
1-4 The limit of a function

Tangents

We are now going to move on to the subject of limits. In order to motivate
this, we will talk about tangents. Suppose that we want to find the tangent to
the graph y = f(x) at a point (a, f(a)).

Here, the tangent is the line that passes through (a, f(a)) and has the same
gradient as the curve at that point. The equation of the tangent line will then
be (y − f(a)) = m(x− a) where m is the gradient of y = f(x) at (a, f(a)).
How do we compute m? We can approximate m by choosing an x close to a
and considering the secant line that passes through (a, f(a)) and (x, f(x)):
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If x is close to a, then the secant line is a good approximation to the tangent
line, and so the gradient mx of the secant is a good approximation to m. Now

mx =
f(x)− f(a)

x− a .

We would like to set x = a and then obtain ma = m. But the formula for mx

makes no sense in the case x = a. Nevertheless, it seems reasonable to expect
that as x gets closer to a, mx gets closer to m, and so we say that m is the
limit of mx as x approaches a. (This only works if f is nice enough.) In this
part of the course we are going to study and understand this idea of limit.
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Definition 1.27 (Limits — the imprecise definition). Suppose that f is a
function defined for all x near to, but not necessarily equal to, a number a. We
say that the limit of f(x) as x approaches a is L, and we write

lim
x→a

f(x) = L,

if we can make the values of f(x) as close to L as we like by choosing x close
enough to a. Here, the phrase “x near to a” means “x is in some open interval
that contains a”.

Example 1.28. f(a) does not have to be defined for limx→a f(x) to exist, and
even if f(a) is defined, it may not be equal to limx→a f(x). This is shown in
the following three examples.
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Example 1.29. Convince yourself that for every a it holds that

lim
x→a

1 = 1 and lim
x→a

x = a.

Example 1.30. Investigate lim
x→0

sin(
π

x
).
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Solution Let f be the function defined by f(x) = sin(π
x

). Then we have:

f

(
2

5

)
= sin

(
π

2/5

)
= sin

(
5π

2

)
= sin

(
2π +

π

2

)
= sin (π/2) = 1

f

(
2

9

)
= sin

(
π

2/9

)
= sin

(
9π

2

)
= sin

(
4π +

π

2

)
= sin (π/2) = 1

f

(
2

13

)
= sin

(
π

2/13

)
= sin

(
13π

2

)
= sin

(
6π +

π

2

)
= sin (π/2) = 1

and so on. This shows that we can find numbers x that are as close to 0 as we
wish with f(x) = 1. Similar calculations show that

f

(
2

3

)
= −1

f

(
2

7

)
= −1

f

(
2

11

)
= −1

40 / 424



and so on, so that we can find numbers x that are as close to 0 as we wish
with f(x) = −1. This means that the limit does not exist: there is no one L
for which f(x) gets closer and closer to L as x gets closer and closer to 0.
This is shown pretty clearly on the graph of y = f(x). The graph oscillates
ever more rapidly as you approach 0, so it does not get close any single value.
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Example 1.31.
The Heaviside function H is defined as follows:

H(t) =

{
0 if t < 0
1 if t > 0

Its graph is as follows.

In this case limt→0H(t) does not exist. This is because there are numbers t as
close to 0 as we like with H(t) = 0 (any negative number) and numbers t as
close to 0 as we like with H(t) = 1 (any positive number). So there is no single
number L such that we can make H(t) as close to L as we like by making t
sufficiently close to 0.
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Definition 1.32 (One-sided limits). Let f be a function that is defined for all
x close to, and less than, a number a. We write

lim
x→a−

f(x) = L

and say the limit of f(x) as x approaches a from the left is L if we can make
f(x) as close to L as we wish by making x sufficiently close to, and less than,
a. Here the phrase ‘for all x close to and less than a’ means ‘for x in some
open interval of the form (b, a)’.
Now let f be a function that is defined for all x close to, and greater than, a
number a. We write

lim
x→a+

f(x) = L

and say the limit of f(x) as x approaches a from the right is L if we can make
f(x) as close to L as we wish by making x sufficiently close to, and greater
than, a. Here the phrase ‘for all x close to and greater than a’ means ‘for x in
some open interval of the form (a, b)’.

