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(k) f ′(θ) =
sec2 θ

(1 + tan θ)2

(l) Worked Solution:

dy

dx
=

d

dx

[
cosx

1 + sin x

]
=

(1 + sin x) · d
dx

cosx− cosx · d
dx

(1 + sin x)

(1 + sin x)2

=
−(1 + sin x) · sinx− cosx · cosx)

(1 + sin x)2

=
− sinx− sin2 x− cos2 x

(1 + sin x)2

=
− sinx− 1

(1 + sin x)2

= − 1

1 + sin x

(m) y′ = −secx+ sec2 x

tan2 x

(n) dy
dx

= x cos(x) cot(x)[2 + x cot(x)] x cosx[2 cotx− x− x csc2 x]

Worked Solution:66.

d

dx
cosx = lim

h→0

cos(x+ h)− cos(x)

h

= lim
h→0

cosx cosh− sinx sinh− cosx

h

= lim
h→0

cosx(cosh− 1)− sinx sinh

h

= lim
h→0

[
cosx

cosh− 1

h
− sinx

sinh

h

]
= cosx · lim

h→0

cosh− 1

h
− sinx · lim

h→0

sinh

h
= cosx · 0− sinx · 1
= − sinx.

Worked Solution for secx:67.

d

dx
secx =

d

dx

1

cosx
= −

d
dx

cosx

cos2 x
= −− sinx

cos2 x
=

sinx

cos2 x
=

sinx

cosx
· 1

cosx
= tanx · secx
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(a) y = 2
3
x+ ( 2√

3
− π

9
)68.

(b) y = x

(c) Worked Solution: Since y = x+ sec x, we have dy
dx

= d
dx

[x+ secx] = 1 + sec x tanx,

so when x = π we have dy
dx

= 1 + secπ tanπ = 1 +−1 · 0 = 1. Thus the equation of the
tangent line is y − (π − 1) = 1(x− π), or in other words y = x− 1.

Worked Solution:69.

Since 45 = 4× 11 + 1, we have d45

dx45
sinx = d

dx
sinx = cosx.

For the second part, we work out that d4

dx4
[x cosx] = d3

dx3
[−x sinx+cosx] = d2

dx2
[−x cosx−

2 sinx] = d
dx

[x sinx − 3 cosx] = x cosx + 4 sin x. Thus d8

dx8
[x cosx] = d4

dx4
[x cosx +

4 sinx] = x cosx + 4 sinx + 4 sinx = x cosx + 8 sinx. Proceeding in this way, we find
that d16

dx16
[x cosx] = x cosx+ 16 sinx.

It has horizontal tangent at the points of the form (2π
3

+2kπ, 1√
3
) and (−2π

3
+2kπ,− 1√

3
).70.

(a) Worked Solution: y = cos(3x) = cos(g(x)) = f(g(x)) where g(x) = 3x and f(u) =71.
cos(u).

Consequently dy
dx

= f ′(g(x)) · g′(x), and since f ′(u) = − sin(u) and g′(x) = 3, we have

dy

dx
= − sin(g(x)) · 3 = −3 sin(3x).

(b) g(x) = 4 + 3x, f(u) =
√
u, dy

dx
= 3

2
√
4+3x

(c) g(x) = 1− x3, f(u) = u5, dy
dx

= −15x2(1− x3)4.

(d) Worked Solution: y = 3
√

sin(x) = 3
√
g(x) = f(g(x)) where g(x) = sin(x) and

f(u) = 3
√
u.

So dy
dx

= f ′(g(x)) · g′(x). Now f ′(u) = 1
3u2/3

and g′(x) = cos(x), so that

dy

dx
= f ′(g(x)) · g′(x) =

1

3(g(x))2/3
· cos(x) =

cos(x)

3(sin(x))2/3
.

(a) F ′(x) = 16x(x4 − 2x2 + 2)3(x2 − 1)72.

(b) F ′(x) =
1− x2

(1 + 3x− x3)2/3

(c) g′(t) = − 12t2

(t3 + 1)5
.

