2. Derivatives and rates of change

2-1 Derivatives and rates of change

Tangents

Definition 2.1. The tangent line to the curve $y = f(x)$ at the point $(a, f(a))$ is the line through $(a, f(a))$ with gradient

$$
m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a},
$$

if this limit exists. Notice that this limit is the same as

$$
m = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.
$$

This is pictured in the graph below, which shows that $\frac{f(a+h)-f(a)}{h}$ is the gradient of the line that crosses $y = f(x)$ at $(a, f(a))$ and $(a + h, f(a + h))$.

Example 2.2. Find the equation of the tangent line to the curve $y = x^2$ through the point $(1, 1)$.

Solution Let f be the function defined by $f(x) = x^2$, so that our curve is given by $y = f(x)$. Then the gradient of the line is

$$
m = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}
$$

=
$$
\lim_{h \to 0} \frac{(1+h)^2 - (1)^2}{h}
$$

=
$$
\lim_{h \to 0} \frac{h^2 + 2h + 1 - 1}{h}
$$

=
$$
\lim_{h \to 0} \frac{h^2 + 2h}{h}
$$

=
$$
\lim_{h \to 0} (h + 2)
$$

= 2

And so the equation of the tangent line is $(y - 1) = 2(x - 1)$, or in other words $y = 2x - 1.$

 $14 \Box P + 4 \Box P + 4 \Box P + 4 \Box P + 4 \Box 139 / 424$ $14 \Box P + 4 \Box P + 4 \Box P + 4 \Box P + 4 \Box 139 / 424$

Velocities

Suppose that an object is moving along a line according to the equation $s = f(t)$ where s is the displacement, i.e. position along the line, t is tthe time, and $f(t)$ is the *position function*. The *average velocity* of the object between times a and $a + h$ is then

average velocity =
$$
\frac{\text{distance travelled}}{\text{time taken}} = \frac{f(a+h) - f(a)}{(a+h) - a} = \frac{f(a+h) - f(a)}{h}.
$$

And the *instantaneous* velocity at time a is

instantaneous velocity =
$$
\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.
$$

 $140 \times 120 \times 120 \times 120$ $140 \times 120 \times 120 \times 120$
 $140/424$

This is the gradient of the graph of $y = f(x)$ at $(a, f(a))$.

Derivatives

Definition 2.3 (The derivative of f at a). The derivative of a function f at a number a , denoted by $f'(a)$, is defined by

$$
f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h},
$$

 $\begin{array}{ccccccc} 4 & \Box & \rightarrow & 4 & \overline{\mathcal{B}} & \rightarrow & 4 & \overline{\mathcal{B}} & \rightarrow & & \overline{\mathcal{B}} & & \sqrt{2} \, \overline{\mathcal{A}} \\ 141 / 424 & & & & & & 141 / 424 \end{array}$ $\begin{array}{ccccccc} 4 & \Box & \rightarrow & 4 & \overline{\mathcal{B}} & \rightarrow & 4 & \overline{\mathcal{B}} & \rightarrow & & \overline{\mathcal{B}} & & \sqrt{2} \, \overline{\mathcal{A}} \\ 141 / 424 & & & & & & 141 / 424 \end{array}$ $\begin{array}{ccccccc} 4 & \Box & \rightarrow & 4 & \overline{\mathcal{B}} & \rightarrow & 4 & \overline{\mathcal{B}} & \rightarrow & & \overline{\mathcal{B}} & & \sqrt{2} \, \overline{\mathcal{A}} \\ 141 / 424 & & & & & & 141 / 424 \end{array}$

if this limit exists and is finite. If $f'(a)$ exists, then we say that f is differentiable at a.

Example 2.4. Let f be the function defined by $f(x) = x^2 - 8x + 9$. Using the definition of the derivative, find the derivative of f at a .

Solution We start the question by simply writing out the definition of the derivative.

$$
f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}
$$

Next, we write out $f(a + h)$ and $f(a)$ using the definition of f. Remember, when you write down $f(a)$, you do it by taking the definition of $f(x)$ and replacing every x with a. And when you write down $f(a+h)$, do it by replacing every x with $(a + h)$ — remember to include the brackets, as it will save you from making a lot of mistakes.

$$
f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}
$$

=
$$
\lim_{h \to 0} \frac{[(a+h)^2 - 8(a+h) + 9] - [a^2 - 8a + 9]}{h}
$$

 142×124 142×124 142×124

And now we expand, simplify, and try to work out the limit.

$$
f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}
$$

=
$$
\lim_{h \to 0} \frac{[(a+h)^2 - 8(a+h) + 9] - [a^2 - 8a + 9]}{h}
$$

=
$$
\lim_{h \to 0} \frac{[a^2 + 2ah + h^2 - 8a - 8h + 9] - [a^2 - 8a + 9]}{h}
$$

=
$$
\lim_{h \to 0} \frac{a^2 + 2ah + h^2 - 8a - 8h + 9 - a^2 + 8a - 9}{h}
$$

=
$$
\lim_{h \to 0} \frac{2ah + h^2 - 8h}{h}
$$

=
$$
\lim_{h \to 0} (2a + h - 8)
$$

=
$$
2a - 8.
$$

 $14 \square + 12$ $14 \square + 12$ $14 \square + 12 + 12 + 12$

So $f'(a) = 2a - 8$.

