorem is two-fold.

Part (i) tells us that every continuous function has an antiderivative (even
though we may not have a closed form expression).

Part (ii) (which is more important in this course) tells us how to use indefinite
integrals to compute definite integrals. Concisely, it says

/abf(x)dx: (/f(x)da:)

b
r=a

One interpretation of the integral is as a way of defining the average value of a

continuous function: if f(x) is a continuous function, then its average value on
[a, b] is

= [ s &)

Consider the case that the function f(t) represents the speed of a car, at time
t. If p(t) represents the position of the car, then p’(t) = f(t).
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Two ways of measuring the average speed between times a and b are: divide
the total distance travelled by the total time:

p(b) — p(a)
b—a '’

b
bia/ () dt.

Since p’(t) = f(t), FTC tells us that these two ways of measuring the average
are the same:

p(bl)):z(a) _ bia/a p/(t)dt: bia/a £(t) dt.

or use the integral formula (1)
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Example 3.17. Compute the area enclosed by the x-axis and the curve
2
y=4—x°.

Solution. Note that the curve y = 4 — 2 intersects the x-axis at the points
(—2,0) and (2,0). The area we need to compute is thereby given by the

integral
2
/ 4 —t*dt.
—2

3
/4—t2dt:4t—%+0,

We compute

so that
2

2 t3
/ 4—13dt = 4t — —
9 3

t=—2

When computing a definite integral using FTC, we always drop the integration
constant (i.e., the “4+ C"). (If we left it in, it would cancel with itself.)
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Example 3.18. Differentiate the following functions.

(i) f(z / \/5+cos(t)3 dt
(i) g(z / \/5+cos(t)3 dt.
Solution. (i): It would be a mistake to try to compute this integral first!

Rather, we can appeal directly to FTC (Theorem 3.16 (i)), which tells us that

f(z) = e /5 + cos(z)3.

(ii): Again, we don't want to try to compute the integral. However, we can't
appeal immediately to FTC since our interval of integration is [m2, 5], rather
than something of the form [a, z]. We first reverse the endpoints:

5 z2 2
= / et V5 +cos(t)3dt = — / e™ /5 + cos(t)3 dt.
z2 5
Next, we note that what we get is a function of x2, namely

g(x) = —f(z?),

where f is from part (i). We may therefore use the Chain Rule:

g (x) = —f'(x 2)%1’ =@ 5T cos(z2)32zx.
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Example 3.19. Evaluate the following
8 3
(i) / 2z — TVatdx.
0
/2
(ii) / 2 cos(t) dt.
0
5
(iii) / 5% 4 2° da.
-5
, ¢ 1
(iv) /1 x+ p dz.



Solution. (i): We have
/2x77\/3x4dx:/2x77m4/3d;c: %fo %x”iﬁ =22 3273,

Hence,

8 . 8
/ 22 — TV24 dr = 2° — 3273

0 =0
=82-3.8"/2—(0°-3.0"/%)
=64 —3-128 = —320.

(ii): From now on, when the indefinite integral isn't too complicated, we won't
do it separately.

/2
/ 2 cos(t) dt = 2sin(t) Zr:/g
0

= 2sin(m/2) — 2sin(0)
=2-1-2-0=2.



(iii): We have

(iv): We have
[ee b= |
1 T 2 o=1
=% mE - L —m)
=2 1)~ 5 0= "2 +1n(o)
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Example 3.20. Compute
2
(i) / 2*\/8 4 28 du.
1
VT 2
(ii) / tcos (3 —t7) dt.

1—|—t
(iii) / 1+t2
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Solution. (i): Here the indefinite integral is more complicated, so it is best to
solve it first, then plug the answer into the FTC formula for the definite

integral. To solve
/x2x/8 + x3 dzx,

use the substitution
u:8+x3, du = 322 dz.
Thus we have

/x2x/7+x3dx:/\/ﬂcg—u

2 2 50
= §u3/2 +C = §(S+x3)3/2+C.

