2-6 Implicit differentiation

The functions we have met so far have been described by expressing one variable explicitly in terms of another variable, for example

$$
y = \sqrt{x^3 + 1} \text{ or } y = x \cos(x).
$$

Some functions, however, are described instead by a relation between two variables.

For example,

$$
x^2 + y^2 = 25.
$$

[2](#page--1-0)07 / 424

The set of all points (x, y) satisfying this equation determines a curve — in this case it is the circle centered at $(0, 0)$ and with radius 5.

However, this is not the graph of a single function, since there are vertical lines which intersect the curve at two points (and not at one point). However, we say that the equation *implicitly* defines a function f if, when we substitute $f(x)$ in place of y, the equation holds true for all values of x in the domain of f. For the place of y, the equation holds true for all values of x in the domain of j. For example, if we define f_1 and f_2 by $f_1(x) = \sqrt{25 - x^2}$ and $f_2(x) = -\sqrt{25 - x^2}$, then f_1 and f_2 are both implicitly defined by our equation.

Let us take another example. It is called the *folium of Descartes*.

Here there are many functions implicitly defined by the equation.

Now, even though it is not possible to express y globally as a function $f(x)$, it is nevertheless possible to express y locally as a function $f(x)$, and to find a formula for $\frac{dy}{dx}$ in terms of x and y .

We have the following theorem, which we shall not prove now. For this theorem we write $F_y(x, y)$ for the function resulting from deriving $F(x, y)$ with respect to y (we think of x as a constant and of y as a variable and derive it accordingly). Similarly, $F_x(x, y)$ is the function resulting from deriving $F(x, y)$ with respect to x .

Theorem 2.43. Let $F(x, y)$ be a nice function of two variables (we will not say precisely what "nice" means here. All the functions which we will consider here will be nice). Assume that $F(a, b) = 0$ and that $F_u(a, b) \neq 0$. Then there is a continuous differentiable function $f(x)$ such that:

- 1. $f(a) = b$.
- 2. For x close enough to a and y close enough to b it holds that $F(x, f(x)) = 0$ and moreover $F(x, y) = 0$ exactly when $f(x) = y$.
- 3. The derivative of f is given by $f'(x) = \frac{-F_x(x,y)}{F_y(x,y)}$

Remark 2.44.

- \triangleright This theorem sounds quite complicated at first, but using it is easier. It means that if we look close enough to the point (a, b) , the collection of points (x, y) which satisfy the equation $F(x, y) = 0$ look like the graph of a function. Usually we will not be able to write a precise formula for y as a function of x , but that's completely fine.
- \triangleright To find the derivative, we derive $F(x, y)$ with respect to the variable x, where we think of y as a function of x . This will be the same as calculating the quotient $\frac{-F_x(x,y)}{F_y(x,y)}$.

 $\begin{array}{ccccccc} 4 & \Box & \rightarrow & 4 & \Box & \rightarrow & 4 & \Xi & \rightarrow & 2 & 2 & 2 & 10 & 4 & 24 \end{array}$ $\begin{array}{ccccccc} 4 & \Box & \rightarrow & 4 & \Box & \rightarrow & 4 & \Xi & \rightarrow & 2 & 2 & 2 & 10 & 4 & 24 \end{array}$ $\begin{array}{ccccccc} 4 & \Box & \rightarrow & 4 & \Box & \rightarrow & 4 & \Xi & \rightarrow & 2 & 2 & 2 & 10 & 4 & 24 \end{array}$

Example 2.45. Find an equation of the tangent line to the curve $x^2 + y^2 = 25$ at $(x, y) = (3, 4)$.

Solution Differentiating both sides of $x^2 + y^2 = 25$ gives

$$
\frac{d}{dx} [x^2 + y^2] = \frac{d}{dx} [25]
$$

$$
2x + \frac{d}{dx} y^2 = 0
$$

$$
2x + 2y \frac{dy}{dx} = 0
$$

so that $\frac{dy}{dx}=-\frac{x}{y}.$ For $x=3, \, y=4,$ this gives $\frac{dy}{dx}=-3/4.$ So the equation of the tangent is

