
第7章 元素通论

- * 7.1 周期表中元素分类
- ₩ 7.2 非金属元素通论
- ₩ 7.3 金属元素通论
- 7.4 稀有气体

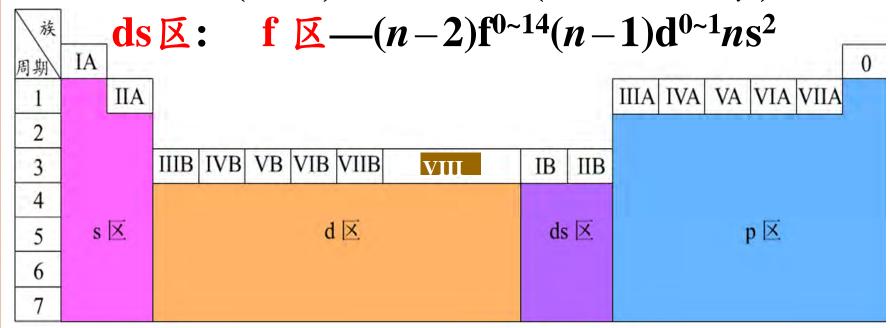
http://www.ptable.com

截至2015-12-30,元素周期表的118种化学元素经过 证实,并被IUPAC承认和命名[1-2]。其中,98种元素 在自然界存在,其中84种为原生核素和14个元素只 存在于原生元素的衰变链中;从锿(Et,99号)到鎶 (Cn, 112号)的元素不在宇宙中自然产生,全部由人 工合成; 从Nh (113号)至Og(118号)的元素仅在实验 室中被合成。2013年起至今,尚未成功得到原子序 数大于118的元素。

[1] http://en.wikipedia.org/wiki/Periodic_table 元素周期表介绍 Elements from atomic numbers 1 (hydrogen) to 118 (ununoctium) have been discovered or synthesized, with **elements 113, 115, 117, and 118** being confirmed by the IUPAC on Dec 30, 2015. [2] http://www.bbc.com/news/science-environment-35220823 Chemistry: Four elements added to periodic table.

7.1 周期表中元素分类

★ 7.1.1 元素的系、区和族的划分


★ 7.1.2 元素的金属性与非金属性

7.1.1 元素系、区和族的划分

周期表分区: 由外层电子构型决定

 $S \boxtimes -nS^{1\sim 2}$ $p \boxtimes -nS^2np^{1\sim 6}$

d 区— $(n-1)d^{1-10}ns^{1-2}$ (Pd无 s 电子)

镧系 锕系

 $f \times$

系:根据元素原子的价电子构型相似 性及元素性质的共性进行分类:

- (1) 非金属元素: p区
- (2) 非过渡金属元素: S区和P区金属
- (3) 过渡系金属(d区): 铁系元素、铂系元素等
 - (4)镧系元素与锕系元素...: f区 (内过渡系)

族:根据价电子构型分类,元素周期表的18列分为8个主族和8个副族。

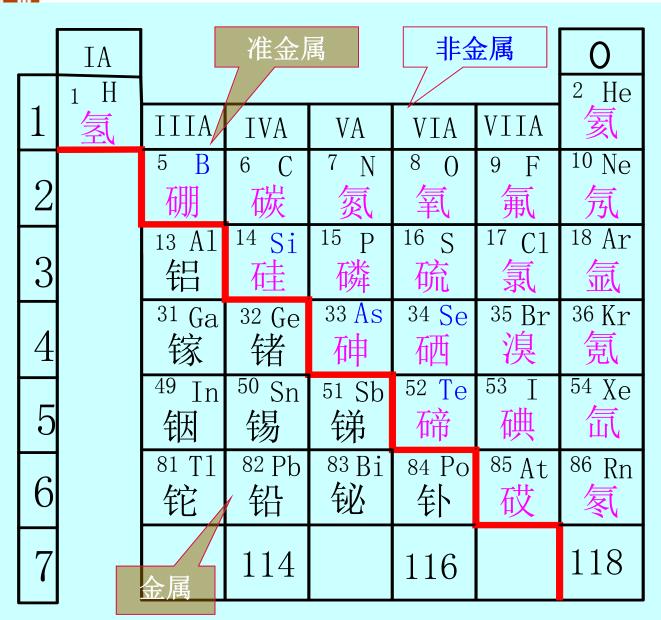
即主族(A): IA~VIIA 和零族

副族(B): IB~VIIB 和VIII族

分族:习惯把P区金属元素用同族中的第

一个金属代表,如铝分族(含Al, Ga, In, Tl)

、锗分族(Ge, Sn, Pb)和锑分族(Sb, Bi)等。


7.1.2 元素的金属性与非金属性

1. 定义

元素的金属性: 指原子失去电子形成阳离子的倾向大; 具有较低的电离能和较小电负性的元素金属性较强,如S区元素。

元素的非金属性:指原子获得电子形成负离子的倾向大;它们强烈地吸引成键电子,电离能较高、电负性较大,如p区非金属元素。

斜线附近的元素如B、Si、Ge、As、Sb、Se、Te和Po等为准金属,会和金属性和非金属性。

2. 变化规律

同一周期元素从左到右,金属性依次减弱,而非金属性依次增强

主族,同族从上至下元素金属性递增,非金属性递减

副族,同族从上至下元素金属性变化不显著也不太规律,但总体是减弱的。

3. 金属性和非金属性强弱量度

借助电离能、电子亲合能和电负性等数据来量度。

如:一般认为电负性>2.0为非金属元素, 电负性<2.0为金属元素,电负性<1.2为活 泼金属。F: 4.0; H, 2.18, Cs: 0.79

7.2 非金属元素通论

- ★ 7.2.1 非金属单质
- ★ 7.2.2 非金属元素的重要化合物
- ¥ 7.2.3 第2、4周期p区非金属元素性质的特殊性

非金属元素的原子结构和氧化态特征:

http://en.wikipedia.org/wiki/P-block

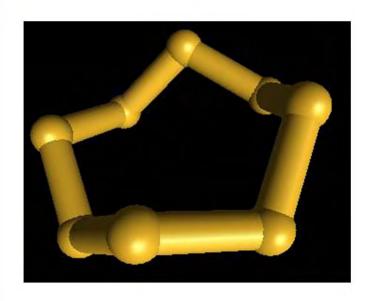
- (1) 电负性大,价电子多(氮族/氧族/卤族)
- (2) 半径小, 易获得电子
- (3) 多显 (n-8) 负价 (n为族数): X⁻, O²⁻离子 形成显正价化合物, 最高为+n

(含氧酸/氧化物、卤化物)

