
2. Derivatives and rates of change
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2-1 Derivatives and rates of change

Tangents

Definition 2.1. The tangent line to the curve y = f(x) at the point (a, f(a))
is the line through (a, f(a)) with gradient

m = lim
x→a

f(x)− f(a)

x− a ,

if this limit exists. Notice that this limit is the same as

m = lim
h→0

f(a+ h)− f(a)

h
.

This is pictured in the graph below, which shows that f(a+h)−f(a)
h

is the
gradient of the line that crosses y = f(x) at (a, f(a)) and (a+ h, f(a+ h)).
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Example 2.2. Find the equation of the tangent line to the curve y = x2

through the point (1, 1).

Solution Let f be the function defined by f(x) = x2, so that our curve is given
by y = f(x). Then the gradient of the line is

m = lim
h→0

f(1 + h)− f(1)

h

= lim
h→0

(1 + h)2 − (1)2

h

= lim
h→0

h2 + 2h+ 1− 1

h

= lim
h→0

h2 + 2h

h

= lim
h→0

(h+ 2)

= 2

And so the equation of the tangent line is (y− 1) = 2(x− 1), or in other words
y = 2x− 1.
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Velocities

Suppose that an object is moving along a line according to the equation
s = f(t) where s is the displacement, i.e. position along the line, t is tthe time,
and f(t) is the position function. The average velocity of the object between
times a and a+ h is then

average velocity =
distance travelled

time taken
=
f(a+ h)− f(a)

(a+ h)− a =
f(a+ h)− f(a)

h
.

And the instantaneous velocity at time a is

instantaneous velocity = lim
h→0

f(a+ h)− f(a)

h
.

This is the gradient of the graph of y = f(x) at (a, f(a)).
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Derivatives

Definition 2.3 (The derivative of f at a). The derivative of a function f at
a number a, denoted by f ′(a), is defined by

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
,

if this limit exists and is finite. If f ′(a) exists, then we say that f is
differentiable at a.

141 / 424



Example 2.4. Let f be the function defined by f(x) = x2 − 8x+ 9. Using the
definition of the derivative, find the derivative of f at a.

Solution We start the question by simply writing out the definition of the
derivative.

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

Next, we write out f(a+ h) and f(a) using the definition of f . Remember,
when you write down f(a), you do it by taking the definition of f(x) and
replacing every x with a. And when you write down f(a+ h), do it by
replacing every x with (a+ h) — remember to include the brackets, as it will
save you from making a lot of mistakes.

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

= lim
h→0

[(a+ h)2 − 8(a+ h) + 9]− [a2 − 8a+ 9]

h
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And now we expand, simplify, and try to work out the limit.

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

= lim
h→0

[(a+ h)2 − 8(a+ h) + 9]− [a2 − 8a+ 9]

h

= lim
h→0

[a2 + 2ah+ h2 − 8a− 8h+ 9]− [a2 − 8a+ 9]

h

= lim
h→0

a2 + 2ah+ h2 − 8a− 8h+ 9− a2 + 8a− 9

h

= lim
h→0

2ah+ h2 − 8h

h

= lim
h→0

(2a+ h− 8)

= 2a− 8.

So f ′(a) = 2a− 8.

143 / 424



Example 2.5. Let f be the function defined by f(x) = 2x2 + x− 3. Find
f ′(2).

Solution We begin, as always, by writing out the definition of f ′(2). This is of
course just the same as the definition of f ′(a), but with 2 substituted in place
of a.

f ′(2) = lim
h→0

f(2 + h)− f(2)

h

= lim
h→0

[2(2 + h)2 + (2 + h)− 3]− [2 · 22 + 2− 3]

h

= lim
h→0

[2 · 22 + 8h+ 2h2 + 2 + h− 3]− [2 · 22 + 2− 3]

h

= lim
h→0

2 · 22 + 8h+ 2h2 + 2 + h− 3− 2 · 22 − 2 + 3

h

= lim
h→0

9h+ 2h2

h

= lim
h→0

(9 + 2h)

= 9.
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Here are some important points to note when you are answering a question like
this.