Therefore,
2
/ 2*\/8 4 23 dx = %(8+x3)3/2
1

2 .3/2 2.3/2 2 74
=—16 — =9 = —(64 —-27) = —.
9 9 9( ) 9

2

r=1

It is crucial that we finished up the indefinite integration with an expression in
terms of x and not the substituted variable u. It is not correct that

2 2
/ 2%\/8 + 23 dx = gu?’/Q
1

u=1
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(ii): Using the substitution

we have
- 2 du
/tcos (5 —t%) dt = /cos(u) =5
= ——sin(u) + C
= —-sin(§ — t*) 4 C
Therefore,
vE 2 N
/ tcos(5 —t) dt = —=sin(3 —t°)
0 t=0
= fi(sm(% ) —sin(3))
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(iii): We split the indefinite integral into two parts, and use the substitition
u =14 t2 on the second part:

141 1 t
= | ——dt ——dt
/1+t2dt /1-1—152 +/1+t2

:tanfl(t)+/idu

=tan"'(t) + 1n;u) +C
2
= tan" ' (t) + w + C.
Hence,
L4t . In(1 + ) [*
dt = tan™ " (t) +
/2 1+4¢2 2 1o
=tan™'(4) + ln(217) —tan~"(2) lnéf))
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Example 3.21. There is a bounded region enclosed by the curves
y=2Vx

and

y =z

Find its area. Solution. Let's first determine where these curves intersect.

(64,8)

They intersect when
2V =y =,
giving
64z® = 2°
=z’ (z —64) =0,

and the solutions are (z,y) = (0,0) and (x,y) = (64, 8).
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Thus far, we've learned how to find the area between a region bound by the
z-axis and a curve. The area we need to find for this problem can be viewed as
the difference of two areas that we already know. Namely, if Ry is the region
enclosed by y =2z, x =0, y =0, and z = 4, and Rx is the region enclosed
by y =z, £ =0, y =0, and = = 4, then the area we need to find is

Area(R1) — Area(Ry).

Ry

We now compute this,

64 64

Area(R1) — Area(R2) = / 2z dx — Vzdz
0 0

64

_93.4/3 _2,3/2
25w ST

=0
= 3(256 — 0) — 2(512—0)
_ 1152-1024 _ 128
N 3 T3
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More generally, for functions f(z), g(x) with f(z) < g(z), the area of a region
enclosed by y = f(z), y = g(x), * = a, and x = b is computed by the integral

b
/g dx.

337 / 424



Example 3.22. Find the area of the region enclosed by the curves © = y* — 5
andy=x—1.

Solution. This problems differs a bit from previous ones, because the first
curve is not in the form y = f(z). Let's first compute where the curves
intersect, by solving the two equations as a system. Substituting y = = — 1 into
the first equation gives

r=(x—-17%-5
:x272x74,

0=2>—-3z—4

(z —4(x+1).
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The intersection points are therefore (4, 3) and (—1, —2).

There are two ways that we can attack this problem.
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(a): We divide the region by the line z = —1. On the left-hand side (L in the
diagram below), we want to find the area between y = —v/z + 5 and
y=+x+5 (from x = =5 to x = —1). On the right-hand side (R in the
diagram below), we want to find the area between y =x — 1 and y = vz + 5
(from z = —1 to z = 4).

Altogether, the area can be computed as

Area = 1\/x+57(7\/x+5)dm+/4\/x+ —(z—1)dz

-5

N I R
3 rx=—5 3 2 rx=-—1
4 2 1
= S(B—0)+ (27— 8) = 5(16 - 1)+ (4~ (-1))

125
6
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(b): Looking at this sideways, we see that an easier approach is to swap the
roles of the x and y coordinates.

Both curves can be put into the form x = f(y); for the second one, it is
z=y+1
The area is thus given by

3
Area:/ y+17(y275)dy

-2

= 71/; + % + 6y
= (2T~ (-8)) + 59— 4) +6(3 — (~2))

125
25,
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