Example 2.5. Let f be the function defined by $f(x) = 2x^2 + x - 3$. Find $f'(2)$.

Solution We begin, as always, by writing out the definition of $f'(2)$. This is of course just the same as the definition of $f^{\prime}(a)$, but with 2 substituted in place of a .

$$
f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}
$$

=
$$
\lim_{h \to 0} \frac{[2(2+h)^2 + (2+h) - 3] - [2 \cdot 2^2 + 2 - 3]}{h}
$$

=
$$
\lim_{h \to 0} \frac{[2 \cdot 2^2 + 8h + 2h^2 + 2 + h - 3] - [2 \cdot 2^2 + 2 - 3]}{h}
$$

=
$$
\lim_{h \to 0} \frac{2 \cdot 2^2 + 8h + 2h^2 + 2 + h - 3 - 2 \cdot 2^2 - 2 + 3}{h}
$$

=
$$
\lim_{h \to 0} \frac{9h + 2h^2}{h}
$$

=
$$
\lim_{h \to 0} (9 + 2h)
$$

= 9.

 144×124 144×124 144×124

Here are some important points to note when you are answering a question like this.

 \blacktriangleright Always start by writing out the definition, e.g.

$$
f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}
$$
 or $f'(3) = \lim_{h \to 0} \frac{f(3+h) - f(3)}{h}$.

- Be careful when writing out $f(a+h)$. Take the definition of $f(x)$ and put $(a + h)$ in place of every x. Include the brackets! You will avoid mistakes that way.
- ► Make sure that you include the $\lim_{h\to 0}$ in every step, until you reach a point where you can actually compute the limit. (In the examples above, we had $\lim_{h\to 0}$ on every line until the very last one.)
- If the question asks you to work out $f'(2)$, then do that! Don't work out $f'(a)$ for a general a first. (There's probably a reason why the question is written that way. We will see examples where in some special values the calculation of the derivative is different than for other values).

Observe that $f'(a)$ is the gradient of the tangent line to $y = f(x)$ at $(a, f(a))$. Observe also that if we regard $f(t)$ as a position, then $f'(a)$ is the instantaneous velocity at time a .

 $14 \Box P + 4 \Box P + 4 \Box P + 4 \Box P + 4 \Box 424$ $14 \Box P + 4 \Box P + 4 \Box P + 4 \Box P + 4 \Box 424$

Example 2.6. Let g be the function defined by $g(x) = \frac{1}{x+2}$. Use the definition of the derivative to find a formula for $g'(a)$.

Solution

$$
g'(a) = \lim_{h \to 0} \frac{g(a+h) - g(a)}{h}
$$

=
$$
\lim_{h \to 0} \frac{1}{h} [g(a+h) - g(a)]
$$

=
$$
\lim_{h \to 0} \frac{1}{h} \left[\frac{1}{(a+h) + 2} - \frac{1}{a+2} \right]
$$

=
$$
\lim_{h \to 0} \frac{1}{h} \left[\frac{(a+2) - (a+h+2)}{(a+h+2)(a+2)} \right]
$$

=
$$
\lim_{h \to 0} \left[\frac{-1}{(a+h+2)(a+2)} \right]
$$

=
$$
\frac{-1}{(a+0+2)(a+2)}
$$

=
$$
-\frac{1}{(a+2)^2}
$$

 $14\Box P$ $14\Box P$ $14\overline{B}$ $14\overline{E}$ $14\overline{E}$ $14\overline{B}$ $14\overline{B}$ $14\overline{B}$ $14\overline{B}$

Example 2.7. Let f be the function defined by

$$
f(x) = \begin{cases} x^3 & \text{if } x \geq 0\\ -x^3 & \text{if } x < 0. \end{cases}
$$

Show that $f'(0) = 0$.

Solution Let us start our working out as usual.

$$
f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}
$$

$$
= \lim_{h \to 0} \frac{f(h)}{h}
$$

We would now like to substitute in the definition of $f(h)$ and then work out the limit, but the formula for $f(h)$ depends on whether $h \geq 0$ or $h < 0$, and when we are working out the limit we do not know which of these applies. However, we can easily work out the left and right handed limits, as follows.

