华南师范大学 2018-2019 学年第二学期 期中试券答案

课程名称: 物理化学(理科) 考试时间: 120 分钟 年级: xxx 级 专业: xxx

一、单项选择(15小题,共30分)

1-5 ACCDC 6-10 BBBBB 11-15 CBCAD

二、填空(5小题,共10分)

- 1, $76.33 \times 10^{-4} \,\mathrm{S} \cdot \mathrm{m}^2 \cdot \mathrm{mol}^{-1}$
- 2. $2Ag(s)+Cu^{2+}+2Cl- \rightarrow Cu(s)+2AgCl(s)$ $2Ag(s)+Cu^{2+} \rightarrow Cu(s)+2Ag^{+}(aq)$
- 3、(1) 增加
 - (2) M_1^+ 与 M_2^+ 间液接电势, M_1 、 M_2 与溶液间的界面电势
- 4、摩尔甘汞电极|| Fe^{3+} , Fe^{2+} |Pt 或 Hg(l)| $Hg_2Cl_2(s)$ | $Cl^-(a_{Cl^-}=1)$ || Fe^{3+} , Fe^{2+} |Pt
- 5、电解质虽然不同, 但电极上发生的反应一致, 都是电解水。

三、计算(5小题,共30分)

1、答案: $\phi(Ag^{+}/Ag) = 0.3261 \text{ V}$ 阴极电势低于 0.3261 V 在该阴极电位下:

$$\phi$$
 (Cu²⁺/Cu) = ϕ \exists (Cu²⁺/Cu) + $RT/2F \times \ln a$ (Cu²⁺) a (Cu²⁺) = 0.4278 [Cu²⁺] 要小于 0.4278 mol • kg⁻¹

- 2、答案:
 - $(1) \ Cu(s) + 2AgAc(s) \ \longrightarrow \ Cu \ (0.1 \ mol \ \bullet \ kg^{\text{-}1}) + 2Ag + 2Ac^{\text{-}}(0.2 \ mol \ \bullet \ kg^{\text{-}1})$
 - (2) $\Delta_r G_m = -zEF = -71.769 \text{ kJ} \cdot \text{mol}^{-1}$ $\Delta_r S_m = zF(\partial E/\partial T)_p = 38.6 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$ $\Delta_r H_m = \Delta_r G_m + T\Delta_r S_m = -60.293 \text{ kJ} \cdot \text{mol}^{-1}$
 - (3) 设计电池 Ag | Ag⁺ || Ac⁻ | AgAc(s) | Ag

 ∅³ (AgAc,Ag) = 0.6413 V

试卷答案 第 1 页 (共 3 页)

$$K_{\rm sp} = 2.07 \times 10^{-3}$$

3、答案:

$$k = \frac{y}{ta(1-y)}$$

 $k(298 \text{ K})=6.39 \text{ dm}^3 \cdot \text{mol}^{-1} \cdot \text{min}^{-1}$ $k(308 \text{ K})=12.2 \text{ dm}^3 \cdot \text{mol}^{-1} \cdot \text{min}^{-1}$

$$E_{\rm a} = \frac{RT_1T_2}{T_2 - T_1} \ln \frac{k(T_2)}{k(T_1)} = 49.3 \text{ kJ} \cdot \text{mol}^{-1}$$

 $k(298 \text{ K})=3.20 \text{ dm}^3 \bullet \text{ mol}^{-1} \bullet \text{ min}^{-1}$ 分解分数 y=0.242 t=10 min

四、证明题

1、答案: 平衡假设法:

$$[AB] = K_1[A][B],$$

$$K_1 = k_1 / k_{-1}$$

$$r = k_2 [AB][C] = k_2 K_1 [A][B][C]$$

$$k_a = K_1 k_2$$
 $E_a = E_2 + \Delta_r H_m$

$$\therefore E_2 = E_a - \Delta_r H_m$$

$$k_2 = A_a \exp \left[-(E_a - \Delta_r H_m)/RT\right]$$

稳态近似法:

$$r = k_2 [AB][C] \tag{1}$$

(2)

$$d[AB]/dt = k_1[A][B] - k_{-1}[AB] - k_2[[AB][C] = 0$$

由(2)式解得 [AB]后,代入(1)式即可。

2、答案:

组成电池 Pt,Cl₂ | Cl⁻ || H⁺,MnO₄ ,Mn²⁺ | Pt

负极
$$2Cl^{-}(a=1)$$
 → $Cl_{2}(101.325kPa) + 2e^{-}$

正极 MnO_4^- (0.1 mol • kg⁻¹) + 8H⁺(0.1 mol • kg⁻¹) + 5e⁻→

$$Mn^{2+}(1 \text{ mol } \bullet \text{ kg}^{-1}) + 4H_2O$$

电池反应 $MnO_4^- + 8H^+ + 5Cl^- \rightarrow Mn^{2+} + 4H_2O + (5/2)Cl_2$

 $E = \phi_{\text{fi}} - \phi_{\text{fi}} = 0.0435 \text{ V} > 0$

故 MnO₄ 能把 Cl 氧化为 Cl₂ 。