(d) dy
dx

= 4x3 cos(a4 + x4)

(e) dy
dx

= 4 sin3 x · cosx
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(f) y′ = x csc(kx)[2− kx cot(kx)].

(g) f ′(x) = (3x− 2)3(x4 − x− 1)4[72x4 − 40x3 − 27x− 2]

(h) h′(t) = [34t2 − 32t− 1]
(2t2 − 1)3

2(t− 1)1/2

(i) y′ = 12x
(x2 − 1)2

(x2 + 1)4

(j) y′ = − sin(x sinx)(x cosx+ sinx)

(k) F ′(z) = − 1

(z + 1)1/2(z − 1)3/2

(l) y′ =
1

(1− r2)3/2

(m) y′ =
x sin

√
1− x2√

1− x2

(n) y′ = 2 cos(2x) · cos−2(sin 2x)

(o) y′ = −16 cos 2x
(1− sin 2x)3

(1 + sin 2x)5

(p) y′ =
2x1/2 − 1

4x1/2(x− x1/2)1/2

(a) Worked Solution: The first derivative is73.

dy

dx
= cos(x2) · 2x = 2x cos(x2)

and the second derivative is

d2y

dx2
=

d

dx
(2x) · cos(x2) + 2x · d

dx
cos(x2)

= 2 cos(x2) + 2x · 2x · (− sin(x2))

= 2 cos(x2)− 4x2 sin(x2).

(b) dy
dx

= 2 sin(x) cos(x) and d2y
dx2

= 2(cos2(x)− sin2(x)).

(c)K ′(t) = 5 sec2(5t) and K ′′(t) = 50 sec2(5t) tan(5t)

Worked Solution: The product rule tells us that74.

f ′(x) =
d

dx
(x) · g(x3) + x · d

dx
(g(x3)) = g(x3) + x

d

dx
(g(x3)),

and the chain rule tells us that d
dx

(g(x3)) = g′(x3) · 3x2. So

f ′(x) = g(x3) + 3x3g′(x3).

Similarly,

f ′′(x) = 3x2g′(x3) + 9x2g′(x3) + 3x3 · 3x2 · g′′(x3) = 12x2g′(x) + 9x5g′′(x3).
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(a) y′ = −x
4

y4
75.

(b) Worked Solution: Differentiating both sides of the equation 4
√
x− 4

√
y = 1 yields

4
d

dx

√
x− 4

d

dx

√
y =

d

dx
1

i.e.

4
1√
x
− 4

1
√
y

d

dx
y = 0

i.e.
1√
x
− 1
√
y
y′ = 0.

Rearranging this gives

y′ =

√
y
√
x
.

(c) y′ = −2x+ y

x+ 2y

(d) y′ = −3x2 + 4xy − 2y3

2x2 − 6xy2

(e) Worked Solution: The given equation x3(x + y) = y3(2x − y) can be written as
x4 + x3y = 2xy3 − y4. Differentiating both sides with respect to x gives

4x3 + (3x2y + x3y′) = (2y3 + 2x · 3y2y′)− 4y3y′.

Rearranging,
4x3 + 3x2y + x3y′ = 2y3 + 6xy2y′ − 4y3y′.

4x3 + 3x2y − 2y3 = 6xy2y′ − 4y3y′ − x3y′

4x3 + 3x2y − 2y3 = y′(6xy2 − 4y3 − x3)

so that

y′ =
4x3 + 3x2y − 2y3

6xy2 − 4y3 − x3
.

(f) y′ = − y2 + 2x sin y

2xy + x2 cos y

(g) y′ =
1− y2 sin(xy2)

2xy sin(xy2)

(h) y′ = −tanx

tan y

(i) y′ =
cos y2 + 2xy sinx2

cosx2 + 2xy sin y2

(j) y′ =
y(cos(x/y)− y2)
x(y2 + cos(x/y))
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(k) Worked Solution: Differentiating both sides of the equation
√
x− y = 1 − x2y2

with respect to x gives

1

2
√
x− y

d

dx
(x− y) = − d

dx
(x2y2)

or in other words
1

2
√
x− y

(1− y′) = −(2x · y2 + x2 · 2yy′).

