
3. Integration
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3-1. Antiderivatives and the indefinite integral

Example 3.1. What function has, as a derivative, the function

f(x) = x5 + 3x− 1?

Solution. The question asks to find F (x) such that F ′(x) = f(x).

As a warm-up, take the derivative of f(x). It is

f ′(x) = 5x4 + 3.

This doesn’t actually help, but reminds us how to differentiate.
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Differentiating a power of x, say xn, is done by multiplying by the power and
lowering the power by 1, i.e.,

d

dx
xn = nxn−1.

To go backwards, we must therefore divide by the power plus one and then
raise the power by one. So, we can take F to be

F (x) =
1

6
x6 +

3

2
x2 − x.

Note that this isn’t the only solution, for example we could instead take

F (x) =
1

6
x6 +

3

2
x2 − x+ 2,

because the derivative of a constant (2 in this case) is 0.
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Proposition 3.2. Suppose that f(x) is a function and F (x), G(x) are
functions which satisfy

F ′(x) = f(x), and G′(x) = f(x).

Then F (x)−G(x) is a constant.

Proof.
Set H(x) = F (x)−G(x). Then

H ′(x) = F ′(x)−G′(x) = f(x)− f(x) = 0.

We must show that H(x) is a constant, i.e., that H(x) = H(y) for all x, y.

For this, suppose that x < y. By the Mean Value Theorem, there exists
z ∈ (x, y) such that

H(y)−H(x) = H ′(z)(y − x).

Since H ′(z) = 0, it follows that H(x) = H(y).
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Definition 3.3. If f(x) is a function, an antiderivative of f(x) is any function
F (x) such that

F ′(x) = f(x)

as functions. In this case, we write∫
f(x) dx = F (x) + C, C is any constant.

This is called the indefinite integral of f(x);

I f(x) is the integrand,

I x is the variable of integration,

I and C is the constant of integration.

(By the previous proposition, this is the general form of an antiderivative of
f(x).)
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Example 3.4. Evaluate the indefinite integral∫
x3 + 3x dx.

Solution. First we find a function F (x) such that

F ′(x) = x3 + 3x.

As in the previous example, we can see that the function

F (x) =
1

4
x4 +

3

2
x2

works. Thus, the indefinite integral is∫
x3 + 3x dx =

1

4
x4 +

3

2
x2 + C, C any constant.
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Note: it is important to remember to write dx at the end of the integral,
for two reasons:

(i) The dx tells us where the integrand stops. If you don’t write it, the meaning
of what you’ve written is ambiguous. For example, if we wrote∫

x3 − 3x2 + 5,

it isn’t clear if we mean∫
x3 − 3x2 + 5 dx =

1

4
x4 − x3 + 5x+ C,∫

x3 − 3x2 dx+ 5 =
1

4
x4 − x3 + C + 5, or∫

x3 dx− 3x2 + 5 =
1

4
x4 + C − 3x2 + 5.
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(ii) The dx tells us the variable of integration (in this case, x). We are allowed
to do integration with different variables of integration (and this will soon be
important). While ∫

3x2 dx = x3 + C,

we likewise have ∫
3t2 dt = t3 + C.

In some cases, we might have multiple variables, but only one can be the
variable of integration – the others are treated as constants. For example,∫

Kx2 dx =
K

3
x3 + C,

whereas if we wrote
∫
Kx2 dK, we would have to treat x as constant, so the

answer is ∫
Kx2 dK =

x2

2
K2 + C.
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Similarly, ∫
xn dx =

1

(n+ 1)
xn+1 + C,

while ∫
xn dn =

xn

ln(x)
+ C.

(We usually try to avoid using n as the variable of integration, because usually
n stands for an integer variable.)
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Proposition 3.5 (Linearity of the integral).

(i) ∫
Kf(x) dx = K

∫
f(x) dx,

where K is any scalar (constant). This includes the case of K < 0, for
example ∫

−f(x) dx = −
∫
f(x) dx.

(ii) ∫
f(x) + g(x) dx =

∫
f(x) dx+

∫
g(x) dx.
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Proof.
These both follow from linearity of differentiation: say∫

f(x) dx = F (x) + C,

which means that F ′(x) = f(x). Then:

(i) We know that (KF )′(x) = KF ′(x) = Kf(x), so that∫
Kf(x) dx = KF (x) +D, D any constant.

(ii) Suppose likewise that G′(x) = g(x), so that∫
g(x) dx = G(x) + E, E any constant.

Then (F +G)′(x) = F ′(x) +G′(x) = f(x) + g(x). Thus, (avoiding writing
the constants of integration), we have∫

f(x) + g(x) dx = F (x) +G(x) =

∫
f(x) dx+

∫
g(x) dx.
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By contrast, note that∫
f(x)g(x) dx 6=

∫
f(x) dx

∫
g(x) dx

and ∫
f(x)

g(x)
dx 6=

∫
f(x) dx

/∫
g(x) dx.

(Because analogous formulae don’t hold for differentiation.)

This is one of the things that makes integration interesting!
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