
2-13 Inverse functions

Remark 2.84. In this section we will look at inverse functions. Not every
function actually has an inverse. The following definition tells us the ones that
do have an inverse.

Definition 2.85 (One-to-one functions). A function f is called a one-to-one
function if it never takes the same value twice. In other words, f is one-to-one
if

f(x1) 6= f(x2) whenever x1 6= x2.

In terms of graphs, a function is one-to-one if and only if there is no horizontal
line that intersects its graph more than once.

Example 2.86. The function f defined by f(x) = x3 is one-to-one. One way
to see this is from the definition: if x1 6= x2 then x31 6= x32. Another way to see
it is from the graph (which we will not draw here), in which each horizontal line
crosses the graph exactly once.
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Example 2.87. The function g defined by g(x) = x2 is not one-to-one. One
way to see this is that, if we let x1 = 1 and x2 = −1, then we have x1 6= x2
but g(x1) = 1 = g(x2), so that the definition does not hold. Another way to
see it is that if c > 0, then the horizontal line y = c passes through the graph
of y = g(x) twice.

Definition 2.88 (Inverse functions). Let f be a one-to-one function with
domain A and range B. (Recall that the range of f is the set of all numbers of
the form f(x) for some x ∈ A.) Then the inverse function, denoted f−1, has
domain B and range A and is defined by the rule

f−1(y) = x ⇐⇒ y = f(x).
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Example 2.89. If f is the function defined by f(x) = x3, then f−1 is defined

by f−1(x) = x
1
3 . This is because, for this function f−1, the condition

f−1(y) = x

is equivalent to

y
1
3 = x

which is equivalent to
y = x3,

which is equivalent to
y = f(x).

We will see a perhaps more straightforward way of finding inverse functions
shortly.
Here are three important properties of the inverse function. The first is in fact
the definition again.

f−1(y) = x ⇐⇒ y = f(x)

The next ones are called the cancellation equations.

f−1(f(x)) = x for every x ∈ A.

f(f−1(x)) = x for every x ∈ B.
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How to find the inverse. Let f be a one-to-one function. We find the inverse
of f as follows.

1. Write y = f(x).

2. Solve the equation to give x in terms of y, i.e. x = · · · , where the right
hand side involves y but not x.

3. Swap x and y, so that you now have an equation of the form y = · · · .
4. The resulting equation is y = f−1(x).
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Example 2.90. Find the inverse of the function f defined by f(x) = x3 + 4.

Solution We follow the steps above.

1. The equation y = f(x) is y = x3 + 4.

2. Rearranging this gives y − 4 = x3 and then x = 3
√
y − 4.

3. Swapping x and y gives y = 3
√
x− 4.

4. So f−1(x) = 3
√
x− 4.
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It is easy to understand the graph of an inverse function in terms of the original
function. Indeed:

(x, y) lies on the graph of f ⇐⇒ y = f(x)

⇐⇒ x = f−1(y)

⇐⇒ (y, x) lies on the graph of f−1.

This means that the graph of f−1 is obtained from the graph of f by switching
the x and y values, or in other words, by reflecting in the line y = x.

Derivatives of inverse functions. If f is a one-to-one differentiable function
and f ′(f−1(a)) 6= 0, then f−1 is differentiable at a and

(f−1)′(a) =
1

f ′(f−1(a))
.
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Sketch proof of the formula for (f−1)′(a).

One of the two cancellation equations tells us that f−1(f(x)) = x for all x.
Differentiating both sides of this equation gives

d

dx
f−1(f(x)) =

d

dx
(x)

or in other words
(f−1)′(f(x)) · f ′(x) = 1.

Rearranging gives

(f−1)′(f(x)) =
1

f ′(x)
.

Now, substituting f−1(x) in place of x, and using the cancellation equation
f(f−1(x)) = x gives us

(f−1)′(x) =
1

f ′(f−1(x))
.
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Example 2.91. Define f by f(x) = 2x+ cos(x). Find (f−1)′(1).

Solution Working out f ′ gives f ′(x) = 2− sin(x). so the formula for
(f−1)′(a) in the case a = 1 gives us

(f−1)′(1) =
1

f ′(f−1(1))
=

1

2− sin(f−1(1))
.

It just remains to find f−1(1). However, f(0) = 2 · 0 + cos(0) = 0 + 1 = 1, and
this exactly means that f−1(1) = 0. So in the end we have

(f−1)′(1) =
1

2− sin(0)
=

1

2
.

Example 2.92. Prove the formula for the derivative of n
√
x using the formula

for the derivative of the inverse function

Solution We think of n
√
x as the inverse function of f(x) = xn, where we

restrict the domain to (0,∞) if n is even. Write g(x) = n
√
x. Using the

formula f ′(x) = nxn−1 we have

g′(x) = 1/f ′(g(x)) =
1

ng(x)n−1
=

1

n
x

1−n
n =

1

n
x1−

1
n

as required.
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Example 2.93. Find the derivatives of the inverse trigonometric functions
arcsin and arccos. Write them as explicit formulas in x.

Solution We show here the formula for arcsin. The formula for arccos is
similar. Write f(x) = sin(x), g(x) = f−1(x) = arcsin(x) . We have

g′(x) =
1

f ′(g(x))
=

1

cos(arcsin(x))
.

What is cos(arcsin(x))? If arcsin(x) = y then sin(y) = x, and then
cos2(y) + sin2(y) = 1 so cos2(y) + x2 = 1 or cos2(y) = 1− x2. Since the
range of arcsin is [−π/2, π/2], we see that cos(y) is positive, so we get that

arcsin′(x) =
1√

1− x2
.

We similarly get

arccos′(x) = − 1√
1− x2
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