2-11 Logarithmic functions

Definition 2.77 (The natural logarithm). The function f defined by $f(x) = e^x$ is increasing, and so is one-to-one. Its domain is $\mathbb{R} = (-\infty, \infty)$, and its range is $(0, \infty)$.

The natural logarithm, denoted ln, is the inverse function (we will say what we mean by inverse function in the next section). Its domain is $(0,\infty)$, its range is $(-\infty,\infty)$, and it is characterised by the fact that

$$\ln(y) = x \iff y = e^x.$$

Example 2.78.

- $e^0 = 1$, and so $\ln(1) = 0$.
- $e^1 = e$, and so $\ln(e) = 1$.

The following properties of \ln are all consequences of the definition of \ln together with properties of the exponential function.

Properties of \ln .

$$\ln(ab) = \ln(a) + \ln(b)$$
$$\ln(a/b) = \ln(a) - \ln(b)$$
$$\ln(a^{r}) = r \ln(a)$$
$$e^{\ln(x)} = x$$
$$\ln(e^{x}) = x$$