We would like to find the derivative of the composition of two functions $f \circ g$. We will prove the following:

The chain rule. If g is differentiable at x and f is differentiable at $g(x)$, then $f \circ g$ is differentiable at x and

 $(f \circ g)'(x) = f'(g(x)) \cdot g'(x).$

Proof.

Write $g(a) = b$. We would like to calculate the derivative of $f \circ q$ at a. If $g(x) \neq g(a)$ for x close enough to a but not equal to a, we calculate:

$$
\lim_{x \to a} \frac{f(g(x)) - f(g(a))}{x - a} = \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \frac{g(x) - g(a)}{x - a} =
$$

$$
\lim_{x \to a} \frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \lim_{x \to a} \frac{g(x) - g(a)}{x - a} = \lim_{y \to b} \frac{f(y) - f(b)}{y - b} \lim_{x \to a} \frac{g(x) - g(a)}{x - a} =
$$

$$
f'(b)g'(a) = f'(g(a))g'(a)
$$

and we are done. We have used here the fact that since q is differentiable at a , g is also continuous at a. Therefore, when $x \to a$ it holds that $g(x) \to b$. The problem is that we may have many points in which $g(x) = g(a)$ even when $x \neq a$. For this, we define a new function:

$$
Q(y) = \begin{cases} \frac{f(y) - f(b)}{y - b} & \text{if } y \neq b \\ f'(b) & \text{if } y = b \end{cases}
$$

Cont.

Notice that Q is a continuous function. It follows that $Q \circ q$ is also a continuous function, since it is the composition of two continuous functions. We define another function:

$$
H(x) = \begin{cases} \frac{g(x) - g(a)}{x - a} & \text{if } x \neq a \\ g'(a) & \text{if } x = a \end{cases}
$$

Notice that H is defined for all x in the domain of g, and is also continuous. We define a new function F to be $F(x) = (Q \circ g)H$. We claim now that

$$
F(x) = ((Q \circ g)H)(x) = \frac{f(g(x)) - f(g(a))}{x - a}
$$
 if $x \neq a$.

Indeed, by using the formula for Q and for H we get that if $g(x) \neq g(a)$ then

$$
F(x) = \frac{f(g(x)) - f(g(a))}{g(x) - g(a)} \frac{g(x) - g(a)}{x - a} = \frac{f(g(x)) - f(g(a))}{x - a}.
$$

If $g(x) = g(a)$ then $H(x) = 0$ and therefore $F(x) = 0$. On the other hand $\frac{f(g(x)) - f(g(a))}{x - a} = 0$ because $f(g(x)) = f(g(a))$. The function F is continuous because it is the product of two continuous functoins. We then have that

$$
f'(g(x))g'(x) = F(a) = \lim_{x \to a} F(x) = \lim_{x \to a} \frac{f(g(x)) - f(g(a))}{x - a} = (f \circ g)'(a)
$$

and we are done.

Example 2.38. Find $F'(x)$ if F is defined by $F(x) = \sqrt{x^2 + 1}$.

Solution $F = f \circ g$ where $g(x) = x^2 + 1$ and $f(u) = \sqrt{u}$. Thus by the chain rule,

$$
F'(x) = f'(g(x)) \cdot g'(x).
$$

\nNow, $g'(x) = 2x$ and $f'(u) = \frac{d}{du}\sqrt{u} = \frac{d}{du}u^{\frac{1}{2}} = \frac{1}{2}u^{\frac{1}{2}-1} = \frac{1}{2}u^{-\frac{1}{2}}.$ Thus
\n
$$
F'(x) = f'(g(x)) \cdot g'(x)
$$
\n
$$
= f'(x^2 + 1) \cdot 2x
$$
\n
$$
= \frac{1}{2}(x^2 + 1)^{-\frac{1}{2}} \cdot 2x
$$
\n
$$
= \frac{x}{\sqrt{x^2 + 1}}.
$$

In applying the chain rule, we think of $f(g(x))$ as an outer function f applied to an inner function g .

the chain rule says:

$$
\underbrace{\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)}_{\text{derivative of} \atop \text{outer function}} \underbrace{g(x)}_{\text{inert function}} \underbrace{\cdot g'(x)}_{\text{inert function}}
$$

Then

Example 2.39. Differentiate $sin(x^2)$ and $sin^2(x)$.

