
2-3 Differentiation formulas

Derivative of a constant function. Let c be any constant and let f be the
function defined by f(x) = c. Then f ′(x) = 0. Or in other words,

d

dx
c = 0.

Derivative of a power function. If n is a positive integer, then

d

dx
xn = nxn−1.

165 / 424



Proof.
Let f be defined by f(x) = xn. Then we must show that f ′(x) = nxn−1. And
indeed,

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

(x+ h)n − xn

h

= lim
h→0

xn + nxn−1h+ · · ·+
(
n
r

)
xn−rhr + · · ·+ hn − xn

h

= lim
h→0

nxn−1h+ · · ·+
(
n
r

)
xn−rhr + · · ·+ hn

h

= lim
h→0

nxn−1 + · · ·+

(
n

r

)
xn−rhr−1 + · · ·+ hn−1

= nxn−1.
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Example 2.22.

I If f(x) = x6 then f ′(x) = 6x6−1 = 6x5.

I If y = t4 then dy
dt

= 4t4−1 = 4t3.

I d
dr
r3 = 3r3−1 = 3r2.
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Next, we have some rules which tell us how to find the derivatives of new
functions from the derivatives of old functions. We will write the proof to some
of these rules and give examples.

Derivative of constant multiples. If c is a constant and f is differentiable,
then so is cf , and

d

dx
(cf(x)) = c

d

dx
(f(x)).

Example 2.23.

I d
dx

(3x4) = 3 d
dx

(x4) = 3× 4x3 = 12x3.

I d
dx

(−x) = − d
dx

(x) = − d
dx

(x1) = −1× 1× x1−1 = −1.
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The sum rule.

If f and g are both differentiable, then

d

dx
[f(x) + g(x)] =

d

dx
f(x) +

d

dx
g(x).

Proof.
We have

lim
h→0

(f + g)(x+ h)− (f + g)(x)

h
= lim
h→0

f(x+ h)− f(x) + g(x+ h)− g(x)

h
=

lim
h→0

f(x+ h)− f(x)

h
+ lim
h→0

g(x+ h)− g(x)

h
= f ′(x) + g′(x).

This implies that the limit exists and is finite, and therefore
(f + g)′(x) = f ′(x) + g′(x).
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The difference rule.

If f and g are both differentiable, then

d

dx
[f(x)− g(x)] =

d

dx
f(x)− d

dx
g(x).

The sum rule, difference rule, and constant multiple rule can be combined to
show that, if f and g are differentiable and a, b are constants, then

d

dx
[af(x) + bg(x)] = a

d

dx
f(x) + b

d

dx
g(x).

And indeed, this works when we add together scalar multiples of any number of
functions. So:
If f, g, . . . , h are differentiable and a, b, . . . c are constants, then

d

dx
[af(x) + bg(x) + · · ·+ ch(x)] = a

d

dx
f(x) + b

d

dx
g(x) + · · ·+ c

d

dx
h(x).

We can use this together with the power law to differentiate any polynomial.
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Example 2.24. Compute
d

dx
[3x2 + 2x+ 1].

Solution

d

dx
[3x2 + 2x+ 1] = 3

d

dx
x2 + 2

d

dx
x+

d

dx
1

= 3 · 2x2−1 + 2x1−1 + 0

= 6x1 + 2x0

= 6x+ 2

Example 2.25. Compute
d

dx
[2x5 + 4x3 − 3x2 + 2].

Solution

d

dx
[2x5 + 4x3 − 3x2 + 2] = 2

d

dx
x5 + 4

d

dx
x3 − 3

d

dx
x2 +

d

dx
2

= 2 · 5x5−1 + 4 · 3x3−1 − 3 · 2x2−1 + 0

= 10x4 + 12x2 − 6x
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The product rule.

If f and g are both differentiable, then

d

dx
[f(x)g(x)] = f(x)

d

dx
[g(x)] +

d

dx
[f(x)]g(x).

