
1-3 New functions from old functions

Definition 1.19 (Sums, differences, products and quotients). Let f and g
be functions. The sum and difference of f and g, denoted by f + g and f − g,
are the new functions defined by

(f + g)(x) = f(x) + g(x)

and
(f − g)(x) = f(x)− g(x).

The product and quotient of f and g, denoted by fg and f/g, are the new
functions defined by

(fg)(x) = f(x)g(x)

and
(f/g)(x) = f(x)/g(x).
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Example 1.20. Let f and g be the functions defined by f(x) = sin(x) and
g(x) = 2x. Find formulas for (f + g)(x), (f − g)(x), (fg)(x) and (f/g)(x).

Solution

I (f + g)(x) = f(x) + g(x) = sin(x) + 2x

I (f − g)(x) = f(x)− g(x) = sin(x)− 2x

I (fg)(x) = f(x)g(x) = sin(x) · 2x

I (f/g)(x) = f(x)/g(x) = sin(x)
2x
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Definition 1.21 (Domains of sums, differences, products and quotients).
The domains of f + g, f − g, fg and f/g are defined, according to our domain
convention, as the largest sets for which the given formulas make sense and
produce a real number. Working this out gives us the following:

dom(f + g) = dom(f) ∩ dom(g)

dom(f − g) = dom(f) ∩ dom(g)

dom(fg) = dom(f) ∩ dom(g)

dom(f/g) = {x ∈ dom(f) ∩ dom(g) | g(x) 6= 0}

For example, in the case of f + g, the formula f(x) + g(x) makes sense
whenever f(x) and g(x) are both defined, since we can always add any two real
numbers to get another real number, and so dom(f + g) = dom(f) ∩ dom(g).
On the other hand, in the case of f/g, the formula f(x)/g(x) makes sense
whenever f and g are both defined and g(x) 6= 0, since we cannot divide by 0.
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Example 1.22. Let f and g be the functions defined by f(x) = 1/x and
g(x) =

√
x− 1. What are the domains of the functions f + g, f − g, fg and

f/g?

Solution We do not need to work out the functions f + g, f − g, fg and f/g
in order to answer this question! Instead, we will use the rules for their domains
given in the last definition. In order to do this we first work out that
dom(f) = {x | x 6= 0} = (−∞, 0) ∪ (0,∞) and
dom(g) = {x | x > 0} = [0,∞). Thus we have:

I dom(f + g) = dom(f) ∩ dom(g) = {x | x 6= 0} ∩ [0,∞) = (0,∞).

I dom(f − g) = dom(f) ∩ dom(g) = (0,∞) as above.

I dom(fg) = dom(f) ∩ dom(g) = (0,∞) as above.

I dom(f/g) = {x ∈ dom(f) ∩ dom(g) | g(x) 6= 0}. Now
dom(f) ∩ dom(g) = (0,∞) as above, and g(x) 6= 0 means that√
x− 1 6= 0, i.e. that x 6= 1. So

dom(f/g) = {x ∈ (0,∞) | x 6= 1} = (0, 1) ∪ (1,∞).
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Warning Never answer a question like “What is the domain of fg?” by first
working out a formula for (fg)(x) and then investigating when the formula
makes sense and produces a real number. Do it like we did above, by first
working out dom(f) ∩ dom(g) step-by-step.

Question f and g be the functions defined by

f(x) = x

and
g(x) = |x|.

1. What is the domain of f? Of g? Of f/g?

2. Write a ‘piecewise’ formula for f/g.
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Solution

1. dom(f) = R, dom(g) = R, and

dom(f/g) = {x ∈ dom(f) ∩ dom(g) | g(x) 6= 0}
= {x ∈ R ∩R | |x| 6= 0}
= {x ∈ R | x 6= 0}
= (−∞, 0) ∪ (0,∞).

2. Remember that

|x| =
{
x if x > 0
−x if x < 0

so then

(f/g)(x) =

{
1 if x > 0
−1 if x < 0

Let’s check this. By the definition (f/g)(x) = f(x)/g(x) = x/|x|, so that
if x > 0 then |x| = x and (f/g)(x) = x/x = 1, and if x < 0 then
|x| = −x and (f/g)(x) = x/(−x) = −1.
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Definition 1.23 (Composite functions). If f and g are functions, the
composite function f ◦ g is the new function defined by

(f ◦ g)(x) = f(g(x)).

In other words, to work out (f ◦ g)(x), we first apply g to work out g(x), and
then we apply f to the result to work out f(g(x)).

Example 1.24. Let f and g be the functions defined by

f(x) = x2

and
g(x) = sin(x).

Give formulas for (f ◦ g)(x) and (g ◦ f)(x).

Solution We just follow the definitions and substitute in when we can, so that

(f ◦ g)(x) = f(g(x)) = f(sin(x)) = (sin(x))2 = sin2(x)

and
(g ◦ f)(x) = g(f(x)) = g(x2) = sin(x2).

Note that sin2(x) and sin(x2) are not usually equal, so that f ◦ g and g ◦ f are
not the same in this case. And in general, f ◦ g 6= g ◦ f . So you must take care
when working out composites: make sure you do it in the right order!
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Definition 1.25 (Domains of composite functions). According to our
domain convention, the domain of f ◦ g consists of all x for which the formula
(f ◦ g)(x) = f(g(x)) makes sense and produces a real number. Thus the
domain consists of all x for which x ∈ dom(g) and g(x) ∈ dom(f). In other
words:

dom(f ◦ g) = {x | x ∈ dom(g) and g(x) ∈ dom(f)}.
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Example 1.26. Let f and g be defined by f(x) =
√
x and g(x) =

√
2− x.

Find the domains of f ◦ g and g ◦ g.

Solution To find dom(f ◦ g) dom(g ◦ g) we will use the rule given in the
previous definition. To do this we need to know dom(f) and dom(g), which
are given by dom(f) = [0,∞) and dom(g) = (−∞, 2]. So now

dom(f ◦ g) = {x | x ∈ dom(g) and g(x) ∈ dom(f)}

= {x | x 6 2 and
√

2− x > 0}
= {x | x 6 2}
= (−∞, 2].

and

dom(g ◦ g) = {x | x ∈ dom(g) and g(x) ∈ dom(g)}

= {x | x 6 2 and
√

2− x 6 2}
= {x | x 6 2 and 2− x 6 4}
= {x | x 6 2 and x > −2}
= [−2, 2].

34 / 424



Warning Do not try to find dom(f ◦ g) by first computing (f ◦ g)(x) and then
working out the domain using the resulting formula. Why not? Because you
could get the wrong answer. Let’s see how.
Let a and b be the functions defined by a(t) = b(t) = 1

t
. Then

dom(a) = dom(b) = (−∞, 0) ∪ (0,∞). So the domain of a ◦ b is

dom(a ◦ b) = {t | t ∈ dom(b) and b(t) ∈ dom(a)}

= {t | t 6= 0 and
1

t
6= 0}

= (−∞, 0) ∪ (0,∞).

On the other hand, (a ◦ b)(t) = a(1/t) = 1/(1/t) = t, and this formula makes
sense and produces a real number for all t. So if you used this formula to find
the domain you would get the wrong answer.
So what is really happening? Well, when working out (a ◦ b)(t) we did some
simplification, and this showed us that f ◦ g could be extended to include 0 in
its domain.
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