Rearranging gives the following:

1

2
√
x− y

− y′

2
√
x− y

= −2xy2 − 2x2yy′

1

2
√
x− y

+ 2xy2 =
y′

2
√
x− y

− 2x2yy′

1

2
√
x− y

+ 2xy2 = y′
(

1

2
√
x− y

− 2x2y

)
Thus

y′ =

1
2
√
x−y + 2xy2

1
2
√
x−y − 2x2y

=
1 + 4xy2

√
x− y

1− 4x2y
√
x− y

.

(l) y′ =
y − 2y5/2x1/2

4x3/2y3/2 − x

(m) y′ =
cos y + y sinx

cosx+ x sin y

(a) f ′(1) = 2/376.

(b) Worked Solution: Differentiating both sides of the equation g(x) + x cos(g(x)) =
x3 gives g′(x) + cos(g(x)) − x sin(g(x))g′(x) = 3x2, and setting x = 0 gives g′(0) +
cos(g(0)) = 0. We can compute g(0) by taking the original equation g(x)+x cos(g(x)) =
x3 and setting x = 0 to give g(0) = 0, so that cos(g(0)) = 1. It follows that g′(0) = −1.

(a) Worked Solution: Differentiating both sides of the equation y cos(2x) = x sin(2y)77.
gives

y′ cos(2x)− 2y sin(2x) = sin(2y) + 2x cos(2y)y′.

Setting x = π/4 and y = π/2 gives

y′ cos(π/2)− π sin(π/2) = sin(π) + (π/2) cos(π)y′

or in other words
−π = (−π/2)y′

so that y′ = 2. Thus the gradient of the tangent line to the curve through the point
(π/4, π/2) is 2, and so the gradient of the tangent is

y − π/2 = 2(x− π/4)
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or in other words y = 2x.

(b) y = −3x+ π

(c) y = x− 2

(d) y = −
√

3x+ 4
√

3

(e) y =
5
√

5

8
x− 9

8

(a) Worked Solution: Differentiating both sides of the equation78.

x2 + 4y2 = 4

and rearranging gives

y′ = − x

4y
.

Differentiating this expression then gives

y′′ =
−4y + 4xy′

16y2
.

Substituting our expression for y′ now gives

y′′ =
−4y + 4x−x

4y

16y2
=
−4y2 − x2

16y3
.

We may now use the original equation to obtain

y′′ =
−1

4y3
.

(b) y′′ =

√
xy − y

2x
√
xy

(c) Worked Solution: Differentiating the equation

x5 + y5 = 1

gives
5x4 + 5y4y′ = 0

which rearranges to give

y′ = −x
4

y4
.
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Differentiating this expression gives

y′′ = −y
4 · 4x3 − x4 · 4y3y′

y8

= −y
4 · 4x3 − x4 · 4y3 · (−x4/y4)

y8

= −4x3y4 + 4x8y−1

y8

= −4
x3y5 + x8

y9

= −4
x3

y9
(y5 + x5).

Now using the original equation we find that

y′′ = −4
x3

y9
.

(d) y′′ =
−2xy

(3y2 − x)3

(a)
x

y

1 2

1

−1

(b)
x

y

1 2

1

−1

79.

(c)
x

y

1 2

1

−1

(d)
x

y

1 2

1

−1
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(a)−1/480.

(b) 1

(c) Worked Solution: The function is continuous and its domain is R.

For t > 3/4 we have 4t − 3 > 0, and so g(t) = 4t − 3 and consequently g′(t) = 4 6= 0.
So g′(t) exists and is nonzero for all t > 3/4, and consequently there are no critical
numbers in this range.

For t < 3/4 we find, similarly, that there are no critical numbers.

For t = 3/4 we find that g′(t) does not exist, since (as can be checked) limh→0+
g(3/4+h)−g(3/4)

h

and limh→0−
g(3/4+h)−g(3/4)

h
exist but are not equal. So t = 3/4 is a critical number.

The only critical number is 3/4.

(d) 0, −2.

