
2-5 The Chain Rule

We would like to find the derivative of the composition of two functions f ◦ g.
We will prove the following:

The chain rule. If g is differentiable at x and f is differentiable at g(x), then
f ◦ g is differentiable at x and

(f ◦ g)′(x) = f ′(g(x)) · g′(x).
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Proof.
Write g(a) = b. We would like to calculate the derivative of f ◦ g at a. If
g(x) 6= g(a) for x close enough to a but not equal to a, we calculate:

lim
x→a

f(g(x))− f(g(a))

x− a = lim
x→a

f(g(x))− f(g(a))

g(x)− g(a)

g(x)− g(a)

x− a =

lim
x→a

f(g(x))− f(g(a))

g(x)− g(a)
lim
x→a

g(x)− g(a)

x− a = lim
y→b

f(y)− f(b)

y − b lim
x→a

g(x)− g(a)

x− a =

f ′(b)g′(a) = f ′(g(a))g′(a)

and we are done. We have used here the fact that since g is differentiable at a,
g is also continuous at a. Therefore, when x→ a it holds that g(x)→ b. The
problem is that we may have many points in which g(x) = g(a) even when
x 6= a. For this, we define a new function:

Q(y) =

{
f(y)−f(b)

y−b if y 6= b

f ′(b) if y = b

x
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Cont.
Notice that Q is a continuous function. It follows that Q ◦ g is also a
continuous function, since it is the composition of two continuous functions.
We define another function:

H(x) =

{
g(x)−g(a)
x−a if x 6= a

g′(a) if x = a

Notice that H is defined for all x in the domain of g, and is also continuous.
We define a new function F to be F (x) = (Q ◦ g)H. We claim now that

F (x) = ((Q ◦ g)H)(x) =
f(g(x))− f(g(a))

x− a if x 6= a.

Indeed, by using the formula for Q and for H we get that if g(x) 6= g(a) then

F (x) =
f(g(x))− f(g(a))

g(x)− g(a)

g(x)− g(a)

x− a =
f(g(x))− f(g(a))

x− a .

If g(x) = g(a) then H(x) = 0 and therefore F (x) = 0. On the other hand
f(g(x))−f(g(a))

x−a = 0 because f(g(x)) = f(g(a)). The function F is continuous
because it is the product of two continuous functoins. We then have that

f ′(g(x))g′(x) = F (a) = lim
x→a

F (x) = lim
x→a

f(g(x))− f(g(a))

x− a = (f ◦ g)′(a)

and we are done. 200 / 424



Example 2.38. Find F ′(x) if F is defined by F (x) =
√
x2 + 1.

Solution F = f ◦ g where g(x) = x2 + 1 and f(u) =
√
u. Thus by the chain

rule,
F ′(x) = f ′(g(x)) · g′(x).

Now, g′(x) = 2x and f ′(u) = d
du

√
u = d

du
u

1
2 = 1

2
u

1
2
−1 = 1

2
u−

1
2 . Thus

F ′(x) = f ′(g(x)) · g′(x)

= f ′(x2 + 1) · 2x

=
1

2
(x2 + 1)−

1
2 · 2x

=
x√

x2 + 1
.
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In applying the chain rule, we think of f(g(x)) as an outer function f applied
to an inner function g.

Then
the chain rule says:
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Example 2.39. Differentiate sin(x2) and sin2(x).

Solution Let us differentiate sin(x2). In this case we take the outer function to
be sin( ) and the inner function to be x2. Then the derivative of the outer
function is cos( ), and applying this to the inner function gives cos(x2). And
the derivative of the inner function is 2x. So altogether we have

d

dx
sin(x2) = cos(x2) · 2x = 2x cos(x2).

Now let us differentiate sin2(x) = [sin(x)]2. In this case we take the outer
function to be [ ]2 and the inner function to be sin(x). So the derivative of the
outer function is 2[ ] and applying this to the inner function gives 2[sin(x)].
And the derivative of the inner function is cos(x). So altogether we have

d

dx
sin2(x) =

d

dx
[sin(x)]2 = 2[sin(x)] · cos(x) = 2 sin(x) cos(x).
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The chain rule with the power rule.

d

dx
[g(x)]n = n[g(x)]n−1 · g′(x).

Example 2.40. Let f be the function defined by f(x) =
1

3
√
x2 + x+ 1

. Find

f ′.

Solution First, we write f as a power of another function.

f(x) =
1

3
√
x2 + x+ 1

=
1

(x2 + x+ 1)1/3
= (x2 + x+ 1)−1/3.

Thus, by the rule above, we have

f ′(x) = −1

3
(x2 + x+ 1)−

1
3
−1 · (2x+ 1 + 0) = −1

3
(2x+ 1)(x2 + x+ 1)−

4
3 .
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Example 2.41. Differentiate y = (2x+ 1)5(x3 + x− 1)4.

Solution Here, y is given to us as the product of the two functions (2x+ 1)5

and (x3 + x− 1)4. So we start by using the product rule. Then on the next
line, we use the chain-and-powers rule.

dy

dx
=

d

dx

[
(2x+ 1)5

]
(x3 − x+ 1)4 + (2x+ 1)5

d

dx

[
(x3 − x+ 1)4

]
= 5(2x+ 1)4 · (2 + 0) · (x3 − x+ 1)4 + (2x+ 1)5 · 4(x3 − x+ 1)3 · (3x2 − 1 + 0)

= 2 · (2x+ 1)4 · (x3 − x+ 1)3
[
5 · (x3 − x+ 1) + 2 · (2x+ 1) · (3x2 − 1)

]
= 2 · (2x+ 1)4 · (x3 − x+ 1)3 · (17x3 − 9x+ 6x2 + 3)
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Example 2.42. Differentiate y = sin(sin(sin(x))).

Solution We will have to use the chain rule twice, as follows.

dy

dx
= cos(sin(sin(x))) · d

dx
[sin(sin(x))]

= cos(sin(sin(x))) ·
[
cos(sin(x)) · d

dx
sin(x)

]
= cos(sin(sin(x))) · cos(sin(x)) · cos(x)
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