
3-3. Substitution rule

In this section we learn the first technique for solving more complicated
integrals.

Consider the integral ∫
12x2

5
√

4x3 + 7 dx.

At first this one may look very difficult; but, there is a trick. Notice that if we
let

u = 4x3 + 7,

then we compute
du = 12x2 dx

(by differentiating with respect to x), and the integral simplifies∫
12x2

5
√

4x3 + 7 dx =

∫
5
√

4x3 + 7 (12x2 dx) =

∫
5
√
u du.

Is this legitimate? Yes, it is justified by the chain rule for differentiation.
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Proposition 3.8 (Substitution rule). Suppose that∫
f(u) du = F (u) + C.

Then ∫
f(g(x)) g′(x) dx = F (g(x)) + C.

Proof.
We compute, using the chain rule,

d

dx
F (g(x)) = F ′(g(x)) g′(x) = f(g(x)) g′(x).

Therefore, ∫
f(g(x)) g′(x) dx = F (g(x)) + C.
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We write the substitution rule succinctly as∫
f(g(x)) g′(x) dx =

∫
f(u) du, where u = g(x).

The skill in using the substitution rule is to identify the right thing to substitute.

We want to pick some function u = g(x) so that, after dividing by g′(x), the
integrand can be expressed purely in terms of u. If we find that there are some
x’s left over, we have probably chosen the wrong function g(x).
To learn this skill, you simply must practice!
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Example 3.9. Evaluate the following integrals.

(i)

∫
12x2

5
√

4x3 + 7 dx.

(ii)

∫ (
1− 2

t

)
cos(t− 2 ln(t)) dt.

(iii)

∫
7(6x− 1)e3x

2−x dx.

(iv)

∫
cos(y)(1− 5 sin(y))7 dy.

(v)

∫
t

4
√

1− 2t2
dt.

(vi)

∫
x5

(2 +
√

1− x6)3√
1− x6

dx.
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Solution.
(i): This is the example we already started. We use

u = 4x3 + 7, du = 12x2 dx,

so that ∫
12x2

5
√

4x3 + 7 dx =

∫
5
√

4x3 + 7 (12x2 dx)

=

∫
5
√
u du

=
5

6
u6/5 + C

=
5

6
(4x3 + 7)6/5 + C.

Always remember to get rid of the substitution variable at the last step.
(I.e., express your final solution in terms of the original variable.)
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(ii): Use

u = t− 2 ln(t), du = 1− 2

t
dt.

Then we have∫ (
1− 2

t

)
cos(t− 2 ln(t)) dt =

∫
cos(u) du

= sin(u) + C

= sin(t− 2 ln(t)) + C.

(iii): Use
u = 3x2 − x, du = 6x− 1 dx.

This gives ∫
7(6x− 1)e3x

2−x dx =

∫
7eu du

= 7eu + C

= 7e3x
2−x + C.
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(iv): Use
u = 1− 5 sin(y), du = −5 cos(y) dy

to get ∫
cos(y)(1− 5 sin(y))7 dy =

∫
u7 du

−5

= − 1

5 · 8u
8 + C

= − 1

40
(1− 5 sin(y))8 + C.

(v): Use
u = 1− 2t2, du = −4t dt.

This gives ∫
t

4
√

1− 2t2
dt =

∫
−1

4
u−1/4 du

= −1

4

4

3
u3/4 + C

= −1

3
4
√

(1− 2t2)3 + C.
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(vi): Use
u = 1− x6, du = −6x5 du

and we get ∫
x5

(2 +
√

1− x6)3√
1− x6

dx = −
∫

(2 +
√
u)3

6
√
u

du.

To solve this, we need to do another substitution:

v = 2 +
√
u, dv =

1

2
√
u
du

to obtain

−
∫

(2 +
√
u)3

6
√
u

du = −
∫
v3

3
dv

= − 1

12
v4 + C.

Putting this together, we get∫
x5

(2 +
√

1− x6)3√
1− x6

dx = − 1

12
v4 + C

= − 1

12
(2 +

√
u)4 + C

= − 1

12
(2 +

√
1− x6)4 + C.
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After a long problem like this, it is always best to check your solution.
Fortunately, this is easy to do, since it’s just integration!
We have

d

dx
− 1

12
(2 +

√
1− x6)4 =

1

12
4(2−

√
1− x6)3

1

2
√

1− x6
6x5

= x5
2−
√

1− x6)3√
1− x6

,

which confirms that our answer is correct.
Note. If you are a clever clog, you might have seen how to do this problem
with just one substitution,

w = 2 +
√

1− x6, dw =
1

2
√

1− x6
6x5 dx =

x5

3
√

1− x6
dx.
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Example 3.10. Evaluate the following.

(i)

∫
7

2x+ 3
dx.

(ii)

∫
7x

2x2 + 3
dx.

(iii)

∫
7x

(2x2 + 3)2
dx.