The first limit is ‘from the left’ and its definition involves the phrase ‘less than’,
while the second limit is ‘from the right’ and its definition involves the phrase
‘greater than’. That is because if we draw x and a on the number line, then
x < a means x is to the left of a, while x > a means that x is to the right of a.
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Example 1.33. Let H be the Heaviside function defined above by

H(t) =

{
0 if t < 0
1 if t > 0

What are lim
t→0−

H(t) and lim
t→0+

H(t)?

Solution limt→0− H(t) = 0. This is because, however close to 0 we would like
H(t) to be, we can achieve that by taking t < 0 close enough to 0. Indeed, for
any t < 0 we have H(t) = 0.
Similarly, limt→0+ H(t) = 1. This is because, however close to 1 we would like
H(t) to be, we can achieve that by taking t > 0 close enough to 0. Indeed, for
any t > 0 we have H(t) = 1.
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Here is an important rule about limits.

I The limit limx→a f(x) exists if and only if limx→a− f(x) and
limx→a+ f(x) both exist and are equal, in which case

lim
x→a

f(x) = lim
x→a−

f(x) = lim
x→a+

f(x).

This rule means that if limx→a+ f(x) does not exist, or if limx→a− f(x) does
not exist, or if limx→a+ f(x) and limx→a− f(x) do exist but are not equal,
then limx→a f(x) does not exist.

Example 1.34. Let f be the function defined by f(x) = sin(π
x

). Then
limx→0+ f(x) does not exist, for exactly the same reasons given before. So
limx→0 f(x) does not exist.

Example 1.35. limt→0− H(t) = 0 and limt→0+ H(t) = 1 do both exist, but
they are not equal. So limt→0H(t) does not exist.
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Example 1.36. Show that lim
x→0
|x| = 0.

Solution Remember that the absolute value function is defined by:

|x| =
{
x if x > 0
−x if x < 0

The limit limx→0− |x| depends only on the values of |x| for x < 0. But if x < 0
then |x| = −x, and so limx→0− |x| = limx→0−(−x) = 0. Similarly, the limit
limx→0+ |x| depends only on the values of |x| for x > 0. But if x > 0 then
|x| = x|, and so limx→0+ |x| = limx→0+ x = 0. Since limx→0+ |x| and
limx→0− |x| exist and are equal, we have limx→0 |x| = 0.
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Example 1.37. Let g be the function whose graph is as follows.

State the values of the following, if they exist.

(a) lim
x→2−

g(x) (b) lim
x→2+

g(x) (c) lim
x→2

g(x) (d) g(2)

(e) lim
x→5−

g(x) (f) lim
x→5+

g(x) (g) lim
x→5

g(x) (h) g(5)

Solution

(a) 3 (b) 1 (c) does not exist. (d) g(2) not defined

(e) 2 (f) 2 (g) 2 (h) 1
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Example 1.38. Define the function f as follows.

f(x) =


x+ 1 if x 6 0
2x+ 1 if 0 < x 6 1
x2 if 1 < x

Which limits exist, and what are their values?

(a) lim
x→0

f(x) (b) lim
x→1

f(x) (c) lim
x→ 1

2

f(x)
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Solution

(a) The piecewise definition means that we can always work out the left and
right limits. For example, when we compute limx→0− f(x), we can assume
that x is close to 0 and less than 0, so that the first ‘piece’ of f applies and
f(x) = x+ 1. Thus

lim
x→0−

f(x) = lim
x→0−

(x+ 1) = 1.

Similarly, when we compute limx→0+ f(x) we can assume that x > 0 and that
x is close to 0, so that the second ‘piece’ of f applies and f(x) = 2x+ 1. Thus

lim
x→0+

f(x) = lim
x→0+

(2x+ 1) = 1.

Consequently, since the left and right limits exist and are both equal to 1, we
have

lim
x→0

f(x) = 1.
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(b) In this case we have

lim
x→1−

f(x) = lim
x→1−

(2x+ 1) = 2 + 1 = 3

and
lim
x→1+

f(x) = lim
x→1+

x2 = 12 = 1.

