
3-5. The Fundamental Theorem of Calculus

In general, it can be very tedious to compute a definite integral using Riemann
sums. The following makes it much easier.

Theorem 3.16 (Fundamental Theorem of Calculus). Let f : [a, b]→ R be
a continuous function.
(i) For each x ∈ [a, b], define

F (x) =

∫ x

a

f(t) dt.

Then ∫
f(x) dx = F (x) + C

(i.e., F (x) is differentiable and F ′(x) = f(x)).

(ii) If G(x) is any antiderivative of f(x) then∫ b

a

f(x) dx = G(x)
∣∣b
x=a

,

where G(x)
∣∣b
x=a

means G(b)−G(a).
Again, we won’t discuss the proof of this theorem, leaving it for MA2509
“Analysis II”.
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The purpose of this theorem is two-fold.

Part (i) tells us that every continuous function has an antiderivative (even
though we may not have a closed form expression).

Part (ii) (which is more important in this course) tells us how to use indefinite
integrals to compute definite integrals. Concisely, it says∫ b

a

f(x) dx =

(∫
f(x) dx

)∣∣∣∣b
x=a

.

One interpretation of the integral is as a way of defining the average value of a
continuous function: if f(x) is a continuous function, then its average value on
[a, b] is

1

b− a

∫ b

a

f(x) dx. (1)

Consider the case that the function f(t) represents the speed of a car, at time
t. If p(t) represents the position of the car, then p′(t) = f(t).
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Two ways of measuring the average speed between times a and b are: divide
the total distance travelled by the total time:

p(b)− p(a)

b− a ,

or use the integral formula (1)

1

b− a

∫ b

a

f(t) dt.

Since p′(t) = f(t), FTC tells us that these two ways of measuring the average
are the same:

p(b)− p(a)

b− a =
1

b− a

∫ b

a

p′(t) dt =
1

b− a

∫ b

a

f(t) dt.
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Example 3.17. Compute the area enclosed by the x-axis and the curve
y = 4− x2.

Solution. Note that the curve y = 4− x2 intersects the x-axis at the points
(−2, 0) and (2, 0). The area we need to compute is thereby given by the
integral ∫ 2

−2

4− t2 dt.

We compute ∫
4− t2 dt = 4t− t3

3
+ C,

so that ∫ 2

−2

4− t2 dt = 4t− t3

3

∣∣∣∣2
t=−2

= 8− 8

3
− (−8 +

8

3
) =

32

3
.

When computing a definite integral using FTC, we always drop the integration
constant (i.e., the “+C”). (If we left it in, it would cancel with itself.)
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Example 3.18. Differentiate the following functions.

(i) f(x) =

∫ x

5

e7t
2√

5 + cos(t)3 dt

(ii) g(x) =

∫ 5

x2
e7t

2√
5 + cos(t)3 dt.

Solution. (i): It would be a mistake to try to compute this integral first!
Rather, we can appeal directly to FTC (Theorem 3.16 (i)), which tells us that

f ′(x) = e7x
2√

5 + cos(x)3.

(ii): Again, we don’t want to try to compute the integral. However, we can’t
appeal immediately to FTC since our interval of integration is [x2, 5], rather
than something of the form [a, x]. We first reverse the endpoints:

g(x) =

∫ 5

x2
e7t

2√
5 + cos(t)3 dt = −

∫ x2

5

e7t
2√

5 + cos(t)3 dt.

Next, we note that what we get is a function of x2, namely

g(x) = −f(x2),

where f is from part (i). We may therefore use the Chain Rule:

g′(x) = −f ′(x2)
d

dx
x2 = −e7(x

2)2
√

5 + cos(x2)32x.
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Example 3.19. Evaluate the following

(i)

∫ 8

0

2x− 7
3
√
x4 dx.

(ii)

∫ π/2

0

2 cos(t) dt.

(iii)

∫ 5

−5

5x + x5 dx.

(iv)

∫ 6

1

x+
1

x
dx.
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Solution. (i): We have∫
2x− 7

3
√
x4 dx =

∫
2x− 7x4/3 dx =

2

2
x2 − 7

7/3
x7/3 = x2 − 3x7/3.

Hence, ∫ 8

0

2x− 7
3
√
x4 dx = x2 − 3x7/3

∣∣∣8
x=0

= 82 − 3 · 87/3 − (02 − 3 · 07/3)

= 64− 3 · 128 = −320.

(ii): From now on, when the indefinite integral isn’t too complicated, we won’t
do it separately. ∫ π/2

0

2 cos(t) dt = 2 sin(t)|π/2t=0

= 2 sin(π/2)− 2 sin(0)

= 2 · 1− 2 · 0 = 2.
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(iii): We have ∫ 5

−5

5x + x5 dx =
5x

ln(5)
+
x6

6

∣∣∣∣5
x=−5

=
55

ln(5)
+

56

6
− 5−5

ln(5)
− (−5)6

6

=
1

ln(5)

(
55 − 1

55

)
.

(iv): We have∫ 6

1

x+
1

x
dx =

x2

2
+ ln(x)

∣∣∣∣6
x=1

=
62

2
+ ln(6)− 12

2
− ln(1)

=
36

2
+ ln(6)− 1

2
− 0 =

35

2
+ ln(6).

330 / 424



Example 3.20. Compute

(i)

∫ 2

1

x2
√

8 + x3 dx.

(ii)

∫ √π
0

t cos
(
π
3
− t2

)
dt.