Or, in other notation,

(fg)′(x) = f(x)g′(x) + f ′(x)g(x).
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Proof.
We calculate:

lim
h→0

(fg)(x+ h)− (fg)(x)

h
= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)

h
=

lim
h→0

f(x+ h)g(x+ h)− f(x)g(x+ h) + f(x)g(x+ h)− f(x)g(x)

h
=

lim
h→0

f(x+ h)g(x+ h)− f(x)g(x+ h)

h
+ lim
h→0

f(x)g(x+ h)− f(x)g(x)

h
=

lim
h→0

f(x+ h)− f(x)

h
lim
h→0

g(x+ h) + lim
h→0

f(x) lim
h→0

g(x+ h)− g(x)

h
=

f ′(x)g(x) + f(x)g′(x).

Notice that we have used here the fact that limh→0 g(x+ h) = g(x). This
follows from the fact that g is continuous at the point x, because g is
differentiable at the point x.
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Example 2.26. Find F ′(x) if F (x) = (4x3)(7x4).

Solution Observe that F (x) is the product of the functions given by 4x3 and
7x4. So by the product rule,

F ′(x) =
d

dx
[(4x3) · (7x4)]

= (4x3) · d
dx

(7x4) +
d

dx
(4x3) · (7x4)

= (4x3) · (28x3) + (12x2) · (7x4)

= 112x6 + 84x6.

= 196x6.

In this case it would have been quicker to first simplify the function and then
differentiate. Indeed, F (x) = (4x3)(7x4) = 28x7 so that
F ′(x) = 28× 7x6 = 196x6. However, when we come to use the product rule
later we will not be able to simplify in this way.
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Example 2.27. Suppose that f and g are functions and that f(x) = x2 · g(x).
Suppose also that we know that g(2) = 1 and g′(2) = 3. Find f ′(2).

Solution Even though we don’t know what f and g actually are, we can still
use the product rule by regarding f(x) as the product of x2 with g(x):

f ′(x) =
d

dx
[x2 · g(x)] = x2 · d

dx
g(x) +

d

dx
[x2] · g(x) = x2 · g′(x) + 2x · g(x).

Now we can substitute x = 2 to find that

f ′(2) = 22 · g′(2) + (2× 2) · g(2) = 4 · g′(2) + 4 · g(2) = 4 · 3 + 4 · 1 = 16.
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The quotient rule.

If f and g are differentiable, then if g(x) 6= 0 the function f(x)/g(x) is
differentiable, and

d

dx

[
f(x)

g(x)

]
=
g(x) d

dx
[f(x)]− f(x) d

dx
[g(x)]

[g(x)]2
.

Or, using briefer notation on the right hand side,

d

dx

[
f(x)

g(x)

]
=
f ′(x)g(x)− f(x)g′(x)

[g(x)]2
.
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Proof.
Similar to the product rule, we wll use the fact that limh→0 g(x+ h) = g(x).
We calculate

lim
h→0

(f/g)(x+ h)− (f/g)(x)

h
= lim
h→0

f(x+ h)g(x)− f(x)g(x+ h)

g(x+ h)g(x)h
=

lim
h→0

f(x+ h)g(x)− f(x)g(x) + f(x)g(x)− f(x)g(x+ h)

g(x+ h)g(x)h
=

lim
h→0

f(x+ h)− f(x)

h
lim
h→0

g(x)

g(x+ h)g(x)
+

lim
h→0

f(x)

g(x)g(x+ h)
lim

g(x)− g(x+ h)

h
=

f ′(x)g(x)

g(x)2
+
−f(x)g′(x)

g(x)2
=

f ′(x)g(x)− f(x)g′(x)

g(x)2
.
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Example 2.28. Let y =
x2 + 2x− 1

x3 − 2
. Find y′.