Since the left and right limits are different,

lim
x→1

f(x) does not exist.

(c) In this case we have limx→1/2 f(x). (Here 1/2 is ‘in the middle’ of one of
the pieces of f , rather than being a point where the definition changes.) In
computing this limit we may assume that x is close to 1/2, so that the middle
‘piece’ of f applies and

lim
x→ 1

2

f(x) = lim
x→ 1

2

(2x+ 1) = 2× 1

2
+ 1 = 2.
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Calculating limits using the limit laws

Suppose that limx→a f(x) and limx→a g(x) exist. Let c be a constant. Then
we have the following limit laws, which are rules for computing limits.

I Sum rule.
lim
x→a

[f(x) + g(x)] = lim
x→a

f(x) + lim
x→a

g(x)

I Difference rule.

lim
x→a

[f(x)− g(x)] = lim
x→a

f(x)− lim
x→a

g(x)

I Scalar rule.
lim
x→a

[c · f(x)] = c · lim
x→a

f(x)

I Product rule.

lim
x→a

[f(x)g(x)] =
[

lim
x→a

f(x)
]
·
[

lim
x→a

g(x)
]

I Quotient rule.

lim
x→a

[
f(x)

g(x)

]
=

limx→a f(x)

limx→a g(x)

so long as limx→a g(x) 6= 0.
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Remark 1.39. These limit laws, and the ones that follow, all also work for
one-sided limits. (In other words, take a limit law, and replace every instance of
‘x→ a’ with ‘x→ a−’ or ‘x→ a+’ and the result is still a true law.
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Definition 1.40 (Polynomials and rational functions). A polynomial is a
function p defined by a formula of the form

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where an, . . . , a0 are real numbers. A rational function is a function r defined
by a formula of the form

r(x) =
p(x)

q(x)

where p and q are polynomials. The domain of any polynomial is R, and the
domain of the rational function r above is {x | q(x) 6= 0}, unless stated
otherwise.
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Using the limit laws above, we see that if
p(x) = bnx

n + bn−1x
n−1 + · · ·+ b1x+ b0 is a polynomial, then

lim
x→a

p(x) = bn lim
x→a

xn + bn−1 lim
x→a

xn−1 + · · ·+ b1 lim
x→a

x+ lim
x→a

b0 =

bn( lim
x→a

x)n + bn−1( lim
x→a

x)n−1 + · · ·+ b1 lim
x→a

x+ lim
x→a

b0 =

bna
n + bn−1a

n−1 + · · · b1a+ b0 = p(a).

Similarly, if q is another polynomial which satisfies q(a) 6= 0 then we have that

lim
x→a

p(x)

q(x)
=

limx→a p(x)

limx→a q(x)
=
p(a)

q(a)
.

We summarize this:

I Direct Substitution Law. Let f be a rational function and let a lie in the
domain of f . Then

lim
x→a

f(x) = f(a).

(This rule applies to many more functions than just the rational functions,
as we will see later in the course.)

I Let f and g be functions such that f(x) = g(x) for x close to, but not
necessarily equal to, a. Then

lim
x→a

f(x) = lim
x→a

g(x).

Here, “close to a” means “in an open interval containing a”.
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Example 1.41. Evaluate lim
x→−2

x2 − 4

x2 + 6x+ 8
.

Solution We can’t use direct substitution to do this. If we tried it, we would
find

lim
x→−2

[
x2 − 4

x2 + 6x+ 8

]
=

(−2)2 − 4

(−2)2 + 6(−2) + 8
=

0

0
.

The result is nonsense, so we know that we went wrong somewhere. Indeed,
−2 is not in the domain of the function, so that direct substitution was not
permitted in the first place. However, our failed computation gives us a clue:
substituting x = −2 makes x2− 4 and x2 + 6x+ 8 equal to 0, and consequently
(x− (−2)) = (x+ 2) is a factor of both. In fact, for x 6= −2, we have

x2 − 4

x2 + 6x+ 8
=

(x− 2)(x+ 2)

(x+ 2)(x+ 4)
=
x− 2

x+ 4
.