(iii)

∫ 4

2

1 + t

1 + t2
dt.
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Solution. (i): Here the indefinite integral is more complicated, so it is best to
solve it first, then plug the answer into the FTC formula for the definite
integral. To solve ∫

x2
√

8 + x3 dx,

use the substitution
u = 8 + x3, du = 3x2 dx.

Thus we have∫
x2
√

7 + x3 dx =

∫ √
u
du

3

=
2

9
u3/2 + C =

2

9
(8 + x3)3/2 + C.

Therefore,∫ 2

1

x2
√

8 + x3 dx =
2

9
(8 + x3)3/2

∣∣∣∣2
x=1

=
2

9
163/2 − 2

9
93/2 =

2

9
(64− 27) =

74

9
.

It is crucial that we finished up the indefinite integration with an expression in
terms of x and not the substituted variable u. It is not correct that∫ 2

1

x2
√

8 + x3 dx =
2

9
u3/2

∣∣∣∣2
u=1

.
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(ii): Using the substitution

u = π
3
− t2, du = −2t dt,

we have ∫
t cos

(
π
3
− t2

)
dt =

∫
cos(u)

du

−2

= −1

2
sin(u) + C

= −1

2
sin(π

3
− t2) + C.

Therefore, ∫ √π
0

t cos
(
π
3
− t2

)
dt = −1

2
sin(π

3
− t2)

∣∣∣∣
√
π

t=0

= −1

2
(sin(π

3
− π)− sin(π

3
))

= −1

2
(sin(− 2π

3
)− sin(π

3
))

= −1

2
(−
√

3

2
−
√

3

2
) =

√
3

2
.
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(iii): We split the indefinite integral into two parts, and use the substitition
u = 1 + t2 on the second part:∫

1 + t

1 + t2
dt =

∫
1

1 + t2
dt+

∫
t

1 + t2
dt

= tan−1(t) +

∫
1

2u
du

= tan−1(t) +
ln(u)

2
+ C

= tan−1(t) +
ln(1 + t2)

2
+ C.

Hence, ∫ 4

2

1 + t

1 + t2
dt = tan−1(t) +

ln(1 + t2)

2

∣∣∣∣4
t=2

= tan−1(4) +
ln(17)

2
− tan−1(2)− ln(5)

2
.
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Example 3.21. There is a bounded region enclosed by the curves

y = 2 3
√
x

and
y =
√
x.

Find its area. Solution. Let’s first determine where these curves intersect.

They intersect when
2 3
√
x = y =

√
x,

giving

64x2 = x3

⇒x2(x− 64) = 0,

and the solutions are (x, y) = (0, 0) and (x, y) = (64, 8).
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Thus far, we’ve learned how to find the area between a region bound by the
x-axis and a curve. The area we need to find for this problem can be viewed as
the difference of two areas that we already know. Namely, if R1 is the region
enclosed by y = 2 3

√
x, x = 0, y = 0, and x = 4, and R2 is the region enclosed

by y =
√
x, x = 0, y = 0, and x = 4, then the area we need to find is

Area(R1)−Area(R2).

We now compute this,

Area(R1)−Area(R2) =

∫ 64

0

2 3
√
x dx−

∫ 64

0

√
x dx

= 2 3
4
x4/3 − 2

3
x3/2

∣∣∣64
x=0

= 3
2
(256− 0)− 2

3
(512− 0)

=
1152− 1024

3
=

128

3
.
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More generally, for functions f(x), g(x) with f(x) ≤ g(x), the area of a region
enclosed by y = f(x), y = g(x), x = a, and x = b is computed by the integral∫ b

a

g(x)− f(x) dx.
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Example 3.22. Find the area of the region enclosed by the curves x = y2 − 5
and y = x− 1.

Solution. This problems differs a bit from previous ones, because the first
curve is not in the form y = f(x). Let’s first compute where the curves
intersect, by solving the two equations as a system. Substituting y = x− 1 into
the first equation gives

x = (x− 1)2 − 5

= x2 − 2x− 4,

0 = x2 − 3x− 4

= (x− 4)(x+ 1).
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The intersection points are therefore (4, 3) and (−1,−2).

There are two ways that we can attack this problem.
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(a): We divide the region by the line x = −1. On the left-hand side (L in the
diagram below), we want to find the area between y = −

√
x+ 5 and

y =
√
x+ 5 (from x = −5 to x = −1). On the right-hand side (R in the

diagram below), we want to find the area between y = x− 1 and y =
√
x+ 5

(from x = −1 to x = 4).

Altogether, the area can be computed as

Area =

∫ −1

−5

√
x+ 5− (−

√
x+ 5) dx+

∫ 4

−1

√
x+ 5− (x− 1) dx

= 2 · 2

3
(x+ 5)3/2

∣∣∣∣−1

x=−5

+
2

3
(x+ 5)3/2 − x2

2
+ x

∣∣∣∣4
x=−1

=
4

3
(8− 0) +

2

3
(27− 8)− 1

2
(16− 1) + (4− (−1))

=
125

6
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(b): Looking at this sideways, we see that an easier approach is to swap the
roles of the x and y coordinates.

Both curves can be put into the form x = f(y); for the second one, it is
x = y + 1.
The area is thus given by

Area =

∫ 3

−2

y + 1− (y2 − 5) dy

= −y
3

3
+
y2

2
+ 6y

∣∣∣∣3
y=−2

= −1

3
(27− (−8)) +

1

2
(9− 4) + 6(3− (−2))

=
125

6
.
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