Solution

y′ =
d

dx

[
x2 + 2x− 1

x3 − 2

]
=

(x3 − 2) d
dx

(x2 + 2x− 1)− (x2 + 2x− 1) d
dx

(x3 − 2)

(x3 − 2)2

=
(x3 − 2)(2x+ 2)− (x2 + 2x− 1)(3x2)

(x3 − 2)2

=
(2x4 + 2x3 − 4x− 4)− (3x4 + 6x3 − 3x2)

(x3 − 2)2

=
−x4 − 4x3 + 3x2 − 4x− 4

(x3 − 2)2
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Let’s do the same example, but with some advice attached to it:

y′ =
d

dx

[
x2 + 2x− 1

x3 − 2

]
=

(x3 − 2) d
dx

(x2 + 2x− 1)− (x2 + 2x− 1) d
dx

(x3 − 2)

(x3 − 2)2

always write this out in full

=
(x3 − 2)(2x+ 2)− (x2 + 2x− 1)(3x2)

(x3 − 2)2

differentiate before multiplying out

=
(2x4 + 2x3 − 4x− 4)− (3x4 + 6x3 − 3x2)

(x3 − 2)2

keep the second part in a bracket

=
−x4 − 4x3 + 3x2 − 4x− 4

(x3 − 2)2

now subtract

finally, don’t expand the bottom

179 / 424



Derivatives of root functions

We recall some relevant notions on root functions. The nth root of a is defined
in case n is even and a is non-negative, or in case n is odd and a is any
number. When n is odd, the nth root of a is the unique number b which
satisfies bn = a. When n is even, the nth root of a is the unique non-negative
number b which satifsies bn = a. We write

n
√
a = b or a

1
n = b.

For a rational number (that is: a number which we can write as a quotient of
two integers m

n
we write

a
m
n = n

√
a
m
.

The usual rules for manipulating powers hold here:

Rules for manipulating powers.

I
1

an
= a−n

I ap · aq = ap+q

I a1/p = p
√
a

I apbp = (ab)p

I
ap

aq
= ap−q

I (ap)q = apq
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The function f(x) = x
m
n is differentiable for x 6= 0, and it is also differentiable

at x = 0 if m
n
≥ 1. We have the following rule, which generalizes the previous

rule for the derivative of xn:

General power rule.
d

dx
(x

m
n ) =

m

n
x

m
n
−1.

Or: if we just write m
n

= r then:

d

dx
(xr) = rxr−1.

Remark 2.29.

I Notice that this can also be used for negative r: if r < 0, then xr = 1
x−r ,

and the rules of derivatives work the same for negative powers (and the
function is differentiable for x 6= 0 in case the denominator in r is even,
and for x > 0 in case the denominator in r is odd).

I This rule of derivation works the same in case the exponent r is not a
rational number, but a real number. We will explain later what we mean

by expression such as 2
√

2 or 3π.
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Example 2.30.

I If y =
1

x
, then

dy

dx
=

d

dx

[
1

x

]
=

d

dx
[x−1] = (−1)x−1−1 = −x−2.

I
d

dt

[
6

t3

]
= 6

d

dt

[
1

t3

]
= 6

d

dt
[t−3] = 6× (−3)× t−3−1 = −18t−4.

I If f(x) = x0.8, then f ′(x) = 0.8x−0.2.

I If y =
1

3
√
x2

, then

y =
1

(x2)1/3
=

1

x2/3
= x−

2
3

so
dy

dx
=

d

dx
(x−

2
3 ) = −2

3
x−

2
3
−1 = −2

3
x−

5
3 .
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Example 2.31. Differentiate the function f defined by f(t) =
√
t(a+ bt).

Solution

f ′(t) =
d

dt
f(t)

=
d

dt

(√
t(a+ bt)

)
=

d

dt

(
t
1
2 (a+ bt)

)
=

d

dt

(
at

1
2 + bt

3
2

)
= a

d

dt

(
t
1
2

)
+ b

d

dt

(
t
3
2

)
=

1

2
at−

1
2 +

3

2
bt

1
2 .
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Example 2.32. Differentiate y =

√
x

1 + x2
.

Solution

dy

dx
=

(1 + x2) d
dx

(
√
x)−

√
x d
dx

(1 + x2)

(1 + x2)2

=
(1 + x2)

(
1
2
x−

1
2

)
− x

1
2 (2x)

(1 + x2)2

=
1
2
x−

1
2 + 1

2
x

3
2 − 2x

3
2

(1 + x2)2

=
1
2
x−

1
2 − 3

2
x

3
2

(1 + x2)2
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