So by the last limit law, we have

lim
x→−2

[
x2 − 4

x2 + 6x+ 8

]
= lim
x→−2

[
(x− 2)(x+ 2)

(x+ 2)(x+ 4)

]
= lim
x→−2

[
x− 2

x+ 4

]
=
−2− 2

−2 + 4
= −2.

In this computation, we were allowed to use direct substitution to compute

limx→−2

[
x−2
x+4

]
because −2 lies in the domain of the function. We know that

−2 lies in the domain because when we substitute x = −2 the denominator is
not 0.
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Example 1.42. Calculate the value of lim
x→1

x2 − 1

x− 1
.

Solution Observe that x2−1
x−1

= (x−1)(x+1)
x−1

= x+ 1 for x 6= 1. Since the limit as
x goes to 1 does not depend on what happens at 1, this is enough to show that

limx→1
x2−1
x−1

= limx→1(x+ 1). Now limx→1(x+ 1) = 1 + 1 = 2, by the limit
laws.
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Definition 1.43 (Infinite limits).
Let f be defined near to a, except possibly at a itself. We say

lim
x→a

f(x) =∞

if we can make f(x) as large and positive as we wish by making x sufficiently
close to, but not equal to, a. And we say

lim
x→a

f(x) = −∞

if we can make f(x) as large and negative as we wish by making x sufficiently
close to, but not equal to, a. We leave it to the reader to define the following
similar notions.

lim
x→a+

f(x) =∞ lim
x→a−

f(x) =∞ lim
x→a+

f(x) = −∞ lim
x→a−

f(x) = −∞

Warning The symbol ∞ appears above only as part of the ‘phrases’
limx→a f(x) =∞ and limx→a f(x) = −∞. It does not appear elsewhere or in
any other way. Remember, ∞ is not a number!
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Example 1.44. limx→0
1
x2

=∞. This is because if K is a large positive
number, then if we want to make sure that 1

x2
> K it is enough to make sure

that x is in the range − 1√
K
< x < 1√

K
and x 6= 0.

Example 1.45. limx→0+
1
x

=∞ and limx→0−
1
x

= −∞. For if x is small and
positive, then 1

x
is large and positive, as large as we like if x is close enough to

0, so that limx→0+
1
x

=∞. Similarly for the second case. Consequently,
limx→0

1
x

does not exist, as a finite or infinite limit.

Example 1.46. Compute lim
x→3+

1

x− 3
and lim

x→3−

1

x− 3
.

Solution If x is close to 3, but greater than 3, then x− 3 is small and positive,
so 1

x−3
is large and positive, and so limx→3+

1
x−3

=∞. If x is close to 3, but

less than 3, then x− 3 is small and negative, so 1
x−3

is large and negaive, and

so limx→3−
1

x−3
= −∞.

Example 1.47. Let f be the function defined by f(x) = x2−4x+3
x2−9

. Think
about limx→3 f(x), limx→−3 f(x) and, if necessary, the left and right versions
of these limits.
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Solution First, let’s consider what happens when we make a substitution.

I When we substitute x = 3, we find that x2 − 4x+ 3 = 0 and x2 − 9 = 0.
I When we substitute x = −3, we find that x2 − 4x+ 3 = 24 and x2 − 9=0.

Remember that if a polynomial becomes 0 when we substitute x = a, then you
know that (x− a) is a factor of that polynomial. Indeed,

f(x) =
x2 − 4x+ 3

x2 − 9
=

(x− 3)(x− 1)

(x− 3)(x+ 3)
=
x− 1

x+ 3

so long as x is not equal to 3 or −3. But the limits in question do not depend
on what happens at x = 3 or x = −3, and so

lim
x→3

f(x) = lim
x→3

x− 1

x+ 3
=

3− 1

3 + 3
=

1

3

Now as x approaches −3 from the left, x− 1 will be approximately −4, and
x+ 3 will be small and negative. So x−1

x+3
will be large and positive. Thus

lim
x→−3−

f(x) = lim
x→−3−

x− 1

x+ 3
=∞

And as x approaches −3 from the right, x− 1 will be approximately −4, and
x+ 3 will be small and positive. So x−1

x+3
will be large and negative. Thus

lim
x→−3+

f(x) = lim
x→−3+

x− 1

x+ 3
= −∞.