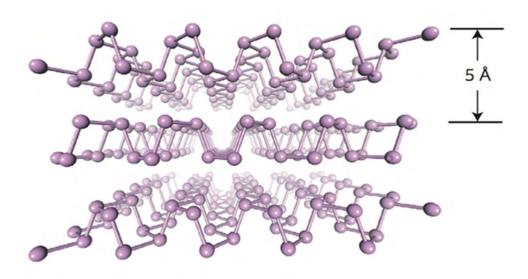
7.2.1 非金属单质

非金属元素单质的类型: 分子晶体或原子晶体

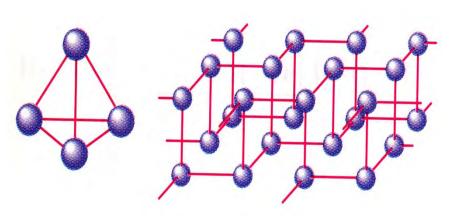
单原子分子构成的单质:稀有气体


双原子分子构成的单质: X_2 、 O_2 、 N_2 等

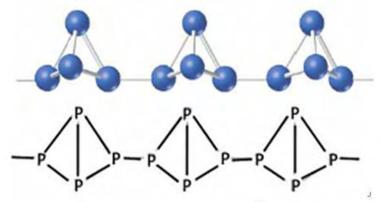
多原子分子构成的单质: S_8 、 P_4 、 As_4


 C_{60} (球碳,富勒烯)、石墨烯等

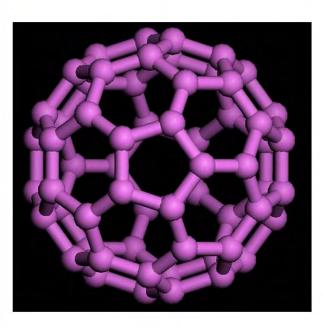
巨型分子(原子晶体)构成的单质(碳、硅等)

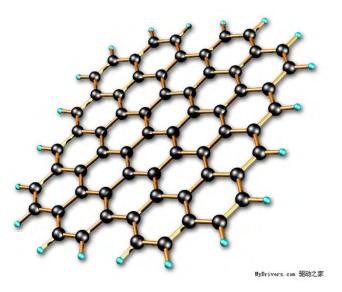

http://en.wikipedia.org/wiki/P-block

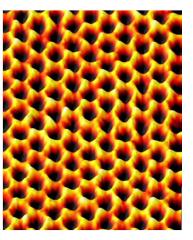
S₈, Se₈



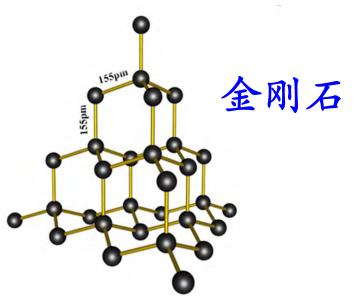
黑磷: 类石墨层状结构

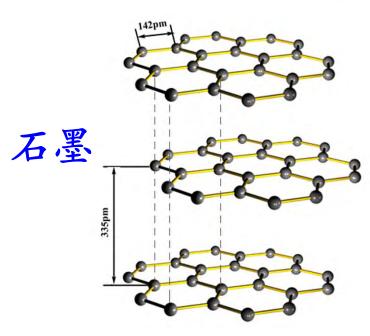



P₄(白磷)



红磷





石墨烯

富勒烯/足球烯(C₆₀)

非金属单质分子组成与晶体结构类型

状态	分子组成	实例	晶体类型	质点间作用力	熔沸点
气态	单原子分子	稀有气体	分子晶体	范德华力	低
	双原子分子	H_2,F_2,O_2,N_2,Cl_2	分子晶体	范德华力	低
液态	双原子分子	Br_2	分子晶体	范德华力	低
固态	双原子有限 分子	${f I_2}$	分子晶体	范德华力	稍高
	多原子有限 分子	S ₈ , Se ₈ , As ₄ , P ₄	分子晶体	范德华力	稍高
	多原子无限 分子(巨分子)	C, Si, B	原子晶体	共价键	很高

2. 化学性质

- (1)与金属/H₂反应: X₂、O₂、P、S等活泼非金属单质能与金属、氢气反应形成卤化物、氧化物、硫化物和氢化物等;
- (2) 与水反应: 大部分非金属单质在室温下不与水反应; Cl₂和Br₂部分与水反应生成次 卤酸; F₂与水生成HF和O₂; 水煤气反应
- (3) 与氧化性酸 $(HNO_3/H_2SO_4$ 等): 除 F_2 , O_2 和 N_2 外,其他非金属单质可反应

 $3C+4HNO_3$ (浓) $\stackrel{\triangle}{=\!=\!=}3CO_2 \uparrow +4NO \uparrow +2H_2O$

 $S+6HNO_3$ (浓) $\stackrel{\triangle}{=\!=\!=} H_2SO_4+6NO_2 \uparrow +2H_2O$

(4)与强碱溶液反应:除氧、氮和碳外

X₂、S和P等单质与强碱主要发生歧化反应

 $C1_2+2NaOH==NaCl+NaClO+H_2O$

 $3I_2+6NaOH==5NaI+NaIO_3+3H_2O$ (*)

 $2F_2 + 4NaOH = = 4NaF + O_2 + 2H_2O \quad (*)$

 $3S+6NaOH==2Na_2S+Na_2SO_3+3H_2O$

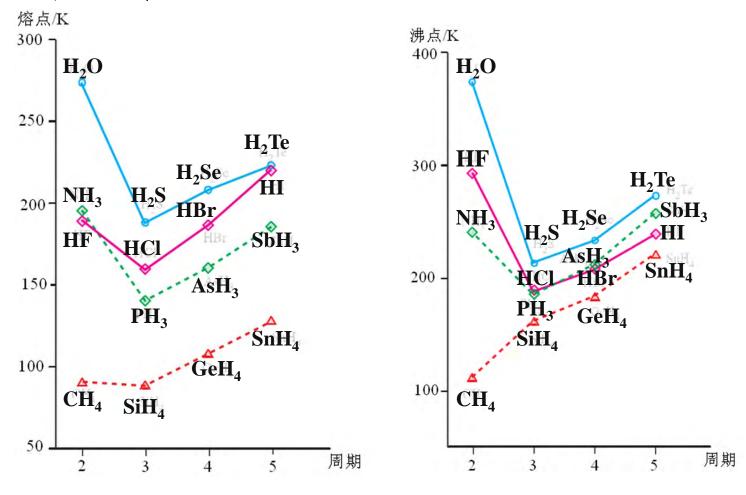
 $4P+3NaOH+3H_2O==3NaH_2PO_2+PH_3\uparrow$

Si、B等单质与碱反应生成含氧酸盐放出H₂

 $Si+2NaOH+H_2O==Na_2SiO_3+2H_2\uparrow$ (*)

 $2B+2NaOH+2H_2O==2NaBO_2+3H_2\uparrow$ (*)

7.2.2 非金属元素的重要化合物


1. 共价型分子氢化物: RH_n

B₂H₆/CH₄/SiH₄ NH₃/AsH₃/PH₃

 H_2O/H_2Se / HX

其熔沸点、酸性、稳定性和还原性等按元素 在周期表中所处的族和周期呈周期性的变化。

1) 熔沸点变化

范德华力增大,熔沸点上升

氢键作用: 熔沸点变化反常

2) 氢化物的热稳定性

同一周期中,从左到右热稳定性逐渐增加;