Solution Let us differentiate $\sin(x^2)$. In this case we take the outer function to be $\sin()$ and the inner function to be $x^2.$ Then the derivative of the outer function is $\cos($ $)$, and applying this to the inner function gives $\cos(x^2)$. And the derivative of the inner function is $2x$. So altogether we have

$$
\frac{d}{dx}\sin(x^2) = \cos(x^2) \cdot 2x = 2x\cos(x^2).
$$

Now let us differentiate $\sin^2(x) = [\sin(x)]^2$. In this case we take the outer function to be $\left[\;\;\right]^2$ and the inner function to be $\sin(x)$. So the derivative of the outer function is $2\lceil \cdot \rceil$ and applying this to the inner function gives $2[\sin(x)]$. And the derivative of the inner function is $cos(x)$. So altogether we have

$$
\frac{d}{dx}\sin^2(x) = \frac{d}{dx}[\sin(x)]^2 = 2[\sin(x)]\cdot\cos(x) = 2\sin(x)\cos(x).
$$

The chain rule with the power rule.

$$
\frac{d}{dx}[g(x)]^n = n[g(x)]^{n-1} \cdot g'(x).
$$

Example 2.40. Let f be the function defined by $f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}}$. Find $f'.$

Solution First, we write f as a power of another function.

$$
f(x) = \frac{1}{\sqrt[3]{x^2 + x + 1}} = \frac{1}{(x^2 + x + 1)^{1/3}} = (x^2 + x + 1)^{-1/3}.
$$

Thus, by the rule above, we have

$$
f'(x) = -\frac{1}{3}(x^2 + x + 1)^{-\frac{1}{3}-1} \cdot (2x + 1 + 0) = -\frac{1}{3}(2x + 1)(x^2 + x + 1)^{-\frac{4}{3}}.
$$

Example 2.41. Differentiate $y = (2x + 1)^5 (x^3 + x - 1)^4$.

Solution Here, y is given to us as the product of the two functions $(2x + 1)^5$ and $(x^3+x-1)^4.$ So we start by using the product rule. Then on the next line, we use the chain-and-powers rule.

$$
\frac{dy}{dx} = \frac{d}{dx} \left[(2x+1)^5 \right] (x^3 - x + 1)^4 + (2x+1)^5 \frac{d}{dx} \left[(x^3 - x + 1)^4 \right]
$$

= 5(2x+1)⁴ \cdot (2+0) \cdot (x³ - x + 1)⁴ + (2x+1)⁵ \cdot 4(x³ - x + 1)³ \cdot (3x² - 1 + 0)
= 2 \cdot (2x+1)⁴ \cdot (x³ - x + 1)³ \left[5 \cdot (x³ - x + 1) + 2 \cdot (2x+1) \cdot (3x² - 1) \right]
= 2 \cdot (2x+1)⁴ \cdot (x³ - x + 1)³ \cdot (17x³ - 9x + 6x² + 3)

Example 2.42. Differentiate $y = sin(sin(sin(x)))$.

Solution We will have to use the chain rule twice, as follows.

$$
\frac{dy}{dx} = \cos(\sin(\sin(x))) \cdot \frac{d}{dx} [\sin(\sin(x))]
$$

$$
= \cos(\sin(\sin(x))) \cdot \left[\cos(\sin(x)) \cdot \frac{d}{dx} \sin(x)\right]
$$

$$
= \cos(\sin(\sin(x))) \cdot \cos(\sin(x)) \cdot \cos(x)
$$

 $\begin{array}{ccc} 4 & \Box \rightarrow & 4 & \Box \rightarrow & 4 & \Xi \rightarrow & \Xi & \Box & 206 \sqrt{424} \end{array}$ $\begin{array}{ccc} 4 & \Box \rightarrow & 4 & \Box \rightarrow & 4 & \Xi \rightarrow & \Xi & \Box & 206 \sqrt{424} \end{array}$ $\begin{array}{ccc} 4 & \Box \rightarrow & 4 & \Box \rightarrow & 4 & \Xi \rightarrow & \Xi & \Box & 206 \sqrt{424} \end{array}$