
3-2. Computing integrals: the basics

It is very easy to differentiate – there are rules that work every time.

Antidifferentiation (finding antiderivatives) is not easy; it is not always possible.

For example,

f(x) = e−x
2

doesn’t have a closed form antiderivative (we can’t write down a formula for its
antiderivative, except by making up new functions).

Even when it is possible to find an antiderivative, there are no rules that
always work.
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Instead, we shall learn a number of techniques for finding antiderivatives.

For any integration problem, we may need to try a few approaches, and often
combine techniques, before discovering the solution.

We start with some integrals we just know by differentiating basic functions.

For polynomials: ∫
xn dx =

1

n+ 1
xn+1 + C.

In fact, this works for any value of n (not just integers) except n = −1.
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Recalling the derivatives of trigonometric functions, we have∫
cos(x) dx = sin(x) + C,∫
sin(x) dx = − cos(x) + C,∫

sec(x)2 dx = tan(x) + C,∫
sec(x) tan(x) dx = sec(x) + C,∫

csc(x)2 dx = − cot(x) + C,∫
csc(x) cot(x) dx = − csc(x) + C,∫

1

x2 + 1
dx = tan−1(x) + C,∫

1√
1− x2

dx = sin−1(x) + C.
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Recalling the derivatives of exponential functions, we have∫
ex dx = ex + C,∫
ax dx =

1

ln(a)
ax + C,∫

1

x
dx =

∫
x−1 dx = ln |x|+ C.

(Note that, we don’t have a formula for the antiderivative of ln(x) – this will
require some later techniques.)
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Example 3.6. Evaluate the following:

(i)

∫
7t3 − 2t−4 dt

(ii)

∫
5
√
x− 2

3
√
x2

dx

(iii)

∫
4u3 + 6

u4
du

(iv)

∫
sin(2x) + 4ex dx

(v)

∫
cos(x+ 1) +

5

1 + x2
−
√
x7 dx
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Solution.
(i): ∫

7t3 − 2t−4 dt =
7

4
t4 − 2

−3
t−3 + C

=
7

4
t4 +

2

3t3
+ C.

(ii): ∫
5
√
x− 2

3
√
x2

dx =

∫
5x1/2 − 2x−2/3 dx

=
5

3/2
x3/2 − 2

1/3
x1/3 + C

=
10

3
x3/2 − 6x1/3 + C.

(iii): ∫
4u3 + 6

u4
du =

∫
4u−1 + 6u−4 du

= 4 ln |u|+ 6

−3
u−3 + C

= 4 ln |u| − 2u−3 + C.
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(iv): ∫
sin(2x) + 4ex dx = −1

2
cos(2x) + 4ex + C.

Here we didn’t use the integrals derived above, but instead we remember that
the derivative of cos(2x) is −2 sin(2x).

(v):∫
cos(x+ 1) +

5

1 + x2
−
√
x7 dx = sin(x+ 1) + 5 tan−1(x)− 2

9
x9/2 + C.

Again, we compute that the d
dx

sin(x+ 1) = cos(x+ 1) in order to deal with
the first term.

285 / 424



Example 3.7. Solve ∫
sin
(x

2

)
cos
(x

2

)
dx.

Solution. Although our later techniques will give us other options for dealing
with this one, we can do this one by simplifying the integrand. Recall the
double-angle formula

sin(2t) = 2 sin(t) cos(t),

and thus,

sin
(x

2

)
cos
(x

2

)
=

1

2
sin(x).

Therefore, ∫
sin
(x

2

)
cos
(x

2

)
dx =

1

2

∫
sin(x) dx

= −1

2
cos(x) + C.

Even when we have other tools at our disposal, remember as in the previous
example, to try to simplify the integrand as one possible way to solve the
integral.
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