同一族中,自上而下热稳定性逐渐减小。

解释?

a:与H电负性差值的关系

非金属与氢的电负性相差越远,两者间的作用越强,相应氢化物越稳定;反之,相应的氢化物不稳定.

b: 由 $\triangle_f G^\theta$ 或 $\triangle_f H^\theta$ 越负,氢化物越稳定

3)还原性

除HF外,其它分子型氢化物都有还原性

$$CH_4 + 2O_2 = CO_2 + 2H_2O$$

$$4 \text{HBr} + O_2 = 2 \text{Br}_2 + 2 \text{H}_2 \text{O}$$

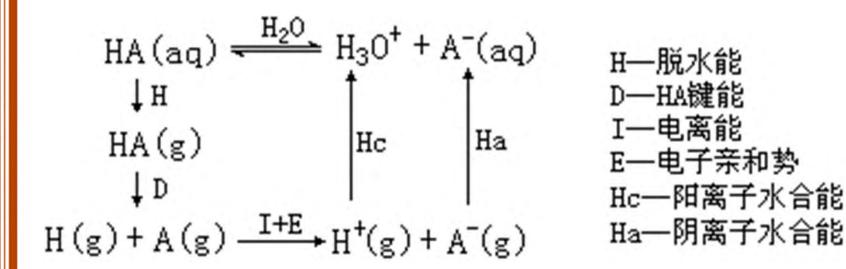
$$PH_3 + 4Cl_2 \longrightarrow PCl_5 + 3HCl$$

$$2HBr+Cl_2=2HCl+Br_2$$

$$5H_2S+2MnO_4^-+6H^+=2Mn^{2+}+5S +8H_2O$$

$$6HCl+Cr_2O_7^{2-}+8H^+=3Cl_2+2Cr^{3+}+7H_2O$$

海域中海沿岸出


氢化物的还原性变化规律

还	CH_4	NH_3	H ₂ O	HF		
原	SiH ₄	PH_3	H_2S	HCl		
性	GeH ₄	AsH ₃	H ₂ Se	HBr		
增 强	(SnH ₄)	SbH_3	H ₂ Te	HI		
独	还原性增强					

4) 水溶液的酸碱性

变化规律:水溶液的酸性从上到下依次增强;从左到右也依次增强。

主要影响因素

$$\triangle_{\mathbf{i}} H(\mathbf{e},\mathbf{g}) = H + D + I + E + H_{\mathbf{c}} + H_{\mathbf{a}}$$

$\triangle_{i}H = H + D + I + E + H_{c} + H_{a}$

代入数据可计算RH_n解离过程的焓变值。 该值越负,酸性越强。

因此,影响无氧酸强度的主要因素有:

- (1) RH_n的键能(*D*): H—R键越弱,则HR越容易释放出H+;
- (2) 元素R的电子亲和能(E): 亲和能大,则HA分子的极性大,HA在水中易电离.
- (3) 阴离子R-的水合能(H_a)大小: 半径小的阴离子,其水合能大,有利于 RH_n 在水中电离.

氢化物总的变化规律:

*因氢键反常

CH₄ NH_{3*} H₂O* HF*
SiH₄ PH₃ H₂S HCl
GeH₄ AsH₃ H₂Se HBr
SnH₄ SbH₃ H₂Te HI

*沸点升高水溶液酸性增强水溶液酸性增强

强

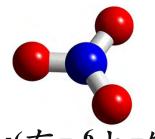
稳定性增强 还原性减弱 水溶液酸性增强 极性增大,沸点升高

2含氧酸

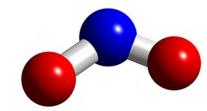
含氧酸的形成:非金属元素氧化物的水合物——含氧酸可看成含有一个或多个OH基团的氢氧化物,即 R(OH)_n。

中心原子R+n的电荷数及半径大小决 定其结合的羟基数目.

通常R+n的电荷高、半径大时、结合的OH 基数目多。当R+n的电荷高且半径小时,如 Cl+7应结合7个OH-基,但半径太小(0.027 nm),容纳不了过多OH-而发生脱水缩合, 直至CI+7周围保留的异电荷离子或基团数目, 既能满足CI+7的氧化态又能满足配位数要求; 处于同一周期的元素,其配位数大致相同


第二周期元素 第三周期元素

离子	B+3	C+4	N^{+5}	Si ⁺⁴	P+5	S ⁺⁶	Cl ⁺⁷
$r(R^{+n})/r(OH^{-})$	0.15	0.11	0.08	0.30	0.25	0.21	0.19
$R(OH)_n$	B(OH) ₃			Si(OH) ₄			
脱水产物	不脱水	H ₂ CO ₃	HNO ₃	H ₄ SiO ₄ H ₂ SiO ₃	H ₃ PO ₄	H ₂ SO ₄	HClO ₄


1) 含氧酸的组成和结构

第2周期的成酸元素:中心原子采用sp²杂化, 价电子对空间构型为平面三角形.

 RO_3^{n-} 离子为平面三角形,有一个 π_4^6 大 π 键; RO_2^{n-} 离子(如 NO_2^{-})呈角形,有一个 π_3^4 大 π 键。

 NO_3 (有 π_4 ⁶大 π 键)

 NO_2 -(有 π_3 ⁴大 π 键)

第3周期的成酸非金属元素:中心原子R均以sp³ 杂化轨道成键,价电子对空间构型为四面体.

RO4n型离子为正四面体。

 RO_3^{n-} 型离子(如 CIO_3^{-})为三角锥型.

RO2ⁿ型离子(如ClO2⁻)为角型

注意: 在P, S, Cl等多电子原子形成的含氧阴离子中,R-O键的键长比单键短但比双键长,在形成R \rightarrow O σ 配键的同时,还可能形成d- $p\pi$ 配键,即存在 P \rightleftharpoons O多重键.

第4周期元素: 其含氧酸的结构与第3周期元素相似, 价电子对构型为四面体(sp³), 中心原子的配位数为4. 如HBrO₄和H₂SeO₄等;

第5周期元素:在含氧酸中,中心原子的配位数为6或4.前者中心原子采用 sp^3d^2 杂化轨道成键,八面体构型(如 H_5IO_6);后者采用 sp^3 杂化轨道成键,形成四面体构型(如 HIO_4)。

2) 含氧酸的强度

(1) 酸碱性变化规律

族价含氧酸:同一周期,从左到右酸性依次增强. 同一族,从上到下总趋势是酸性减弱,但减弱程 度不同.

同一主族的成酸元素,酸性强弱随周期变化规律为:第2周期>>第3周期~第4周期>>第5周期

ታው: $H_4GeO_4 < H_3AsO_4 < H_2SeO_4 < HBrO_4$ $HNO_3 >> H_3PO_4 \approx H_3AsO_4 >> HSb(OH)_6$

同一元素不同价态的含氧酸:一般高氧化态

的含氧酸酸性比低氧化态的强

例如: HClO₄>HClO₃>HClO₂>HClO

HNO₃>HNO₂

例外: H₂TeO₃>[Te(OH)₆]

 H_3PO_3 , $H_3PO_2 > H_3PO_4$

同一元素同一价态的含氧酸:

缩合酸的酸性比单酸强。

如焦硫酸>硫酸;焦(或偏)磷酸>磷酸

(2) 含氧酸强度的解释

离子势

以R-O-H在水中有两种离解方式:

ROH → R⁺ + OH⁻ 碱式离解

ROH → RO⁻ + H⁺ 酸式离解

ROH按碱式还是按酸式离解,与中心离子的离子势φ(=Z/r,即离子电荷与离子半径之比)大小有关.