 $147 / 424$ $147 / 424$

$$
\lim_{h \to 0^+} \frac{f(0+h) - f(0)}{h}
$$
\n
$$
= \lim_{h \to 0^+} \frac{f(h)}{h}
$$
\n
$$
= \lim_{h \to 0^+} \frac{h^3}{h}
$$
\n
$$
= \lim_{h \to 0^+} h^2
$$
\n
$$
= 0.
$$

Here, we were able to replace $f(h)$ with h^3 since it is a limit as h approaches 0 from the right, so that we know $h>0$ and consequently $f(h)=h^3.$ And now we do the left-handed limit.

 $14 \Box P + 4 \Box P + 4 \Box P + 4 \Box P + 4 \Box 48 / 424$ $14 \Box P + 4 \Box P + 4 \Box P + 4 \Box P + 4 \Box 48 / 424$

$$
\lim_{h \to 0^-} \frac{f(0+h) - f(0)}{h}
$$
\n
$$
= \lim_{h \to 0^-} \frac{f(h)}{h}
$$
\n
$$
= \lim_{h \to 0^-} \frac{-h^3}{h}
$$
\n
$$
= \lim_{h \to 0^-} (-h^2)
$$
\n
$$
= 0.
$$

Again, since this is a limit as h approaches 0 from the left, we knew that $h < 0$, and so were able to replace $f(h)$ with $-h^3$. Now, since

$$
\lim_{h \to 0^+} \frac{f(h)}{h} = 0 = \lim_{h \to 0^-} \frac{f(h)}{h}
$$

we can conclude that

$$
f'(0) = \lim_{h \to 0} \frac{f(h)}{h} = 0
$$

 λ

[1](#page--1-0)49 / 424

as required.

Example 2.8. Define f by $f(x) = |x|$. Does $f'(0)$ exist?

Solution Recall the definition of the absolute value:

$$
|x| = \begin{cases} x & \text{if } x \geq 0\\ -x & \text{if } x < 0 \end{cases}
$$

We start working out the derivative as follows.

$$
f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{f(h)}{h} = \lim_{h \to 0} \frac{|h|}{h}.
$$

Now we see that, since the definition of $|h|$ depends on whether h is positive or negative, we must examine the left and right handed limit separately. This gives us

$$
\lim_{h \to 0^+} \frac{|h|}{h} = \lim_{h \to 0^+} \frac{h}{h} = \lim_{h \to 0^+} 1 = 1.
$$

Here we were able to replace $|h|$ with h since we are looking at a limit as h approaches 0 from the right, so that $h > 0$ and consequently $|h| = h$. And

$$
\lim_{h \to 0^-} \frac{|h|}{h} = \lim_{h \to 0^-} \frac{-h}{h} = \lim_{h \to 0^-} -1 = -1.
$$

Here we were able to replace $|h|$ with $-h$ since were looking at a limit as h approaches 0 from the left, so that $h < 0$ and consequently $|h| = -h$. Since $\lim_{h\to 0^+} \frac{|h|}{h}$ and $\lim_{h\to 0^-} \frac{|h|}{h}$ are not equal, it follows that $\lim_{h\to 0} \frac{|h|}{h}$ does not exist. Consequently $f'(0)$ does not exist. $\begin{array}{ccccccc} 4 & \Box & \rightarrow & 4 & \overline{\mathcal{B}} & \rightarrow & 4 & \overline{\mathcal{B}} & \rightarrow & & \overline{\mathcal{B}} & & \sqrt{2} \, \overline{\mathcal{A}} \\ 4 & \Box & \rightarrow & 4 & \overline{\mathcal{B}} & \rightarrow & & \overline{\mathcal{B}} & & & 150 \, \overline{\mathcal{A}} \, \overline{\mathcal{A}} \, \overline{\mathcal{A}} \end{array}$ $\begin{array}{ccccccc} 4 & \Box & \rightarrow & 4 & \overline{\mathcal{B}} & \rightarrow & 4 & \overline{\mathcal{B}} & \rightarrow & & \overline{\mathcal{B}} & & \sqrt{2} \, \overline{\mathcal{A}} \\ 4 & \Box & \rightarrow & 4 & \overline{\mathcal{B}} & \rightarrow & & \overline{\mathcal{B}} & & & 150 \, \overline{\mathcal{A}} \, \overline{\mathcal{A}} \, \overline{\mathcal{A}} \end{array}$ $\begin{array}{ccccccc} 4 & \Box & \rightarrow & 4 & \overline{\mathcal{B}} & \rightarrow & 4 & \overline{\mathcal{B}} & \rightarrow & & \overline{\mathcal{B}} & & \sqrt{2} \, \overline{\mathcal{A}} \\ 4 & \Box & \rightarrow & 4 & \overline{\mathcal{B}} & \rightarrow & & \overline{\mathcal{B}} & & & 150 \, \overline{\mathcal{A}} \, \overline{\mathcal{A}} \, \overline{\mathcal{A}} \end{array}$