And finally limx→−3 f(x) does not exist, either as a finite or an infinite limit.
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Definition 1.48. Let f be a function which is defined for all x which is positive
and large enough. In other words: there exists an r ∈ R such that f(x) is
defined for all x > r. We say

lim
x→∞

f(x) = L

if we can make f(x) close to L as we wish by taking x to be large enough.
We define limx→−∞ f(x) = L in a similar fashion. We next define infinte
limits at infinity:

Definition 1.49. Let f be a function which is defined for all x which is positive
and large enough. We say

lim
x→∞

f(x) =∞

if we can make f(x) as large as we wish by taking x to be large enough. We
can similarly define

lim
x→−∞

f(x) =∞, lim
x→−∞

f(x) = −∞, and lim
x→∞

f(x) = −∞.
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Example 1.50. Convince yourself that limx→∞ 1 = 1 and that limx→∞ x =∞.

Remark 1.51. The limit laws still work if one replaces a with ∞ or −∞,
assuming that the limits exist and are finite. Thus, if limx→∞ f(x) and
limx→∞ g(x) exist and finite, then limx→∞f(x) + g(x) exist and is equal to
limx→∞ f(x) + limx→∞ g(x).

Example 1.52. Calculate the limit

lim
x→∞

x+ 1

2x+ 3
.

Solution Since limx→∞(x+ 1) = limx→∞ 2x+ 3 =∞ we can not just use the
quotient rule. Indeed, we will receive the phrase ∞∞ which has no clear
meaning. Instead, we will rewrite the function f(x) = x+1

2x+3
as

f(x) =
1
x

(1 + 1
x

)
1
x

(2 + 3
x

)
.

Notice that in order to write f in this way we need to assume that x 6= 0.
Since we are studying the limit for x→∞ this does not matter for us, since we
only care about the values of f(x) for large values of x. The function f can

thus be written as f(x) =
1+ 1

x

2+ 3
x

. So we wrote f as a quotient of two functions

which do have finite limits at ∞. It holds that limx→∞ 1 + 1
x

= 1 and
limx→∞(2 + 3

x
) = 2. It holds by the quotient rule that limx→∞ f(x) = 1

2
.

61 / 424



How to approach limit questions Let’s imagine that we have the following
imaginary question about a function f .

Question: Does limx→a f(x) exist as a finite or infinite limit, and if
so, what is its value?

Here is how we try to solve this question:

I If f is given by a single formula, begin by substituting x = a.

I If f(a) is defined, and f is sufficiently nice (see the Direct Substitution
rule later; quotients of polynomials are always sufficiently nice) then
limx→a f(x) = f(a).

I If f(a) is not defined, then attempt to simplify, and start the process
again. (Note: If substituting x = a into a polynomial produces 0, then
(x− a) is a factor of the polynomial.

I If f is defined piecewise and a lies at the ‘join’ of two pieces, then first
consider limx→a− f(x) and limx→a+ f(x).

There is not always a systematic approach to computing limits, for example
limx→0

sin(x)
x

, which we will compute later from first principles. Often you may
have to try different approaches before finding the one that works. However,
you will only be asked questions that you are capable of solving!
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Example 1.53. Suppose that f and g are functions defined near to, but not
necessarily at, the number a, and suppose that limx→−2 f(x) = 1 and
limx→−2 g(x) = −1. Use limit laws to evaluate the following.

1. lim
x→−2

[f(x) + 5g(x)]

2. lim
x→−2

[
f(x)

g(x)

]
Solution

1.

lim
x→−2

[f(x) + 5g(x)] = lim
x→−2

[f(x) + [5g(x)]]

= lim
x→−2

f(x) + lim
x→−2

[5g(x)] by sum law

= lim
x→−2

f(x) + 5 · lim
x→−2

g(x) by scalar law

= 1 + 5 · (−1)

= −4.