阳离子的电荷越高,半径越小,即离子势φ大, ROH以酸式离解为主,且φ越大,酸性越强;

离子势φ小, R-O键比较弱,则ROH倾向于作碱式离解.且φ越小,碱性越强.

有人给出判断ROH酸碱性的经验公式如下:

当 √ → > 10 时, ROH显酸性;

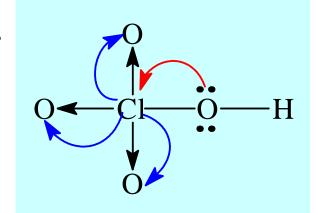
7<√**∮**<10时, ROH显两性;

 $\sqrt{\Phi}$ < 7时,ROH显碱性。

问题:比较H₃BO₃, H₂CO₃,HNO₃的酸性强弱关系,解释。

酸性:H₃BO₃<H₂CO₃<HNO₃.

从B³⁺、C⁴⁺到N⁵⁺离子,中心离子上的电荷 依次增大,离子半径又依次减小,则离子势φ 依次增大,含氧酸酸性越强


玩玩学等 中华

鲍林规则: 判断含氧酸强弱的半定量规则

含氧酸RO_m(OH)_n,分子中的非羟基氧原子数m.

m值越大,含氧酸酸性越强.

且 $K_1 \approx 10^{5\text{m-}7}$,即 $pK_a \approx 7-5\text{m}$.

m

(实验值)

酸强度

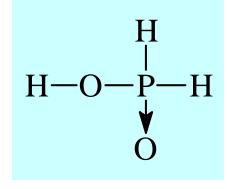
 $0 K_{a1}^{\theta} \approx 10^{-7} (10^{-8 \sim -12})$

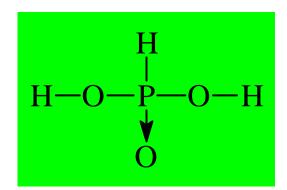
弱

1 $K_{a1}^{\theta} \approx 10^{-2} (10^{-2})$

中强

2 $K_{a1}^{\theta} \approx 10^3 (>10^{-1})$


强


 $K^{\theta}_{a1} \approx 10^8 \ (>>10^3)$

特强

以 pK_1 表示的一些含氧酸在水中的强度

N 值	3	2	1	0
酸的相对强度	极强	强	弱	很弱
酸 的 pK ₁ 值	HClO ₄ -7 HMnO ₄ -2.3 HReO ₄ -1.3	HNO ₃ -1.3 H ₂ SO ₄ -2.0 HClO ₃ -2.7 HIO ₃ 0.8	H ₂ CO ₃ 3.7 HNO ₂ 3.3 H ₃ PO ₄ 2.1 H ₂ SO ₃ 1.9 HClO ₂ 2.0 H ₃ AsO ₄ 2.3 H ₂ SeO ₃ 2.6 H ₅ IO ₆ 1.6	H ₃ BO ₃ 9.0 HClO 7.4 H ₄ GeO ₄ 8.6 H ₃ AsO ₃ 9.2 HBrO 8.7 H ₃ SbO ₃ 11.0 HIO 10.0 H ₄ SiO ₄ 8.8
		H ₂ CrO ₄ -1.0	H ₃ PO ₃ 1.8 H ₃ PO ₂ 2.0	H ₆ TeO ₆ 10.0

问题:根据鲍林规则,估算出各酸的K_a值,并按酸性强弱排序

- (1) HClO₂ HClO₄ HClO₃
- $(3) HNO_3 H_2SO_3 H_3AsO_3$

```
解:(1)HClO<sub>2</sub>:m=1,K_a=10<sup>-2</sup>;
HClO_3:m=2, K_a=10^3; HClO_4: m=3, K_a=10^8;
  酸性: HClO<sub>4</sub>>HClO<sub>3</sub>>HClO<sub>2</sub>;
(2)H_3BO_3:m=0,K_a=10^{-7}; H_3AsO_4: m=1,K_a=10^{-2};
H_2SeO_4:m=2, K_2=10^3;
   酸性: HSeO<sub>4</sub>>H<sub>3</sub>AsO<sub>4</sub>>H<sub>3</sub>BO<sub>3</sub>;
(3)HNO<sub>3</sub>: m=2,K_a=10^3; H_2SO_3: m=1,K_a=10^{-2};
H_3AsO_3:m=0, K_a=10^{-7};
   酸性: HNO3>H2SO3>H3AsO3.
```

鲍林规则的局限性

- a. m值相同时, 无法比较酸性大小
- b. 有时按RO_m(OH)_n表观式求算的m值与实际不符.如 H_3PO_3 和 H_3PO_2 按式计算的m=0,但实际为1, pK₁落在2的范围内.
- c. H_2CO_3 理论p K^0_{a1} 为2,实际为6.38;

 H_3BO_3 属Lewis酸,理论p K^{θ}_{a1} 为7,实际为9.24.

在实际应用中, 先根据非羟基氧数m大小判断酸性强弱; 若m相同,则采用离子势判断.

3). 氧化还原性

一般变化规律:

- (1) 同一周期中,各元素最高氧化态含氧酸的氧化性从左到右递增
- (2) 同一主族中,最高氧化态含氧酸的氧化性,多数随原子序数增加呈锯齿形升高

如第三周期<第四周期>第五周期<第六周期

- (3) 对同一种元素的不同氧化态含氧酸,低氧化态的氧化性较强。 $HNO_2 > HNO_3$; $H_2SO_3 > H_2SO_4$
- (4)浓度和酸度影响:含氧酸的氧化性比相应盐的强;同一含氧酸的浓溶液氧化性强于稀溶液。

影响含氧酸氧化能力的主要因素

(1) 中心原子结合电子的能力

电负性大,原子半径小,氧化态高的中心原子,得电子的能力强,酸的氧化性强.

(2) 分子的稳定性

分子越不稳定,其氧化性越强.分子的稳定性与R—O键的强度和键数有关.R—O键的强度和键数有关.R—O键的强度愈大,成键数愈多,则要断裂这些键越难,中心原子越不易从外界得到电子.