I Always start by writing out the definition, e.g.

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
or f ′(3) = lim

h→0

f(3 + h)− f(3)

h
.

I Be careful when writing out f(a+ h). Take the definition of f(x) and put
(a+ h) in place of every x. Include the brackets! You will avoid mistakes
that way.

I Make sure that you include the limh→0 in every step, until you reach a
point where you can actually compute the limit. (In the examples above,
we had limh→0 on every line until the very last one.)

I If the question asks you to work out f ′(2), then do that! Don’t work out
f ′(a) for a general a first. (There’s probably a reason why the question is
written that way. We will see examples where in some special values the
calculation of the derivative is different than for other values).

Observe that f ′(a) is the gradient of the tangent line to y = f(x) at (a, f(a)).
Observe also that if we regard f(t) as a position, then f ′(a) is the
instantaneous velocity at time a.

145 / 424



Example 2.6. Let g be the function defined by g(x) = 1
x+2

. Use the definition

of the derivative to find a formula for g′(a).

Solution

g′(a) = lim
h→0

g(a+ h)− g(a)

h

= lim
h→0

1

h
[g(a+ h)− g(a)]

= lim
h→0

1

h

[
1

(a+ h) + 2
− 1

a+ 2

]
= lim
h→0

1

h

[
(a+ 2)− (a+ h+ 2)

(a+ h+ 2)(a+ 2)

]
= lim
h→0

[
−1

(a+ h+ 2)(a+ 2)

]
=

−1

(a+ 0 + 2)(a+ 2)

= − 1

(a+ 2)2
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Example 2.7. Let f be the function defined by

f(x) =

{
x3 if x > 0
−x3 if x < 0.

Show that f ′(0) = 0.

Solution Let us start our working out as usual.

f ′(0) = lim
h→0

f(0 + h)− f(0)

h

= lim
h→0

f(h)

h

We would now like to substitute in the definition of f(h) and then work out the
limit, but the formula for f(h) depends on whether h > 0 or h < 0, and when
we are working out the limit we do not know which of these applies. However,
we can easily work out the left and right handed limits, as follows.
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lim
h→0+

f(0 + h)− f(0)

h

= lim
h→0+

f(h)

h

= lim
h→0+

h3

h

= lim
h→0+

h2

= 0.

Here, we were able to replace f(h) with h3 since it is a limit as h approaches 0
from the right, so that we know h > 0 and consequently f(h) = h3. And now
we do the left-handed limit.
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lim
h→0−

f(0 + h)− f(0)

h

= lim
h→0−

f(h)

h

= lim
h→0−

−h3

h

= lim
h→0−

(−h2)

= 0.

Again, since this is a limit as h approaches 0 from the left, we knew that
h < 0, and so were able to replace f(h) with −h3. Now, since

lim
h→0+

f(h)

h
= 0 = lim

h→0−

f(h)

h

we can conclude that

f ′(0) = lim
h→0

f(h)

h
= 0

as required.
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Example 2.8. Define f by f(x) = |x|. Does f ′(0) exist?

Solution Recall the definition of the absolute value:

|x| =
{
x if x > 0
−x if x < 0

We start working out the derivative as follows.

f ′(0) = lim
h→0

f(0 + h)− f(0)

h
= lim
h→0

f(h)

h
= lim
h→0

|h|
h
.

Now we see that, since the definition of |h| depends on whether h is positive or
negative, we must examine the left and right handed limit separately. This
gives us

lim
h→0+

|h|
h

= lim
h→0+

h

h
= lim
h→0+

1 = 1.

Here we were able to replace |h| with h since we are looking at a limit as h
approaches 0 from the right, so that h > 0 and consequently |h| = h. And

lim
h→0−

|h|
h

= lim
h→0−

−h
h

= lim
h→0−

−1 = −1.

Here we were able to replace |h| with −h since were looking at a limit as h
approaches 0 from the left, so that h < 0 and consequently |h| = −h. Since

limh→0+
|h|
h

and limh→0−
|h|
h

are not equal, it follows that limh→0
|h|
h

does not
exist. Consequently f ′(0) does not exist.
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