2.

lim
x→−2

[
f(x)

g(x)

]
=

lim
x→−2

f(x)

lim
x→−2

g(x)
by quotient law

=
1

−1
= −1
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Remark 1.54. In the last solution, we should really have checked that at each
step, when we used a limit law, the limits in question existed. However, in each
case this was checked by the remaining steps of the computation. So all is well,
and we allow ourselves to tackle the problems in this way.

Warning If you are computing a limit using limit laws, and arrive at an
expression that makes no sense, or a limit that does not exist, then discard the
computation and try something else.
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Here are a further set of limit laws, some of which you have already seen
before. We again assume that limx→a f(x) and limx→a g(x) exist and are
finite, and that c is any number.

I Power law. Let n be a positive integer. Then:

lim
x→a

[f(x)]n =
[

lim
x→a

f(x)
]n

I Constant.
lim
x→a

c = c.

I Identity law.
lim
x→a

x = a.

I Consequently
lim
x→a

xn = an

for any positive integer n.

I And similarly
lim
x→a

n
√
x = n

√
a

for any positive integer n, where a > 0 if n is even.

I An more generally

lim
x→a

n
√
f(x) = n

√
lim
x→a

f(x)

where n is a positive integer and, if n is even, then limx→a f(x) > 0.
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Remark 1.55. The purpose of the previous computation was to show how the
various different limit laws work. However, if we compare the first and fifth
steps of the above computation we have the following.

lim
x→−2

x3 + 2x2 − 1

5− 3x
and

[−2]3 + 2[−2]2 − 1

5− 3[−2]

Looking at these two expressions, it seems that we should be able to go from
one to the other by directly substituting x = −2. That is the message of the
direct substitution law below.
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Example 1.56. Evaluate lim
t→0

√
t2 + 9− 3

t2
.

Solution Substituting t = 0 into the formula gives us 0
0

, so we need to do
something else. Factorizing top and bottom of the fractions also would not
help. Instead we use the following trick. Try to understand and remember
the trick! For t 6= 0 we have:

√
t2 + 9− 3

t2
=

√
t2 + 9− 3

t2
·
√
t2 + 9 + 3√
t2 + 9 + 3

=
(
√
t2 + 9− 3)(

√
t2 + 9 + 3)

t2(
√
t2 + 9 + 3)

=
(t2 + 9)− 9

t2(
√
t2 + 9 + 3)

=
t2

t2(
√
t2 + 9 + 3)

=
1√

t2 + 9 + 3

This means that

lim
t→0

√
t2 + 9− 3

t2
= lim
t→0

1√
t2 + 9 + 3

=
1√

9 + 3
=

1

3 + 3
=

1

6
.

Here the last step follows from a version of direct substitution that we will see
shortly.
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Theorem 1.57. Suppose that f(x) 6 g(x) for all x close to, but not
necessarily equal to, a. Then limx→a f(x) 6 limx→a g(x), assuming that both
limits exist.

Warning You cannot replace the two instances of 6 in the theorem with <,
because then the theorem fails. Can you see an example of this?

Theorem 1.58 (Squeeze Theorem). (aka the Sandwich Theorem)
Suppose that

f(x) 6 g(x) 6 h(x)

for x close to, but not necessarily equal to, a. Suppose also that

lim
x→a

f(x) = L = lim
x→a

h(x).

Then limx→a g(x) exists and is equal to L.
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Example 1.59. Show that lim
x→0

x2 sin

(
1

x

)
= 0.

Solution Define g(x) = x2 sin(1/x). (The squeeze theorem tells us about the
function g, and we want to know about x2 sin(1/x), which is why we made this
choice.) Define f(x) = −x2 and h(x) = x2. Since −1 6 sin(1/x) 6 1 and
x2 > 0, we have

−x2 6 x2 sin(1/x) 6 x2.

In other words,
f(x) 6 g(x) 6 h(x).