(3) 溶液温度、酸度和浓度的影响

温度升高,反应速率加快,含氧酸的氧化性增强。

含氧酸的氧化反应一般有H+参与。酸的浓度越高,H+浓度越高,含氧酸的电极电势也就越大, 氧化能力越强。

$$ClO_4^- + 8H^+ + 8e^- = Cl^- + 4H_2O$$
 $\varphi^{\ominus} = 1.34V$
 $ClO_4^- + 4H_2O + 8e^- = Cl^- + 8OH^ \varphi^{\ominus} = 0.51V$

问题:含氧酸的氧化性顺序如下,说明原因。

(1) $H_4SiO_4 < H_3PO_4 < H_2SO_4 < HClO_4$

(2) $H_2SO_4 < H_2SeO_4 > H_6TeO_6$

 $(1)H_4SiO_4 < H_3PO_4 < H_2SO_4 < HClO_4$.因从Si-P-S-Cl,中心离子的离子势(Z/r)值依次增大,获得电子的能力增强,则含氧酸的氧化性增强.

 $(2)H_2SO_4 < H_2SeO_4 > H_6TeO_6$.因p区元素的不规则性,第四周期元素含氧酸的氧化性比上下两周期元素的均强.

- 3 含氧酸盐 1) 热稳定性
- (1) 含氧酸盐热分解反应的类型
- ①非氧化还原分解反应

含结晶水的含氧酸盐(如CuSO₄·5H₂O)受热时逐步脱去结晶水,生成无水盐;无水盐(CaCO₃、MgCO₃等)分解成相应的氧化物;

无水酸式含氧酸盐(NaHSO₄、Na₂HPO₄等)受 热时发生缩合反应生成多(或焦)盐。

$$CaCO_3(s) \xrightarrow{>1100K} CaO(s) + CO_2(g)$$

2NaHSO₄(s)
$$\xrightarrow{1723\text{K}}$$
 Na₂S₂O₇(s)

②自氧化还原分解反应

分子内氧化还原反应:

Mn(NO₃)₂
$$\stackrel{\triangle}{=}$$
 MnO₂+2NO₂ ↑

(NH₄)₂Cr₂O₇ $\stackrel{\triangle}{=}$ Cr₂O₃+N₂ ↑ +4H₂O

Ag₂SO₃(s) $\stackrel{\cancel{\text{tx}}}{=}$ 2Ag(s) + SO₃(g)

歧化反应:

- (2) 影响因素 含氧酸结构、中心原子的电负性、半径、氧化数等
 - ①阴离子的影响

在阳离子相同时,阴离子稳定性越差,盐的稳定性也越差。

稳定性顺序:硅酸盐,磷酸盐>硫酸盐,碳酸盐>硝酸盐,卤酸盐

 $BaSO_4$ $BaCO_3$ $Ba(NO_3)_2$ $Ba(ClO_4)_2$ $Ba(ClO_3)_2$ >1853 1633 >848 713 573 K $Ba_3(PO_4)_2$ 2000K

② 阳离子极化作用的影响

在阴离子相同时,阳离子的离子极化作用越强,盐的稳定性越差;

碱金属盐>碱土金属盐>过渡金属盐>铵盐

因H+离子半径特别小,离子极化能力特别强, 同一元素的酸式盐热稳定性小于正盐。

 $H_2CO_3 > NaHCO_3 > Na_2CO_3$

阳离子的极化作用变化规律

- ①离子电荷:电荷越高者,极化作用越强;
- ② 离子的外层电子构型对极化作用影响: (18+2)e⁻, 18e⁻> 9~17e⁻> 8e⁻
- ③ 电子层相似电荷相等时,半径小的离子有较强的极化作用;

 $Mg^{2+} > Ba^{2+}$, $Al^{3+} > La^{3+}$

问题: 比较**Z**n**SO**₄,**C**a₃(**PO**₄)₂,**C**a**SO**₄的稳定性,给出理由.

稳定性: $Ca_3(PO_4)_2 > CaSO_4 > ZnSO_4$.

因磷酸根稳定性高于硫酸根,

对于相同阴离子的盐,阳离子Zn²⁺为18e构型, 其极化作用和变形性均大于8e构型的Ca²⁺.而极 化作用越大,盐稳定性越差.

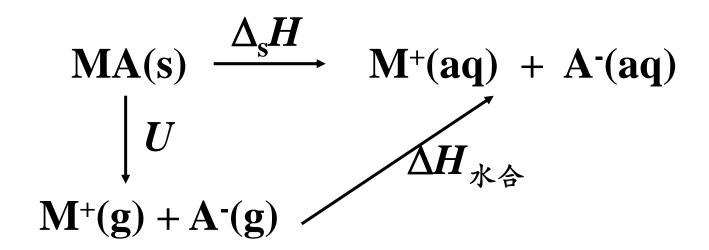
Na₂SO₄, MgCO₃, ZnCO₃, CaCO₃

2) 溶解性

(1) 一般规律

多数的钠盐,钾盐和铵盐及酸式盐都易溶于水. 硝酸盐,氯酸盐都易溶于水,且溶解度随温度的 升高而迅速地增加.

硫酸盐:大部分溶于水,但SrSO4,BaSO4和


PbSO₄难溶, CaSO₄, Ag₂SO₄和Hg₂SO₄微溶.

碳酸盐:大多数不溶于水,其中以Ca2+, Sr2+,

Ba²⁺,Pb²⁺的碳酸盐最难溶;

磷酸盐:大多数不溶于水;磷酸二氢盐:可溶

(2) 影响含氧酸盐溶解性的因素 溶解性与溶解焓变(Δ_sH)的关系

即晶格能和离子水合能对离子化合物的溶解性产生影响.因此离子电荷高,半径小,即 Z/r值大的离子所形成的盐的晶格能大,则溶解时破坏晶格能所需要的能量也大.

晶格能
$$U = f_1(\frac{Z_+Z_-}{r_+ + r_-})$$

品格能:与离子电荷乘积成正比,还 和正负离子半径和成反比.

水合能
$$\Delta_h H_m^{\Theta} = f_2(\frac{1}{r_+}) + f_3(\frac{1}{r_-})$$

水合能:分别与正负离子的半径成反比.

离子半径越小,晶格能和水合能越大。

经验规律

对于阴阳离子半径相差悬殊的物质 $(\mathbf{r}_{+} << \mathbf{r}_{-})$: 阴离子相同时,随 \mathbf{r}_{+} 减小,U变化不大,水合能增加,有利于盐的溶解。

 ClO_4^- : $Rb^+ < K^+ < Na^+$

当正负离子半径相近时,若负离子半径较小, 随r₊减小,U增大, 盐溶解性变差。

氟化物: Li⁺ < Na⁺ < K⁺ < Rb⁺

判断溶解性变化的经验方法:

阴阳离子半径相差大的比相差小的易溶,如MgSO₄比BaSO₄易溶(阴阳离子大小相差悬殊时,离子水合作用在溶解过程中居优势)

大阴大阳离子形成的盐溶解度小

溶解性: $NaClO_4 > Rb/Cs ClO_4$

溶解性与溶解吉布斯自由能变 $(\Delta_{\mathbf{s}}G_{\mathbf{m}}^{\theta})$ 的关系

从溶解焓考虑离子化合物的溶解性不准确; 溶解熵效应对物质的溶解性有较大的影响。 从溶解自由能变讨论离子化合物的溶解性。 当MX在水中溶解达平衡后,

$$\mathbf{MX(s)} == \mathbf{M}^{+}(\mathbf{aq}) + \mathbf{X}^{-}(\mathbf{aq})$$
$$\Delta_{\mathbf{s}} G_{\mathbf{m}}^{\theta} = \Delta_{\mathbf{s}} H_{\mathbf{m}}^{\theta} - T \Delta_{\mathbf{s}} S_{\mathbf{m}}^{\theta}$$