(iv)

∫
7

2x2 + 3
dx.
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Solution. (i): For this, use

u = 2x+ 3, du = 2 dx

so that ∫
7

2x+ 3
dx =

∫
7

u

du

2

=
7

2
ln |u|+ C

=
7

2
ln |2x+ 3|+ C.
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(ii): Use
u = 2x2 + 3, du = 4x dx,

to get ∫
7x

2x2 + 3
dx =

∫
7

4u
du

=
7

4
ln |u|+ C

=
7

4
ln(2x2 + 3) + C.

(Note here, we dropped the absolute value sign because 2x2 + 3 is always
positive. We don’t have to do this – it would be acceptable to give the final
answer as 7

4
ln |2x2 + 3|+ C.)
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(iii): Using the same substitution as in (ii), we obtain∫
7x

(2x2 + 3)2
dx =

∫
7

4u2
du

=

∫
7

4
u−2 du

=
7

4
· 1

−1
u−1 + C

= − 7

4(2x2 + 3)
+ C.
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(iv): At first, it might look like we want to use the same substitution again,
that is,

u = 2x2 + 3, du = 4x dx.

However, we don’t have a term x, so we would get∫
7

2x2 + 3
dx =

∫
7

4xu
du,

and this doesn’t get rid of all occurrences of x, so we cannot proceed further.
We can’t treat x as a constant, since u is defined in terms of x, so we don’t
have ∫

7

4xu
du =

7

4x
ln |u|.

We could solve for x in terms of u:

x = ±
√
u− 3

2
,

but the result is

±
∫

7

4u
√

(u− 3)/2
du,

which looks even more intimidating than the original integral. (Also we need to
worry about the ±, which is undesirable.)
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Whenever we can’t get rid of all occurrences of the old variable, it is a dead
end; the substitution didn’t work and we have to go back and try something
else.
Here, we might instead recognise that the integrand

7

2x2 + 3

looks something like the integrand

1

x2 + 1

whose antiderivative is tan−1(x).
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We manipulate things to make it look more like the derivative of tan−1(x):∫
7

2x2 + 3
dx =

7

3

∫
1

2
3
x2 + 1

dx =
7

3

∫
1

(
√

2/3x)2 + 1
dx

and now we see that the correct substitution is

u =

√
2

3
x, du =

√
2

3
dx.

Thus, ∫
7

2x2 + 3
dx =

7

3

∫
1

(
√

2/3x)2 + 1
dx

=
7

3

∫
1

u2 + 1

√
3

2
du

=
7
√

3

3
√

2
tan−1(u) + C

=
7
√

3

3
√

2
tan−1

(√
2

3
x

)
+ C.
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Example 3.11. Solve: ∫
t+ 1√
1− 9t2

dt.

Solution. Whenever the integrand is a sum of two things, it is advisable to

break it into the two parts using linearity:∫
t+ 1√
1− 9t2

dt =

∫
1√

1− 9t2
dt+

∫
t√

1− 9t2
dt.

Now, we need to solve the two integrals separately:

(i)

∫
t√

1− 9t2
dt and

(ii)

∫
1√

1− 9t2
dt.
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(i) We do this by the substitution

u = 1− 9t2, du = −18t dt.

This gives ∫
t√

1− 18t2
dt =

∫
1

−18
√
u
du

= − 2

18

√
u+ C′

= −1

9

√
1− t2 + C′,

C′ any constant.
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(ii): While it may seem like we want to again substitute

u = 1− 9t2, du = −18t dt,

there isn’t a “t” available for the du part. Instead, we recognise that the
integrand looks similar to

1√
1− t2

,

whose antiderivative is
sin−1(t).

We thus do a substitution to arrive at this exactly:

u = 3t, du = 3 dt.

This leads to ∫
1√

1− 9t2
dt =

∫
1

3
√

1− u2
du

=
1

3
sin−1(u) + C′′

=
1

3
sin−1(3t) + C′′.

C′′ any constant.
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Putting this together, we get∫
t+ 1√
1− 9t2

dt = −1

9

√
1− 9t2 +

1

3
sin−1(3t) + C.

(We combined the two integration constants into one. It is best practice to use
different symbols for different integration constants, but it probably won’t
cause much confusion if this isn’t done.)
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In the previous two examples, we saw that sometimes similar-looking integrands
may require very different methods.

As mentioned before, we simply cannot solve every integral problem.

One way to say this is that we just don’t have names for all the functions we
would need. However, we might make up new functions, and then try to solve
other integrals in terms of these.

For example, it is a fact that there is a differentiable function G : R→ R which
satisfies

G′(t) =
sin(t)

t

for all t 6= 0; however, this function cannot be expressed in terms of elementary
functions (polynomials, trig, exponential, logarithm).
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Example 3.12. Using the function G above to express the answer, solve∫
sin(et) dt.

Solution. Use the substitution

u = et, du = et dt.

This gives ∫
sin(et) dt =

∫
sin(et)

et
etdt

=

∫
sin(u)

u
du

= G(u) + C

= G(et).
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