Also, limx→0 f(x) = limx→0(−x2) = 0 and limx→0 h(x) = limx→0(x2) = 0.
So the squeeze theorem applies (with f , g and h as specified above, with
a = 0, and with L = 0), and tells us that limx→0 x

2 sin(1/x) = 0.
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Example 1.60. Suppose you had been asked to find limx→0 |x| cos(1/x) using
the squeeze theorem. You would put g(x) = |x| cos(1/x), because the squeeze
theorem tells us about the limit of g. But what f and h would you choose?

Solution We would choose f(x) = −|x| and h(x) = |x|. Then the squeeze
theorem could be applied, exactly as in the previous example, but this time
using the inequalities −1 6 cos(1/x) 6 1 and |x| > 0.
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Example 1.61. Here is a ‘picture’ of the squeeze theorem at work, in the case
where g(x) = x2 sin(1/x) as in Example 1.59. For this we took f(x) = −x2
and h(x) = x2. Here are the graphs of the three functions, with y = f(x) at
the bottom in blue and y = h(x) at the top in blue, and y = g(x) between
them in red.

The inequality f(x) 6 g(x) 6 h(x) translates to the fact that the red graph is
squeezed between the two blue graphs. The conclusion of the squeeze theorem,
that limx→0 g(x) = 0, is now immediately clear from the graphs.
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Example 1.62. Show that limx→0 x sin(1/x) = 0.

Solution (Note: This example is harder than the previous two. The reason for
this is that in the previous examples we had x2 > 0 and |x| > 0 respectively,
whereas now the analogous inequality x > 0 is not true.)
Define g by g(x) = x sin(1/x), and define f and h as follows.

f(x) =

{
−x if x > 0
x if x < 0

and h(x) =

{
x if x > 0
−x if x < 0

Since −1 6 sin(1/x) 6 1, we have:

I If x > 0, then −x 6 x sin(1/x) 6 x.

I If x < 0, then −x > x sin(1/x) > x, or in other words,
x 6 x sin(1/x) 6 −x.

The first bullet point says that f(x) 6 g(x) 6 h(x) when x > 0, and the second
bullet point says that f(x) 6 g(x) 6 h(x) when x < 0. So f(x) 6 g(x) 6 h(x)
holds for all x. But note that limx→0 f(x) = 0 and limx→0 h(x) = 0, as we see
for example by inspecting the left and right hand limits of each one. So the
squeeze theorem applies and tells us that limx→0 g(x) = 0 as required.
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Limits: rules of thumb To conclude, we give here a summary of what is
allowed, and what is not allowed, to do when calculating limits involving
infinity. We write this here in an a slightly imprecise way. As we mentioned, we
cannot treat ∞ as a number, so for each rule we say exactly what we mean:

I If limx→a f(x) =∞ and limx→a g(x) =∞ then

lim
x→a

f(x) + g(x) = lim
x→a

f(x)g(x) =∞.

We write this informally as ∞+∞ =∞ and ∞ ·∞ =∞.

I If limx→a f(x) =∞ and limx→a g(x) = c > 0, then

lim
x→a

f(x)g(x) = lim
x→a

f(x)

g(x)
=∞.

I If limx→a f(x) = c and limx→a g(x) =∞ then limx→a
f(x)
g(x)

= 0.

I If limx→a f(x) = c > 0 and limx→a g(x) = 0, and g(x) > 0 for x close

enough to a, then limx→a
f(x)
g(x)

=∞. Similar results hold when c < 0, or

g(x) < 0, or both. We just need to take care of the sign.

I Assume that f(x) ≤ g(x) when x is close enough to a number a. If
limx→a f(x) =∞ then limx→a g(x) =∞.
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Now for a list of problematic situations. In these situations we cannot calculate
the limit directly using the limit rules, but we have to simplify the function
somehow first.

I The limit limx→a
f(x)
g(x)

when limx→a f(x) =∞ = limx→a g(x) =∞ or

limx→a f(x) = limx→a g(x) = 0. We say informally that ∞∞ and 0
0

are not
defined.

I The limit limx→a f(x)− g(x) where limx→a f(x) = limx→a g(x) =∞.
We say informally that ∞−∞ is not defined.

I The limit limx→a f(x)g(x) where limx→a f(x) = 0 and
limx→a g(x) =∞. We say informally that 0 · ∞ is not defined.
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