在溶解时,离子的电荷低,半径大,表现熵增;电荷高、半径较小的离子,通常熵减。

含氧酸盐的 $\Delta_s H_{\mathrm{m}}^{\phantom{\mathrm{o}}}$, $\Delta_s S_{\mathrm{m}}^{\phantom{\mathrm{o}}}$, $\Delta_s G_{\mathrm{m}}^{\phantom{\mathrm{o}}}$ 和溶解性

盐	$\begin{array}{c} \Delta_{s}H \bigoplus \\ \mathbf{kJ \cdot mol^{-1}} \end{array}$	$\Delta_{\mathbf{s}} S_m \ominus$ $\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$	$\Delta_{\mathbf{s}}G_{\mathbf{m}} \ominus \mathbf{k} \mathbf{J} \cdot \mathbf{mol}^{-1}$	溶解性
$Ca_3(PO_4)_2$	-64.6	-859.8	191	难溶
Na ₃ PO ₄	-78.66	-230.8	-9.86	易溶
KNO ₃	35.15	119.6	-0.491	易溶
$Ba(NO_3)_2$	40.17	99.9	10.4	易溶

问题: Ba(NO₃)₂的 $\Delta_s G_m^{\theta}$ 值大于0, 为何易溶?

解: $Ba(NO_3)_2(s) == Ba^{2+}(aq) + 2NO_3(aq)$

刚开始溶解溶液中的离子浓度均很小(远小于标态的1mol·L⁻¹)。 假设s = 0.1mol·L⁻¹, $\Delta_s G_m = 10.4 + 8.314 \times 10^{-3} \times 298 \ln(4 \times 0.1^3)$ = -3.28 (kJ·mol⁻¹) < 0

7.2.3 第2、4周期p区非金属元素的特殊性

次级周期性是指元素周期表中,每 族元素的性质从上到下并非单调的直 线式递变,而是呈现起伏的"锯齿状" 变化.

1、第2周期p区非金属元素的特殊性

B、C、N、O和F等元素的性质特殊:

- (1) N、O、F的氢化物易生成氢键,离子性较强
- (2) 最高配位数为4 (sp³杂化), 同族其他元素的配位数可超过4
- (3) 元素有自相成链的能力,以碳元素最强
- (4) 形成多重键: C、N、O
- (5) 与第3周期元素相比, 化学活泼性的差别大
- (6) 同素异形体性质差别较大. C、O

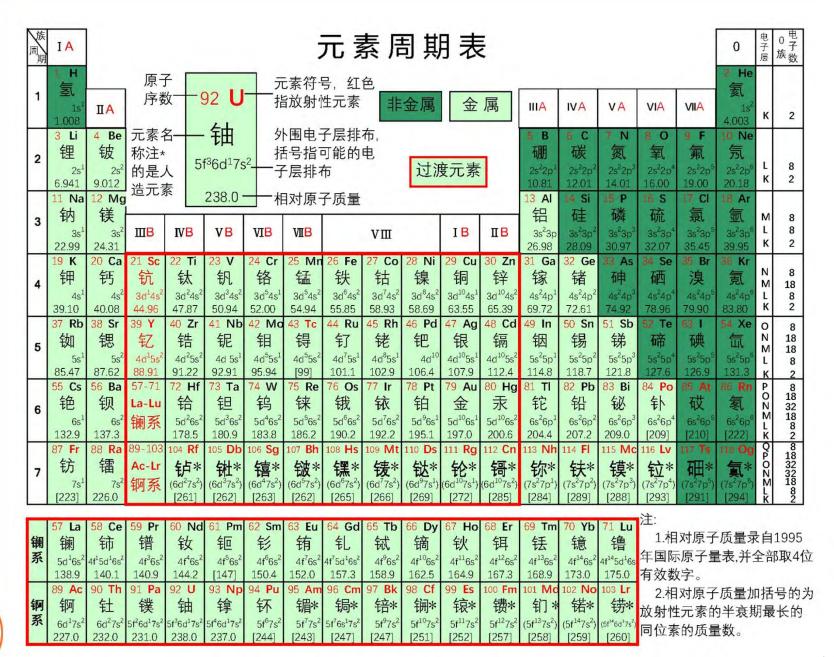
2、第4周期p区元素性质的不规则性

由原子半径引起的p区元素的电负性、金属性(非金属性)、氢氧化物酸碱性以及含氧酸的氧化还原性等出现不规则性变化

金属性: Ga < Al

酸性: $Ga(OH)_3 > Al(OH)_3$

氧化性: $H_2SeO_4 > H_2SO_4$


 $HBrO_4 > HClO_4$

7.3 金属元素通论

★7.3.1 主族金属

★ 7.3.2 副族金属

金属

金属元素:价电子数较少,容易失电子,位于周期表的左方及左下方,自然界存在和人工合成的金属90多种。

黑色金属 (Fe、Cr、Mn及其合金) (钢铁:铁碳合金) 密度: 轻有色金属和重有色金属 价格: 贵金属和贱金属 有色金属 性质: 准金属和普通金属 储量及分布:稀有金属和普 通金属

有色金属分为五大类:

轻有色金属:密度小于 4.5 g·cm⁻³的有色金属,如:铝、镁、钠、钾、钙、锶、钡等;

重有色金属:如铜、镍、铅、锌、钴、汞、锡等;

贵金属:金、银和铂族元素,含量少、开采和提取困难、价格贵

准金属:半导体,一般指硅、硒、碲、砷、硼稀有金属:自然界中含量很少、分布稀散、发现较晚,难以提取,如锂、铷、铯、钨、锗、稀土元素和人造超铀元素等。

金属元素在自然界中的主要存在形式:

少数贵金属以单质(如Au、Ag、Hg、铂 系等)或硫化物;

轻金属: 氧化物和含氧酸盐 (如以CO₃²⁻、PO₄³⁻、SO₄²⁻),如镁,钙,钡等元素;

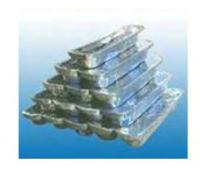
过渡金属元素:稳定的氧化物或硫化物如Fe₃O₄, Cu₂O, ZnS, FeS₂, CuS·FeS

p区金属: 硫化物 (Bi₂S₃, Sb₂S₃, PbS等)

1) 金属的物理性质

有金属光泽:

光线投射到金属表面上时, 自由电子吸收 所有频率的光,很快放出各种频率的光,大 多数金属呈现钢灰色以至银白色光泽;

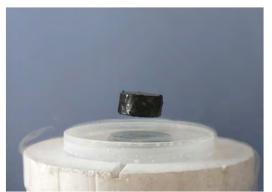

有些金属选择性吸收某些频率的光, 显现 颜色:如金显黄色,铜显赤红色,铋—淡红 色, 铯-淡黄色, 铅呈灰蓝色;

金属处于块状时有光泽; 金属粉末一般呈 暗灰色或黑色(漫散射)

导电性和导热性:

大多数金属有良好的导电性和导热性。 常见金属的导电和导热能力由大到小的顺 序排列如下: Ag, Cu, Au, Al, Zn, Pt, Sn, Fe, Pb, Hg....