(e) Worked Solution: The domain of h is [0,∞). Now h′(t) = t−3/4

4
(6t1/2 − 1), and

in particular it exists for all t in the domain of h, except for t = 0. Thus the critical
numbers are those t such that h′(t) = 0, i.e. t = 1/36, and 0.

(f) The critical numbers are 0, where F ′(x) does not exist, and 3 and 1/2, where
F ′(x) = 0.

(a) The absolute maximum is f(3) = 9 and the absolute minimum is f(1) = 1.81.

(b) The absolute maximum is f(0) = 2. and the absolute minimum is f(2) = −14.

(c) The absolute maximum is f(2) = 187 and the absolute minimum is f(0) = −5.

(d) Worked Solution: We will use the closed interval method. This can be applied
because the function f is a product of a polynomial with a square root of a polynomial,
and so is continuous on the whole domain [−1, 3].

0. f ′(t) =
√

9− t2 + t
2
√
9−t2 (−2t) = 1

9−t2 (9 − 2t2). This is defined for all t ∈ [−1, 3),

but not for t = 3. So the critical numbers are t = 3 and those t ∈ [−1, 3) for which
f ′(t) = 0, i.e. 3/

√
2.

1. The only critical number in the interior (−1, 3) is 3/
√

2, and f(3/
√

2) = 3/
√

2
√

9− 9/2 =
9/2.

2. f(−1) = −2
√

2 and f(3) = 0.

So the absolute maximum and minimum are the largest and smallest numbers from
parts 1 and 2. In other words the absolute maximum is f(3/

√
2) = 9/2 and the

absolute minimum is f(−1) = −2
√

2.

(e) The absolute maximum is f(π/2) = 3 and the absolute minimum is f(7π/6) =
f(11π/6) = −1.5/

(a) The only value satisfying the conclusion is c = 1.82.

(b) Worked Solution: f is continuous on the interval [0, 2] because x > 0 for all
x ∈ [0, 2], and f is differentiable on this interval because x > 0 for all x ∈ (0, 2). So
the hypotheses of the mean value theorem hold.
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Next, for the conclusions of the theorem to hold for c ∈ (0, 2) means that

f ′(c) =
f(2)− f(0)

2− 0
=

√
2

2
=

1√
2
.

Since f ′(x) = 1
2
√
x
, we see that the conclusions hold for c if 1

2
√
c

= 1√
2
, so the conclusions

hold if and only if c = 1
2
.

Worked Solution: Let f be the function defined by f(x) = 2x+ sin(x). Then f(2π) =83.
4π + 0 = 4π > 0 and f(−2π) = −4π + 0 = −4π. Thus f(2π) > 0 > f(−2π), and f
is continuous on the interval [−2π, 2π], so by the intermediate value theorem there is
x0 ∈ (−2π, 2π) such that f(x0) = 0. In other words the equation has a root x0.

Suppose that the equation has a second root x1. Then since f(x0) = f(x1) = 0 and f
is differentiable everywhere, Rolle’s theorem shows that there is c ∈ (x0, x1) such that
f ′(c) = 0. However f ′(x) = 2 + cos(x) > 2 − 1 = 1 > 0 so that no such c exists, and
so no second root could have existed.

We have shown that there is at least one root, but there cannot be two. So there is
exactly one root as required.

(a) Worked Solution: We will show that it is impossible for the equation to have two84.
roots in [−2, 2]. Suppose it does, call them x0 and x1, and (by swapping them if
necessary) assume that −2 6 x0 < x1 6 2.

Let f be the function defined by f(x) = x3 − 14x + 5. Then f is a polynomial, so
is continuous on [x0, x1] and is differentiable on (x0, x1). (In fact it is continuous and
differentiable everywhere.) Then f(x0) = f(x1) = 0, so that by Rolle’s Theorem there
is c ∈ (x0, x1) such that f ′(c) = 0. Now by computing f ′ we see that f ′(c) = 3c2 − 14.
However, since c ∈ (−2, 2), we have f ′(c) = 3c2 − 14 < 3 × 4 − 14 = −2, so that
f ′(c) = 0 is impossible.

