1. Functions

1-1 Sets

Definition 1.1 (Sets and elements). A set is a collection of objects (maybe numbers, maybe kittens, maybe something else). The objects in the set are called the elements of the set. If S is a set, and a is an element of S, then we write $a \in S$. If a is not an element of S, we write $a \notin S$.

Example 1.2.

- ▶ N denotes the set of natural numbers, i.e. whole positive numbers.
- Z denotes the set of integers, i.e. whole numbers, both positive and negative.
- ▶ \mathbb{Q} denotes the set of rational numbers. These are numbers that we can write as the quotient of two integers, i.e. $2 = \frac{2}{1}, 1.5 = \frac{3}{2}, -2\frac{1}{3} = \frac{-7}{3}$.
- \blacktriangleright Ø is the empty set, which is the set with no elements at all.
- \blacktriangleright $\mathbb R$ denotes the set of real numbers, i.e. all the numbers on the number line.

Definition 1.3 (Describing sets). Some sets can be described by listing their elements between braces, i.e. the symbols { and }. For example:

- \triangleright {0} is a set with one element, 0.
- \blacktriangleright {-1, 2, 5} is a set with three elements.
- \triangleright {} is a set with no elements, or in other words it is the empty set \emptyset .

• $\{\ldots, -2, -1, 0, 1, 2, \ldots\}$ is another way of writing \mathbb{Z} .

Sets can also be described using set-builder notation, for example

$$A = \{x \mid x \text{ is an even integer}\} = \{\dots, -4, -2, 0, 2, 4, 6, \dots\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Definition 1.4 (Intersections and unions). If S and T are sets, then their intersection, denoted $S \cap T$, is the set of all elements of S that are also elements of T. So in set-builder notation

 $S \cap T = \{x \mid x \in S \text{ and } x \in T\}.$

Their union, denoted $S \cup T$, is the set consisting of all elements of S and all elements of T. So in set-builder notation:

$$S \cup T = \{x \mid x \in S \text{ or } x \in T \text{ or both}\}.$$

Their set difference, denoted $S \setminus T$ is the set containing all the elements of S which are not elements of T:

$$S \setminus T = \{x | x \in S \text{ and } x \notin T\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example 1.5.

$$\{-2, -1, 0\} \cup \{0, 1\frac{1}{2}, \pi\} = \{-2, -1, 0, 1\frac{1}{2}, \pi\}$$

$$\{-2, -1, 0\} \cap \{0, 1\frac{1}{2}, \pi\} = \{0\}$$

$$\{-2, -1, 0\} \cap \{1, 2\} = \emptyset$$

$$\{-2, -1, 0\} \cup \{1, 2\} = \{-2, -1, 0, 1, 2\}$$

$$\{-2, -1, 0\} \setminus \{1, 2\} = \{-2, -1, 0\}$$

$$\{-2, -1, 0\} \setminus \{0, -1, \frac{1}{2}, \pi\} = \{-2\}$$

Warning The elements of a set are not ordered, so that for example $\{1,2\} = \{2,1\}$. And we can list the same element twice without changing the set, so that for example $\{1,2,2,3,3,3,3,3\} = \{1,2,3\}$.

Definition 1.6 (Intervals). Let a < b be real numbers.

The open interval (a, b) denotes the set of all numbers between a and b, not including a or b. So in set-builder notation:

 $(a, b) = \{x \mid a < x < b\}$

The closed interval [a, b] denotes the set of all numbers between a and b, including a and b themselves. So in set-builder notation:

$$[a,b] = \{x \mid a \leqslant x \leqslant b\}$$

There are also two kinds of half-open interval defined as follows:

$$[a,b) = \{x \mid a \leqslant x < b\}$$
$$(a,b] = \{x \mid a < x \leqslant b\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Question

Describe the following sets as a single interval.

- **1**. $(1,3) \cup (2,4]$
- **2**. $(\pi, 10) \cup [10, 11]$
- **3**. $(0,1) \cup (1,2)$

Solution

- **1**. (1, 4]
- **2**. $(\pi, 11]$
- 3. It's not possible as single interval, but could write $(0,2) \setminus \{1\}$

Definition 1.7 (Unbounded Intervals). There are also unbounded intervals defined as follows.

$$(a, \infty) = \{x \mid a < x\}$$
$$(-\infty, b) = \{x \mid x < b\}$$
$$[a, \infty) = \{x \mid a \leqslant x\}$$
$$(-\infty, b] = \{x \mid x \leqslant b\}$$
$$(-\infty, \infty) = \mathbb{R}$$

Warning: Note that the symbol ∞ only appears in the names on the left, but not as a number on the right. In fact, ∞ is not a number, just a symbol we use for abbreviation.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで