
3-4. Area and the definite integral

The problem of computing area will tie into the main application of integrals.

Suppose we want to compute the area of some region.

To begin, we need to define the area precisely; for now, say it is the area bound
by the x-axis, some curve y = f(x), and two vertical lines x = a and x = b.
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Let us use, as an example, the area bound by the x-axis, y = x2 + 1, x = 0,
and x = 1.

A first step towards (exactly) computing an area is finding a good way to
estimate the error. We can partition the interval [0, 1] into a number of
subintervals; for now, let’s partition it into the subintervals
[0, 1

4
], [ 1

4
, 1
2
], [ 1

2
, 3
4
], [ 3

4
, 1]. We can then pick points x1 ∈ [0, 1

4
], x2 ∈ [ 1

4
, 1
2
], and

so on.
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Form the following rectangles:

The total area of these rectangles (which is easy to compute!) gives us an
approximation of the area we are interested in. Of course, the total area of
these rectangles depends on the choice of points x1, . . . , x5.
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If we took left-hand endpoints, i.e., xi = i−1
4

, we get the estimate

4∑
i=1

(
(

(i−1)
4

)2
+1)· 1

4
= 1

4

(
(0 + 1) + ( 1

16
+ 1) + ( 1

4
+ 1) + ( 9

16
+ 1)

)
= 39

32
= 1.21875.

In this case, the rectangles are contained in the region we are interested in, so
it is clear that this underestimates the correct area.
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If we took right-hand endpoints, i.e., xi = i
4

, we get the estimate

4∑
i=1

(
(
i
4

)2
+1)· 1

4
= 1

4

(
( 1
16

+ 1) + ( 1
4

+ 1) + ( 9
16

+ 1) + (1 + 1)
)

= 47
32

= 1.46875.

Since these rectangles (together) completely contain the region, this
overestimates the correct area.
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Altogether, this tells us that

Area ∈ [ 39
32
, 47
32

].

The average of these two estimates is 43
32

= 1.34375, which is 1
8

away from
each of the over- and the under-estimation. Hence, this average estimate is
accurate to within 1

8
.
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To get a certain improvement, we need to take a finer partition. If we started
with the partition [0, 1

10
], [ 1

10
, 2
10

], . . . , then we arrive at the estimates

257

200
= 1.285,

277

200
= 1.385.

If we started with the partition [0, 1
100

], [ 1
100

, 2
100

], . . . , then we arrive at the
estimates

26567

20000
= 1.32835,

26767

20000
= 1.33835.

In this situation, the two estimates (coming from using left- and right-hand
endpoints of the subintervals respectively) are always under- and
over-estimates. This is because the function in question y = x2 + 1, is
increasing on the given interval.

If we used a function that is decreasing, then using left-hand endpoints would
instead give an overestimate, and right-hand endpoints would give an
underestimate.

For a general function (which is neither increasing nor decreasing), we do not
know whether the estimates are greater or less than the correct area.
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We have a name for the sums appearing when we compute the areas of the
rectangles: these are called Riemann sums. More precisely, let f : [a, b]→ R be
a function, and partition [a, b] into n equally sized subintervals,

I1 =

[
a, a+

b− a
n

]
, I2 =

[
a+

b− a
n

, a+ 2
b− a
n

]
, . . . ,

Ii =

[
n− i+ 1

n
a+

i− 1

n
b,
n− i
n

a+
i

n
b

]
, . . . ,

In =

[
b− b− a

n
, b

]
.

Pick a point xi ∈ Ii for each i = 1, . . . , n. Then the associated Riemann sum is

n∑
i=1

f(xi)∆x = f(x1)∆x+ f(x2)∆x+ · · ·+ f(xn)∆x,

where ∆x = b−a
n

(the length of each interval in the partition).
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Theorem 3.13. Let f : [a, b]→ R be a continuous function. For each n, take a
partition of [a, b] into n equally sized subintervals I1,n, . . . , In,n as above, and
pick points xi,n ∈ Ii,n. Then the Riemann sums converge to a limit, i.e.,

lim
n→∞

n∑
i=1

f(xi,n) 1
n

exists. This limit does not depend on the choice of points xi,n ∈ Ii,n.

We will not prove this theorem in this course (for the proof, take MA2509,
“Analysis II”).
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A word of caution. the last statement of the above theorem tells us that the
limit doesn’t depend on the choices of points. This does not mean that the
individual Riemann sums don’t depend on the choices of points (and as we’ve
seen in the example, the Riemann sums do depend on these choices).
Since the limit in the above theorem exists, and doesn’t depend on the choices
of points, it is a well-defined value, and we call it the definite integral of f(x)
on [a, b]. In the setting of the above theorem, we use the notation∫ b

a

f(x) dx = lim
n→∞

n∑
i=1

f(xi,n) 1
n
.
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Note that although our example of measuring area concerned a positive
function, the above theorem and the definition of the definite integral does not
require this assumption; we allow f(x) < 0 to occur.
We extend the definition of the definite integral to the case that a > b. Here
we ask that f(x) is a continuous function on [b, a], and we define∫ b

a

f(x) dx = −
∫ a

b

f(x) dx.
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A note about notation. When we write∫ b

a

f(x) dx,

the variable x is a bound, dummy variable. This expression has the exact same
meaning as ∫ b

a

f(t) dt,

(or with any other variable in place of t). It does not make sense to ask if∫ b
a
f(x) dx depends on x, or to have x outside the integrand, like∫ b

a

f(x) dx+ x or

∫ x

a

f(x) dx.

(By contrast, the variable x does make sense outside of an indefinite integral:
it does make sense to write

∫
f(x) dx+ x.)
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Example 3.14. Let f(x) = 5− 3x on the interval [0, 1]. For each n, we
partition [0, 1] into n equally sized subintervals I1,n, . . . , In,n, so that

Ii,n = [ i−1
n
, i
n

].

Pick xi,n ∈ Ii,n as the right-hand endpoint, xi = i
n

. Then the Riemann sum is

n∑
i=1

(
5− 3 · i

n

)
1

n
= 5 · n

n
− 3

n2

n∑
i=1

i

= 5− 3

n2
· n(n+ 1)

2

= 5− 3(n+ 1)

2n
.

Taking the limit, we get∫ 1

0

5− 3x = lim
n→∞

5− 3(n+ 1)

2n
= 5− 3

2
=

7

2
.
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Proposition 3.15 (Basic properties of the definite integral). Let f(x), g(x)
be continuous functions, let K ∈ R, and let a, b, c ∈ R. Then:

(i)

∫ a

a

f(x) dx = 0.

(ii)

∫ b

a

Kf(x) dx = K

∫ b

a

f(x) dx.

(iii)

∫ b

a

f(x) + g(x) dx =

∫ b

a

f(x) dx+

∫ b

a

g(x) dx.

(iv)

∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx.

(v)

∫ b

a

K′ dx = K(b)−K(a).

(vi)

∫ b

a

f(x) dx ≥ 0, if f(x) ≥ 0 ∀x.

(vii)

∫ b

a

f(x) dx ≤
∫ b

a

g(x), if f(x) ≤ g(x) ∀x.

(viii)

∣∣∣∣∫ b

a

f(x) dx

∣∣∣∣ ≤ ∫ b

a

|f(x)| dx.

We will not prove these statements, although they are not too difficult (apart
from (iv)), and make good exercises.
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