This contradiction means that there could not have been two roots in the first place.

(a) Worked Solution: Since f is differentiable, it satisfies the assumptions of the Mean85.
Value Theorem for the interval [−1, 2]. Thus there is c ∈ (−1, 2) for which

f(2)− f(−1)

2− (−1)
= f ′(c)

or in other words f(2) − f(−1) = 3f ′(c). Since 2 6 f ′(x) 6 4, it follows that 6 6
f(2)− f(−1) 6 12.

Define h by h(x) = g(x)−f(x). The given inequalities show that h(a) = g(a)−f(a) > 086.
and that h′(x) = g′(x)− f ′(x) > 0 for x ∈ (a, b). And we want to show that h(b) > 0
since then g(b)− f(b) > 0 so that g(b) > f(b).

Since f and g are continuous on [a, b] and differentiable on (a, b), the same is true for
the difference h. So we may apply the Mean Value Theorem: there is c ∈ (a, b) such
that

h(b)− h(a)

b− a
= h′(c)
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and consequently h(b) = (b−a)h′(c) +h(a). Since a < b we have (b−a) > 0, and since
c ∈ (a, b) we have h′(c) > 0, so that (b− a)h′(c) > 0. And we know that h(a) > 0, so
that (b− a)h′(c) + h(a) > 0. Thus h(b) > 0 as required.

(a) Worked Solution: We will use the fact that the local maxima or minima of f are87.
critical points of f .

The function is continuous and its derivative exists for all x, so its critical points are
the points where f ′(x) = 0. Now f ′(x) = 3x2 − 3, which is zero for x = 1 and x = −1.
So the possible local maxima and minima occur at x = ±1.

To determine if they are local maxima or minima, we use the second derivative test,
which applies since f ′′(x) exists and is continuous for all x, and is given by f ′′(x) = 6x.

Since f ′′(1) = 6 > 0, f has a local minimum at 1.

Since f ′′(−1) = −6 < 0, f has a local maximum at −1.

(b) Worked Solution: We will use the fact that the local maxima and minima are all
critical points. The domain of the function is R and it is continuous everywhere, so
that the critical points are the points where f ′(x) = 0 or where f ′(x) does not exist.

The derivative is f ′(x) = 1 + 1
3
x−2/3, which exists for all x ∈ R except for x = 0. So

x = 0 is a critical number. There are no other critical numbers, since f ′(x) > 0 for all
x 6= 0. So the only possible local maximum or minimum is at x = 0. Since f ′(x) does
not exist there, we cannot use the second derivative test. But the first derivative test
applies, and indeed, since f ′(x) > 0 for all x 6= 0, it tells us that 0 is neither a local
maximum nor a local minimum.

So f has no local maxima or minima.

(c) f has a local minimum at 0 and a local maximum at −2.

(a) Increasing on (−∞,−2) and (3,∞), decreasing on (−2, 3), local maximum at88.
(−2, 44), local minimum at (3,−81).

(b) Worked Solution: First,

f ′(x) = 12x2 − 18x+ 6 = 6(2x2 − 3x+ 1) = 6(2x− 1)(x− 1).

Thus f ′(x) = 0 if and only if x = 1/2 or x = 1. The sign of f ′(x) can be computed as
follows:

• For x < 1/2 we have (2x− 1) < 0 and (x− 1) < 0, so that f ′(x) > 0.

• For 1/2 < x < 1 we have (2x− 1) > 0 and (x− 1) < 0, so that f ′(x) < 0.

• For 1 < x we have (2x− 1) > 0 and (x− 1) > 0 so that f ′(x) > 0.

So f is increasing on (−∞, 1/2) and (1,∞) and it is decreasing on (1/2, 1).

As above, the critical numbers of f are x = 1/2 and x = 1. Now f(1/2) = 9/4 and
f(1) = 2 so that the critical points are (1/2, 9/4) and (1, 2). And we can compute

f ′′(x) = 24x− 18
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so that f ′′(1/2) = −6 < 0 and f ′′(1) = 6 > 0 and consequently (1/2, 9/4) is a local
maximum and (1, 2) is a local minimum.