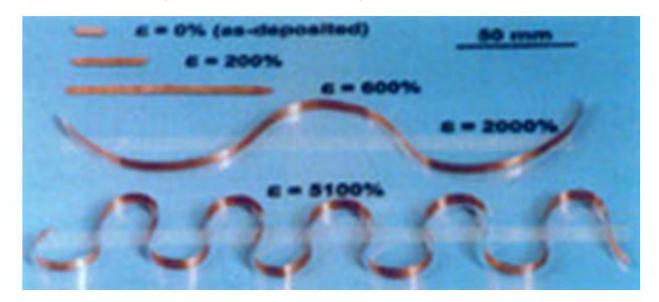
金属的熔点一般较高,但高低差别较大 最难熔的金属是钨,最易熔的金属是汞 、铯和镓。汞在常温下是液体,铯和镓在手 上受热就能熔化


超导性能:

金属的电阻通常随温度降低而减小.

1911年H.K. Onnes 发现 Hg 冷到低于

4.2K时, 其电阻突然消失, 导电性接近无限大, 表现出超导电性;


超导体: 纯金属、合金和化合物三类

金属有较好的延展性:抽成细丝,最细的白金 丝直径为1/5000 mm;压成薄片,最薄的金箔厚 度约为1/10000 mm;

纳米金属铜的超延展性

Au的延展性: 1g金可拉成165 m、直径20 μm的金线 75

金属的硬度:一般较大,但差别很大。有的坚硬,如铬、钨等;有些软,易切割如钠、钾等

金属和非金属物理性质的对比

金属	非金属
1.熔点高 2.大多数密度较大 3.有金属光泽 4.是热和电的良导体, 电阻随温度升高增大 5.具有延展性 6.属金属晶体 7.蒸气分子一般是单 原子(例外, Li ₂)	1.为液体或气体,有些为固体 2.一般密度较小 3.无金属光泽 4.热和电的不良导体,电阻随 温度升高而减小 5.不具有延展性 6.大多属分子晶体 7.蒸气分子是双或多原子

金属的熔点、沸点、硬度、原子半径、 电离势和升华热等物理性质的变化规律:

(1)同一周期从左到右金属的熔点、沸点、 硬度和升华热总体先升高后降低,在VB 或VIB达到最大。同族从上到下则依次减弱,但副族规律性差些。

原因:与金属键的强弱密切相关

(2) 原子半径从左到右逐渐减小,但IB、IIB略有升高;从上到下依次增加,副 族中第五和第六周期元素半径相近;

(3) 电离势变化规律与原子半径的相似,从左到右电离势总体增强,从上到下 减弱。因核对外层电子吸引力越强,则 电离势越大。

2) 金属的化学性质

- 金属的价电子构型特征 S区、p区、d区、ds区、f区金属;
- 金属通常易失去电子,表现出较强的还原性。各种金属原子失去电子的难易程度差别很大,金属还原性的强弱差异较大;
- 金属原子活泼性的衡量: 气态原子以电离能数值来衡量; 在水溶液中, 用标准电极电势数值来衡量; 动力学活泼性: 置换反应

金属活动性顺序表中的金属与空气、水、酸、碱等的反应情况:

金属	K Na Li	Mg	Al	Mn	Zn	Cr	Fe	Pb	Sn	H+	Cu	Hg	Ag Pt Au
与左	迅速反应		从左向右反应速度减小							不反应			
燃烧			加 热 燃 烧 缓慢氧化							不反应			
与水反应	与冷水反应快	应很	很 与冷水反应 在红热时与水蒸气 慢 反应			气			不反应				

与空气作用:钠和钾很快,铷和铯发生自燃; Cu/Hg需加热,Ag/Au即使加热也很难与空气反应

金属	K Na Li	Mg Al Mn Zn Cr Fe Pb	Sn	H ⁺ Cu Hg Ag Pt Au		
与稀酸反应	爆炸	反应依次减慢	很慢	不反应		
与化酸反应		都能反应		仅与 王水 反应		
与碱 反应	Al、Zn、铍、镓、铟、锡等与强碱反应					
与盐 反应	活泼金属从盐溶液中置换出不活泼金属					

与配位试剂反应:

形成配合物改变了金属的电极电势。

 $2Cu + 2H_2O + 4CN = 2 [Cu(CN)_2] + 2OH + H_2$

若通入氧气, 加速反应进行。

 $4M+2H_2O+8CN-+O_2=4[M(CN)_2]-+4OH$

(M=Cu, Ag, Au)

矿石中提炼银和金、王水与金、铂的反应

7.3.1 主族金属

1. s区金属

包括碱金属(IA族)和碱土金属(IIA族);

IA族: 锂、钠、钾、铷、铯、钫等元素;

