Imagine you are driving a car from point A to point B . The velocity of your car might change throughout the drive: you start slow, then you accelerate, then you slow down et cetera. If the distance between point A and point B is X . and the amount of time the drive took you is T , then the average velocity of your drive was $\frac{X}{T}.$ The mean value theorem is the following:

Theorem 2.62 (Mean Value Theorem, imprecise statement). The velocity of your car at some point, between A and B , was exactly the average velocity $\frac{X}{T}$.

[2](#page--1-0)29 / 424

The precise statement of the mean value theorem is the following:

Theorem 2.63 (The Mean Value Theorem). Let f be a function satisfying the following hypotheses:

- \blacktriangleright f is continuous on the closed interval [a, b]
- If is differentiable on the open interval (a, b) .

Then there is a number c in (a, b) such that

$$
f'(c) = \frac{f(b) - f(a)}{b - a}.
$$

[2](#page--1-0)30 / 424

To prove this theorem, we will begin with the case where $f(a) = f(b)$. This is called Rolle's Theorem:

[2](#page--1-0)31 / 424

Theorem 2.64 (Rolle's Theorem). Let f be a function that satisfies the following three hypotheses:

- \blacktriangleright f is continuous on the closed interval [a, b]
- \blacktriangleright f is differentiable on the open interval (a, b) .

$$
\blacktriangleright \ f(a) = f(b).
$$

Then there is a number c in (a, b) such that $f'(c) = 0$.

Proof.

We have the following three cases:

- Case I: Assume that the function is constant: $f(x) = f(a) = f(b)$ for every x in $[a, b]$. Then the derivative is zero, and we can take c to be any number in (a, b) .
- Case II : Assume that $f(x) > f(a)$ for some x in (a, b) . We know, by the extreme value theorem, that f has a maximum in [a, b]. Since $f(x) > f(a) = f(b)$, this maximum is not a nor b. So the maximum is attained at some c in (a, b) . But then c is also a local maximum, and it is therefore a crtical number. The derivative $f'(c)$ exists, and by the Theorem of Fermat we have $f'(c) = 0$.
- Case III : Assume that $f(x) < f(a)$ for some x in (a, b) . This is similar to Case II. Fill in the details!

[2](#page--1-0)32 / 424

П

We now use the theorem of Rolle to prove the Mean Value Theorem:

Proof of MVT. : Write $s = \frac{f(b)-f(a)}{b-a}$. Consider the function $g(x) = f(x) - sx$. We calculate: $g(a) = f(a) - sa$ and $g(b) = f(b) - sb$. This implies:

$$
g(a) - g(b) = f(a) - f(b) - sa + sb =
$$

$$
f(a) - f(b) + s(b - a) =
$$

$$
f(a) - f(b) + \frac{f(b) - f(a)}{b - a}(b - a) =
$$

$$
f(a) - f(b) + f(b) - f(a) = 0.
$$

This means that $g(a) = g(b)$. The function g satisfies the condition of the theorem of Rolle: Since f and sx are continuous in [a, b] and differentiable in (a, b) the same is true for the difference $q(x) = f(x) - sx$. Therefore, by the theorem of Rolle, there is a point $c \in (a, b)$ such that $g'(c) = 0$. But $g'(c) = f'(c) - s$. This means that

$$
f'(c) = s = \frac{f(b) - f(a)}{b - a},
$$

 $\begin{array}{ccc} 4 & \Box \rightarrow & 4 & \Box \rightarrow & 4 & \Xi \rightarrow & 4 & \Xi & 233 / 424 \end{array}$ $\begin{array}{ccc} 4 & \Box \rightarrow & 4 & \Box \rightarrow & 4 & \Xi \rightarrow & 4 & \Xi & 233 / 424 \end{array}$ $\begin{array}{ccc} 4 & \Box \rightarrow & 4 & \Box \rightarrow & 4 & \Xi \rightarrow & 4 & \Xi & 233 / 424 \end{array}$

П

which is what we wanted to prove.

The mean value theorem has the following corollary:

Theorem 2.65. Assume that $f'(x) = 0$ for all $x \in (a, b)$. Then f is constant on (a, b) .

Proof.

Let c, d be two points in (a, b) . We want to show that $f(c) = f(d)$. By the mean value theorem, there is a point e in (c, d) such that $f'(e) = \frac{f(d) - f(c)}{d - c}$. But this means that $f(d) - f(c) = 0$.

 $\begin{array}{ccc} 4 & \Box \rightarrow & 4 & \Box \rightarrow & 4 & \Xi \rightarrow & 4 & \Xi & 234/424 \end{array}$ $\begin{array}{ccc} 4 & \Box \rightarrow & 4 & \Box \rightarrow & 4 & \Xi \rightarrow & 4 & \Xi & 234/424 \end{array}$ $\begin{array}{ccc} 4 & \Box \rightarrow & 4 & \Box \rightarrow & 4 & \Xi \rightarrow & 4 & \Xi & 234/424 \end{array}$

Corollary 2.66. Assume that $f'(x) = g'(x)$ for all x in an interval (a, b) . Then $f - g$ is constant on (a, b) .

Proof.

Consider the function $F(x) = f(x) - g(x)$ and use the above theorem. Fill in the details! г

[2](#page--1-0)35 / 424

Example 2.67. prove that $f(x) = x^3 + x - 1$ has exactly one real root.

Solution First, notice that $f(0) = -1 < 0$ and $f(1) = 1 > 0$. This means that f has a root between 0 and 1. Next we show that there are no two roots. We do this by contradiction: Assume that a and b are two roots of f , and $a < b$. Then by the theorem of Rolle, there is a point $a < c < b$ such that $f'(c) = 0.$ But $f'(x) = 3x^2 + 1$ is always positive, so this is impossible. We thus have only one root.

Example 2.68. Suppose that $f(0) = -3$ and $f'(x) \le 5$ for all x. How large can $f(2)$ be?

Solution The MVT gives us that $\frac{f(2)-f(0)}{2-0} = f'(c)$ for some $c \in (0,2)$. So $f(2) = 2f'(c) - 3 \le 2 \cdot 5 - 3 = 7$. This means that $f(2)$ is bounded above by 7.

 $\begin{array}{rcl} 4 & \Box \rightarrow & 4 \stackrel{\triangle}{\Box} \rightarrow & 4 \stackrel{\triangle}{\Box} \rightarrow & 4 \stackrel{\triangle}{\Box} \rightarrow & \stackrel{\triangle}{\Box} & \frac{\sqrt{2}}{236}/424 \end{array}$ $\begin{array}{rcl} 4 & \Box \rightarrow & 4 \stackrel{\triangle}{\Box} \rightarrow & 4 \stackrel{\triangle}{\Box} \rightarrow & 4 \stackrel{\triangle}{\Box} \rightarrow & \stackrel{\triangle}{\Box} & \frac{\sqrt{2}}{236}/424 \end{array}$ $\begin{array}{rcl} 4 & \Box \rightarrow & 4 \stackrel{\triangle}{\Box} \rightarrow & 4 \stackrel{\triangle}{\Box} \rightarrow & 4 \stackrel{\triangle}{\Box} \rightarrow & \stackrel{\triangle}{\Box} & \frac{\sqrt{2}}{236}/424 \end{array}$