(c) f is decreasing on (−∞,−1) and (0, 1), it is increasing on (−1, 0) and (1,∞), there
is a local maximum at (0,−3) and there are local minima at (−1,−4) and (1,−4).

(d) f is increasing on (−∞,−
√

2) and on (−
√

2, 0). f is decreasing on (0,
√

2) and on
(
√

2,∞), and there is a local maximum at (0, 0).

(e) Worked Solution: First we compute f ′(x) = 1 − 2 sin(x), so that f ′(x) = 0 when
sin(x) = 1/2, or in other words when x = π/6 and x = 5π/6. Now by considering the
definition of sin(x) we see that:

• For 0 6 x < π/6 we have f ′(x) > 0;

• for π/6 < x < 5π/6 we have f ′(x) < 0;

• for 5π/5 < x 6 2π we have f ′(x) > 0.

So f is increasing on [0, π/6) and (5π/6, 2π], and it is decreasing on (π/6, 5π/6).

Next,
f ′′(x) = −2 cos(x),

so that f ′′(π/6) = −2 cos(π/6) = −
√

3 < 0 and f ′′(5π/6) = −2 cos(5π/6) =
√

3 > 0 so
that there is a local maximum at (π/6, π/6+

√
3) and a local minimum at (5π/6, 5π/6−√

3).

(f) f is increasing on (4,∞) and it is decreasing on [0, 4). It has a local minimum at
(4,−4).

(a) Worked Solution: The domain of f(x) = 1−ex2

1−e4−x2
is the set of x such that 1−e4−x2 6=89.

0, or equivalently e4−x
2 6= 1, or equivalently 4 − x2 6= 0, or equivalently x2 6= 4, or

equivalently x 6= ±2. So the domain is

{x | x 6= ±2}

or, written another way,

(−∞,−2) ∪ (−2, 2) ∪ (2,∞).

(b) R

(c) {x | x 6= kπ, k ∈ Z}

(d) (−∞, 0]
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(a) 090.

(b) es − ese−1

(c) (x4 + 4x3 − 2x− 2)ex

(d) y′ = d
dx

(ebx
4
) = ebx

4 d
dx

(bx4) = ebx
4 · 4bx3 = 4bx3ebx

4
.

(e) Worked Solution:

y′ =
d

dt
(e2t sin(4t))

=
d

dt
(e2t) sin(4t) + e2t

d

dt
sin(4t)

= 2e2t sin(4t) + e2t · 4 cos(4t)

= e2t(2 sin(4t) + 4 cos(4t))

(f)−ex−ex

(g)
(ad− bc)e−x

(c+ de−x)2

(h)
−e2x(1 + 2x)

2
√

1− xe2x

(i) 4 sin(ecos
2 t) cos(ecos

2 t)ecos
2 t sin t cos t

The line has equation y =
e

1− e
(x− 1).91.

(a) The domain of f is [0,∞) and f−1(x) = − ln(1− x2).92.

(b) Worked Solution: The domain of ln is (0,∞). So the domain of f(x) = ln(3− lnx)
is the set of x such that x > 0 and 3− lnx > 0, or in other words x > 0 and lnx < 3,
or in other words x > 0 and x < e3, or in other words the set (0, e3).

To find an expression for f−1 we first set y = f(x), i.e. y = ln(3 − lnx). Taking
exponentials of both sides, we find ey = 3 − lnx, so that lnx = 3 − ey, so that
x = e3−e

y
. Next we interchange x and y to find y = e3−e

x
, so that

f−1(x) = e3−e
x

.

(c) The domain is (0,∞), and f−1(x) = ln(ex + 1).

(a) 2 + ln x93.

(b)− sin(lnx)/x

(c) Worked Solution: f ′(x) =
d

dx
(ln(cosx)) =

1

cosx

d

dx
(cosx) =

1

cosx
(− sinx) =

− tanx.

