
2-4 Derivatives of trigonometric functions

In this section we will study trigonometric functions and their derivatives.

Definition 2.33 (The trigonometric functions). The trigonometric functions
are as follows.

sin(θ) csc(θ) =
1

sin(θ)

cos(θ) sec(θ) =
1

cos(θ)

tan(θ) =
sin(θ)

cos(θ)
cot(θ) =

cos(θ)

sin(θ)

Here, sin(θ) and cos(θ) are defined as follows. Take a line segment of length 1,
based at the origin, and making an anticlockwise angle of θ with the positive
x-axis. Then cos(θ) is defined to be the x-coordinate of the end of the line
segment, and sin(θ) is defined to be the y-coordinate of the end of the line
segment:
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In
order to differentiate the trigonometric functions, we will need some more facts
about them.

Sum-of-angles formulas.

sin(a+ b) = sin(a) cos(b) + cos(a) sin(b)

cos(a+ b) = cos(a) cos(b)− sin(a) sin(b)
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Two special limits.

lim
θ→0

sin(θ)

θ
= 1 lim

θ→0

cos(θ)− 1

θ
= 0

The sum of angles formulas should be familiar to you, but the two special limits
may not be.
In the next couple of pages we will compute the first of these two limits, namely
limθ→0

sin(θ)
θ

= 1. The computation of the other one is quite similar. To begin,
we assume that θ > 0 and we draw a diagram depicting sin(θ) and θ as lengths.
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Here, the arc AB is a segment of a circle with radius 1 and making angle θ
with the positive x-axis. Since the length of an arc of angle α in a circle of
radius r is αr, we have:

|AB| = θ × 1 = θ.

And by the definition of sin(θ) and cos(θ) we have:

|BC| = sin(θ)

Now we will extend our diagram to obtain a bit more information.
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In this picture we found D by extending OB until its endpoint was directly
above A. And we found E by drawing the line segment from B that makes a
right-angle with BD, until we meet AD. So by considering the triangle OAD
we see that

|AD| = |AD||OA| = tan(θ).

Now we write down some inequalities. We clearly have

|BC| < |AB|,

and since AE and EB form part of a polygon bounding the entire circle, we
have

|AB| < |AE|+ |EB| < |AE|+ |ED| = |AD|.

So altogether we have
|BC| < |AB| < |AD|.

Substituting our computations of |AB|, |BC| and |AD| into these inequalities
gives

sin(θ) < θ < tan(θ)

and a little rearrangement gives

cos(θ) <
sin(θ)

θ
< 1.
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Now, we know that
lim
θ→0+

cos(θ) = 1 = lim
θ→0+

1.

So by (a one-sided version of) the squeeze theorem, we find that

lim
θ→0+

sin(θ)

θ
= 1.

Since sin(θ)
θ

is even, we know that

lim
θ→0−

sin(θ)

θ
= 1

as well, so that

lim
θ→0

sin(θ)

θ
= 1

as required.
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Now that we’ve computed our special limit, we are in a position to work out
the following.

Derivatives of sin and cos.

d

dθ
sin(θ) = cos(θ)

d

dθ
cos(θ) = − sin(θ)
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Proof that d
dθ sin(θ) = cos(θ).

d

dθ
sin(θ) = lim

h→0

sin(θ + h)− sin(θ)

h

= lim
h→0

sin(θ) cos(h) + cos(θ) sin(h)− sin(θ)

h

= lim
h→0

[
sin(θ) · cos(h)− 1

h
+ cos(θ) · sin(h)

h

]
= sin(θ) · lim

h→0

cos(h)− 1

h
+ cos(θ) · lim

h→0

sin(h)

h

= sin(θ) · 0 + cos(θ) · 1
= cos(θ)

The proof that d
dθ

cos(θ) = − sin(θ) is similar.
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Further derivatives of trigonometric functions

d

dθ
csc(θ) = − csc(θ) cot(θ)

d

dθ
sec(θ) = sec(θ) tan(θ)

d

dθ
tan(θ) = sec2(θ)

d

dθ
cot(θ) = − csc2(θ)
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Warning The symbol sec2(θ) means [sec(θ)]2, and similarly for sin2(θ), cos2(θ)
and so on. On the other hand, sin−1(θ) does not denote 1

sin(θ)
, but instead

denots the inverse function, also called arcsin(θ), and similarly for the other
trigonometric functions.

Example 2.34. We can derive the differentiation formulas for tan, sec, csc and
cot from the known differentiation formulas for sin and cos. For example,

d

dθ
cot(θ) =

d

dθ

[
cos(θ)

sin(θ)

]
=

sin(θ) d
dθ

cos(θ)− cos(θ) d
dθ

sin(θ)

sin2(θ)

=
− sin(θ) sin(θ)− cos(θ) cos(θ)

sin2(θ)

= − sin2(θ) + cos2(θ)

sin2(θ)

= − 1

sin2(θ)

= − csc2(θ).
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Example 2.35. Find the 57th derivative of cos(x).

Solution

d

dx
cos(x) = − sin(x)

d2

dx2
cos(x) =

d

dx
(− sin(x)) = − cos(x)

d3

dx3
cos(x) =

d

dx
(− cos(x)) = sin(x)

d4

dx4
cos(x) =

d

dx
(sin(x)) = cos(x)

So differentiating cos(x) four times gives us back cos(x). That means that the
same is true if we differentiate it four times, or eight, or twelve, or . . . , or 56
times. (Since 56 = 14× 4.) Thus

d56

dx56
cos(x) = cos(x)

and consequently

d57

dx57
cos(x) =

d

dx
cos(x) = − sin(x).
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Example 2.36. Calculate lim
x→0

sin(5x)

3x
.

Solution We’ll use the fact that lim
t→0

sin(t)

t
= 1.

lim
x→0

sin(5x)

3x
= lim
x→0

5

3
· sin(5x)

5x

=
5

3
· lim
x→0

sin(5x)

(5x)

=
5

3
· lim
t→0

sin(t)

t

=
5

3
· 1

=
5

3
.

Here, we made a ‘substitution’ of t in place of 5x, since if x approaches 0, then
so does 5x = t.
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Example 2.37. Calculate lim
x→0

[x2 cot(x)].

Solution

lim
x→0

[x2 cot(x)] = lim
x→0

[
x2

cos(x)

sin(x)

]
= lim
x→0

[
x · cos(x) · x

sin(x)

]
= lim
x→0

[
x · cos(x) ·

[
sin(x)

x

]−1
]

= lim
x→0

[x] · lim
x→0

[cos(x)] · lim
x→0

[
sin(x)

x

]−1

= 0 · 1 · 1−1

= 0.
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