$$
(y-4) = -\frac{3}{4}(x-3).
$$

 $\begin{array}{rcl} 4 & \Box \rightarrow & 4 \stackrel{\triangle}{\Box} \rightarrow & 4 \stackrel{\triangle}{\Box} \rightarrow & 4 \stackrel{\triangle}{\Box} \rightarrow & \stackrel{\triangle}{\Box} & \frac{\sqrt{2}}{211} \sqrt{424} \end{array}$ $\begin{array}{rcl} 4 & \Box \rightarrow & 4 \stackrel{\triangle}{\Box} \rightarrow & 4 \stackrel{\triangle}{\Box} \rightarrow & 4 \stackrel{\triangle}{\Box} \rightarrow & \stackrel{\triangle}{\Box} & \frac{\sqrt{2}}{211} \sqrt{424} \end{array}$ $\begin{array}{rcl} 4 & \Box \rightarrow & 4 \stackrel{\triangle}{\Box} \rightarrow & 4 \stackrel{\triangle}{\Box} \rightarrow & 4 \stackrel{\triangle}{\Box} \rightarrow & \stackrel{\triangle}{\Box} & \frac{\sqrt{2}}{211} \sqrt{424} \end{array}$

What $\frac{dy}{dx}$ means here is that, if f is implicitly defined by our equation, then substituting $y = f(x)$ gives a valid formula for $f'(x)$.

Example 2.46. Find the points on the folium of Descartes $x^3 + y^3 = 6xy$ where $y'=0$.

Solution Differentiating both sides of $x^3+y^3=6xy$ gives

$$
3x2 + 3y2 \cdot \frac{d}{dx}(y) = 6\frac{d}{dx}(x) \cdot y + 6x \cdot \frac{d}{dx}(y)
$$

where we have used the chain rule combined with the power law to differentiate y^3 , and where we have used the product rule to differentiate $6xy$. This gives

$$
3x^2 + 3y^2y' = 6y + 6xy'
$$

and rearranging gives

$$
y' = \frac{2y - x^2}{y^2 - 2x}.
$$

This is true whenever $2x\neq y^2$. Thus $y'=0$ if and only if $y=x^2/2$. However, not all points that satisfy the equation $y=x^2/2$ actually lie on our curve. To find those points, we substitute $y=x^2/2$ into the original equation $x^3+y^3=3xy$ to get

$$
x^3 + \left(\frac{x^2}{2}\right)^3 = 6x\left(\frac{x^2}{2}\right).
$$

Rearranging this gives us

$$
x^3(x^3 - 16) = 0
$$

so that $x=0$ or $x=2^{4/3}.$ The corresponding y values are $y=0^2/2=0$ and $y=(2^{4/3})^2/2=2^{5/3}.$ But when $y=0$ it holds that $x=0,$ and the derivative of the equation just gives us $0=0$, which contains no information on $y^{\prime}.$ So the only required point is

$$
(2^{4/3}, 2^{5/3}).
$$

 $\begin{array}{ccc} 4 & \Box \rightarrow & 4 & \Box \rightarrow & 4 & \Xi \rightarrow & 4 & \Xi & 213/424 \end{array}$ $\begin{array}{ccc} 4 & \Box \rightarrow & 4 & \Box \rightarrow & 4 & \Xi \rightarrow & 4 & \Xi & 213/424 \end{array}$ $\begin{array}{ccc} 4 & \Box \rightarrow & 4 & \Box \rightarrow & 4 & \Xi \rightarrow & 4 & \Xi & 213/424 \end{array}$

Example 2.47. Find y'' if $x^4 + y^4 = 16$.

Solution Differentiating both sides of

$$
x^4 + y^4 = 16
$$

gives

$$
4x^3 + 4y^3y' = 0
$$

or equivalently

$$
y' = -\frac{x^3}{y^3}.
$$

We may now differentiate both sides of this equation to obtain a formula for $y^{\prime}.$

$$
y'' = \frac{d}{dx} \left[-\frac{x^3}{y^3} \right]
$$

= $-\frac{3x^2y^3 - x^3 \cdot 3y^2 \cdot y'}{(y^3)^2}$

This formula can be simplified but, more importantly, we can also substitute our known value for y^\prime . This gives:

$$
y'' = -\frac{3x^2y^3 - x^3 \cdot 3y^2 \cdot \left(-\frac{x^3}{y^3}\right)}{y^6}
$$

$$
= -\frac{3x^2y^4 + 3x^6}{y^7}
$$

This is a formula for y'' in terms of just x and y , which is good, but it happens that we can simplify it further, by using the original equation $x^4+y^4=16.$

$$
y'' = -3x^{2} \frac{y^{4} + x^{4}}{y^{7}}
$$

$$
= -3x^{2} \frac{y^{4} + x^{4}}{y^{7}}
$$

$$
= -3x^{2} \frac{16}{y^{7}}
$$

$$
= -48 \frac{x^{2}}{y^{7}}
$$