(d)
1

4x(lnx)3/4
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(e) Worked Solution: Since d
dx

log10(x) = 1
x ln 10

, the chain rule gives us

d

dx
log10(x

2 + 1) =
1

(x2 + 1) ln 10
· d
dx

(x2 + 1) =
1

(x2 + 1) ln 10
· 2x =

2x

(x2 + 1) ln 10
.

(f) 4x3 + ln(4) · 4x

(g) −1
x(x2−1)

(h)
−1√
x2 − 1

(i)
x

x− 1

(a) One-to-one.95.

(b) Worked Solution: The function is not one-to-one because f(0) = 1 = f(4) but
1 6= 4.

(c) Not one-to-one.

(d) Worked Solution: The function is one-to-one because if g(x1) = g(x2) then 4
√
x1 =

4
√
x2, and by taking fourth powers we find that x1 = x2.

(e) Not one-to-one.

(f) Worked Solution: The function is one-to-one because no horizontal line crosses its
graph more than once.

(a) f−1(3) = 1 and f−1(−1) = −1.96.

(b) h−1(10) = 8 and h−1(2) = 1.

(a) f−1(x) = 4−x
3

98.

(b) f−1(x) = x2−2x
2

(c) g−1(x) = 1 +
√

1 + x

(d) Worked Solution: First we solve the equation h(x) = y to express x in terms of y.

If 1−2
√
x

1+2
√
x

= y then y + 2y
√
x = 1− 2

√
x, so that

√
x(2y + 2) = 1− y and consequently

√
x = 1−y

2y+2
so that x =

(
1−y
2y+2

)2
. Next we replace x with y and vice versa to obtain

y =
(

1−x
2x+2

)2
. Finally, this equation is y = h−1(x), so that

h−1(x) =

(
1− x
2x+ 2

)2

.

(e) Worked Solution: First we solve the equation k(t) = y to express t in terms of y.

If y = 4t2 − 2t then 4t2 − 2t− y = 0, so by the quadratic formula t =
2±
√

4 + 16y

8
=

2± 2
√

1 + 4y

8
=

1

4
± 1

4

√
1 + 4y. Now since t > 1/4, we must have t = 1

4
+ 1

4

√
1 + 4y.
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Next, we interchange y and t to obtain y = 1
4

+ 1
4

√
1 + 4t. Finally, this is the equation

y = k−1(t), so that

k−1(t) =
1

4
+

1

4

√
1 + 4t.

(f) f−1(x) =
1 + x

2− 4x
.

(a) Worked Solution: We know that (f−1)′(3) = 1
f ′(f−1(3))

. Since f(0) = 3, we have99.

f−1(3) = 0, so that (f−1)′(3) = 1
f ′(0)

. Now f ′(x) = 9x2 + 4x+ 8, so that f ′(0) = 8, and

(f−1)′(3) = 1/8.

(b) (f−1)′(3) = 1/2

(c) (f−1)′(4) = 1/2

(d) (f−1)′(1) = 12/13

Using the quotient rule gives us100.

G′(x) =
f−1(x) · d

dx
(f(x)2)− f(x)2(f−1)′(x)

f−1(x)2
=

2f(x)f ′(x)f−1(x)− f(x)2/f ′(f−1(x))

f−1(x)2

and in particular

G′(2) =
2f(2)f ′(2)f−1(2)− f(2)2/f ′(f−1(2))

f−1(2)2
.

Now, since f(3) = 2, we have f−1(2) = 3, and so

G′(2) =
6f(2)f ′(2)− f(2)2/f ′(3)

32
=

6 · 1 · 3− 12/4

32
= 71/36.

(a): Expanding gives101. ∫
(2t− 7)3 dt =

∫
(2t)3 + 3 · (−7)(2t)2 + 3 · (−7)2(2t) + (−7)3 dt

=

∫
8t3 − 84t2 + 294t− 343 dt

= 8 t
4

4
− 84 t

3

3
+ 294 t

2

2
− 343t+ C

= 2t4 − 28t3 + 147t2 − 343t+ C.

(b): Use
u = 2t− 7, du = 2dt

to get ∫
(2t− 7)3 dt =

∫
u3
dt

2

=
u4

8

=
(2t− 7)4

8
+ C.


