
2-6 Implicit differentiation

The functions we have met so far have been described by expressing one
variable explicitly in terms of another variable, for example

y =
√
x3 + 1 or y = x cos(x).

Some functions, however, are described instead by a relation between two
variables.
For example,

x2 + y2 = 25.

The set of all points (x, y) satisfying this equation determines a curve — in
this case it is the circle centered at (0, 0) and with radius 5.
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However, this is not the graph of a single function, since there are vertical lines
which intersect the curve at two points (and not at one point). However, we
say that the equation implicitly defines a function f if, when we substitute f(x)
in place of y, the equation holds true for all values of x in the domain of f . For
example, if we define f1 and f2 by f1(x) =

√
25− x2 and f2(x) = −

√
25− x2,

then f1 and f2 are both implicitly defined by our equation.
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Let us take another example. It is called the folium of Descartes.

x3 + y3 = 6xy

Here there are many functions implicitly defined by the equation.
Now, even though it is not possible to express y globally as a function f(x), it
is nevertheless possible to express y locally as a function f(x), and to find a
formula for dy

dx
in terms of x and y.

We have the following theorem, which we shall not prove now. For this
theorem we write Fy(x, y) for the function resulting from deriving F (x, y) with
respect to y (we think of x as a constant and of y as a variable and derive it
accordingly). Similarly, Fx(x, y) is the function resulting from deriving F (x, y)
with respect to x.
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Theorem 2.43. Let F (x, y) be a nice function of two variables (we will not say
precisely what “nice” means here. All the functions which we will consider here
will be nice). Assume that F (a, b) = 0 and that Fy(a, b) 6= 0. Then there is a
continuous differentiable function f(x) such that:

1. f(a) = b.

2. For x close enough to a and y close enough to b it holds that
F (x, f(x)) = 0 and moreover F (x, y) = 0 exactly when f(x) = y.

3. The derivative of f is given by f ′(x) = −Fx(x,y)
Fy(x,y)

Remark 2.44.

I This theorem sounds quite complicated at first, but using it is easier. It
means that if we look close enough to the point (a, b), the collection of
points (x, y) which satisfy the equation F (x, y) = 0 look like the graph of
a function. Usually we will not be able to write a precise formula for y as a
function of x, but that’s completely fine.

I To find the derivative, we derive F (x, y) with respect to the variable x,
where we think of y as a function of x. This will be the same as
calculating the quotient −Fx(x,y)

Fy(x,y)
.
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Example 2.45. Find an equation of the tangent line to the curve x2 + y2 = 25
at (x, y) = (3, 4).

Solution Differentiating both sides of x2 + y2 = 25 gives

d

dx

[
x2 + y2

]
=

d

dx
[25]

2x+
d

dx
y2 = 0

2x+ 2y
dy

dx
= 0

so that dy
dx

= −x
y

. For x = 3, y = 4, this gives dy
dx

= −3/4. So the equation of
the tangent is

(y − 4) = −3

4
(x− 3).

What dy
dx

means here is that, if f is implicitly defined by our equation, then
substituting y = f(x) gives a valid formula for f ′(x).
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Example 2.46. Find the points on the folium of Descartes x3 + y3 = 6xy
where y′ = 0.

Solution Differentiating both sides of x3 + y3 = 6xy gives

3x2 + 3y2 · d
dx

(y) = 6
d

dx
(x) · y + 6x · d

dx
(y)

where we have used the chain rule combined with the power law to differentiate
y3, and where we have used the product rule to differentiate 6xy. This gives

3x2 + 3y2y′ = 6y + 6xy′

and rearranging gives

y′ =
2y − x2

y2 − 2x
.

This is true whenever 2x 6= y2. Thus y′ = 0 if and only if y = x2/2. However,
not all points that satisfy the equation y = x2/2 actually lie on our curve. To
find those points, we substitute y = x2/2 into the original equation
x3 + y3 = 3xy to get

x3 +

(
x2

2

)3

= 6x

(
x2

2

)
.
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Rearranging this gives us
x3(x3 − 16) = 0

so that x = 0 or x = 24/3. The corresponding y values are y = 02/2 = 0 and
y = (24/3)2/2 = 25/3. But when y = 0 it holds that x = 0, and the derivative
of the equation just gives us 0 = 0, which contains no information on y′.
So the only required point is

(24/3, 25/3).
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Example 2.47. Find y′′ if x4 + y4 = 16.

Solution Differentiating both sides of

x4 + y4 = 16

gives
4x3 + 4y3y′ = 0

or equivalently

y′ = −x
3

y3
.

We may now differentiate both sides of this equation to obtain a formula for y′.

y′′ =
d

dx

[
−x

3

y3

]
= −3x2y3 − x3 · 3y2 · y′

(y3)2

214 / 424



This formula can be simplified but, more importantly, we can also substitute
our known value for y′. This gives:

y′′ = −
3x2y3 − x3 · 3y2 ·

(
−x

3

y3

)
y6

= −3x2y4 + 3x6

y7

This is a formula for y′′ in terms of just x and y, which is good, but it happens
that we can simplify it further, by using the original equation x4 + y4 = 16.

y′′ = −3x2
y4 + x4

y7

= −3x2
y4 + x4

y7

= −3x2
16

y7

= −48
x2

y7
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