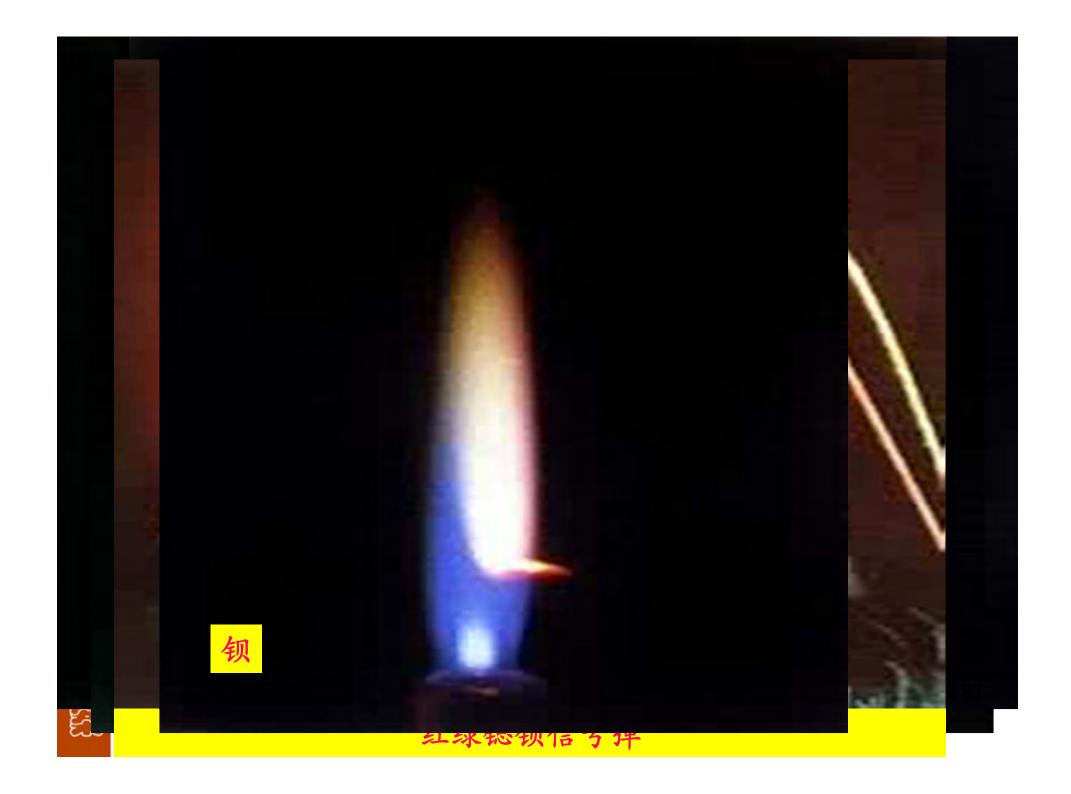
IIA族: 铍、镁、钙、锶、钡、镭等元素。

价电子构型: ns1-2

成键特征: 容易失去最外层的价电子, 呈现+I和+II氧化态, 同一周期中最活泼金属, 以形成离子型化合物为主。

重要化合物

(i) 碱金属、碱土金属与氧气或臭氧反应形成氧化物、过氧化物(O_2^2)、超氧化物(O_2^2),和臭氧化物(O_3^2)等;


(ii) 氢氧化物多为强碱 (Be/Mg除外), 从上到下碱性依次增强,如MOH>M(OH)₂

Li/Be化合物: 呈现共价化合物的性质

盐的通性

①盐一般是无色或白色,离子在火焰中呈现特殊的颜色(即焰色反应)。

离子	$\mathbf{Li^{+}}$	Na^+	\mathbf{K}^{+}	$\mathbf{R}\mathbf{b}^{+}$
焰色	红	黄	紫	紫红
波长 /nm	670.8	589.0-589.6	404.4-404.7	420.2- 629.8
离子	$\mathbf{C}\mathbf{s}^{+}$	Ca ²⁺	Sr ²⁺	Ba^{2+}
焰色	紫红	橙红	红	黄绿
波长 /nm	455.5-459.8	612.2-616.2	687.8-707.0	553.6

- ②溶解性:碱金属盐类多数易溶于水,如碳酸盐,硫酸盐的溶解度从Li-Cs依次增大;碱土金属盐一般难溶于水。
- ③形成结晶水的能力:离子半径愈小,所带电荷愈多,水合热愈大,结合水分子的能力愈强;碱金属随原子序数增加而依次减弱;碱土金属>碱金属
 无水盐Na₂SO₄/MgSO₄/CaCl₂:常用干燥剂

④复盐:除锂外,碱金属易形成复盐,如光卤石、矾类(如明矾、绿矾等)

⑤ 热稳定性:碱金属盐具有较高的热稳定性。相同盐:碱土金属<碱金属</p>
(离子极化原理解释)

CaCO₃和K₂CO₃; Na₂CO₃和K₂CO₃ CaCO₃和ZnCO₃

2、p区金属

铝/镓分族: Al、Ga、In、Tl

价电子构型: $ns^2 np^1$

锗分族: Ge、Sn、Pb, 价电子构型: ns2np2

锑分族: Sb、Bi, 价电子构型: $ns^2 np^3$

Po: 为放射性元素。

金属性较弱, Al/Ga/In/Ge/Sn/Pb的单质及化合物表现两性和明显的共价性。

成键特征:

价电子构型为ns²np¹⁻⁴;表现低氧化 态和高氧化态(即族价);自上而下,低 氧化态化合物的稳定性增强。

高氧化态化合物多为共价化合物,而低氧 化态化合物为混合型或部分离子型化合物。 大部分P区金属盐类极易水解

p区金属元素的氧化态

	电子构型	氧化态(值)
Al	$[Ne]3s^23p^1$	+3
Ga	$[Ar]3d^{10}4s^24p^1$	+1, +3
In	$[Kr]4d^{10}5s^25p^1$	+1,+3
Tl	$[Xe]5d^{10}6s^{2}6p^{1}$	+1,+3
Ge	$[Ar]3d^{10}4s^24p^2$	+2, +4
Sn	$[Kr]4d^{10}5s^25p^2$	+2,+4
Pb	$[Xe]5d^{10}6s^26p^2$	+2,+4
Sb	$[Kr]4d^{10}5s^25p^3$	+3,+5
Bi	$[Xe]5d^{10}6s^26p^3$	+3,+5

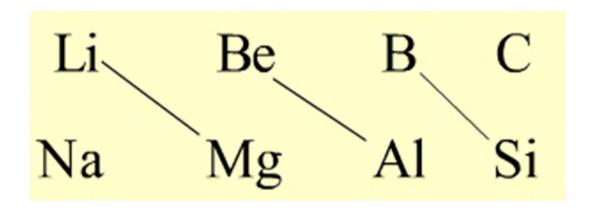
红色为不稳定

6s²电子对惰性效应

周期表中p区下方的金属元素,从上到下低氧化态渐趋于稳定的现象。 6s上两个电子表现最为突出

典型例子: Bi(V),Pb(IV),Tl(III)是强氧化剂,易得到电子形成Bi(III),Pb(II)和Tl(I)。

$$2Mn^{2+} + PbO_2 + 4H^+ = 2MnO_4^- + 5Pb^{2+} + 6H_2O$$


$$2Mn^{2+} + 5NaBiO_3 + 14H^{+} = 2MnO_4^{-} + 5Bi^{3+} + 5Na^{+} + 7H_2O$$

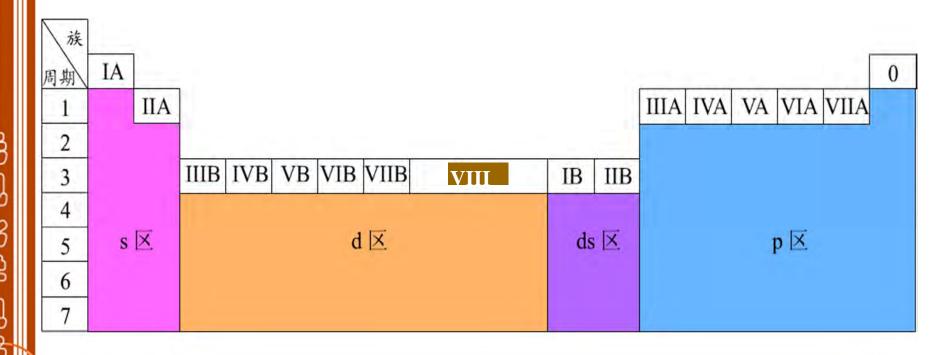
3. 对角线规则

在周期表中,某元素的性质和它左下方或右上方的另一元素性质相似性。

第二、三周期的三对元素表现较突出。

(1) 锂与镁的相似性

- •单质与氧作用生成正常氧化物;
- •氢氧化物均为中强碱,且水中溶解度不大;
- •氟化物、碳酸盐、磷酸盐均难溶;
- 氯化物溶于有机溶剂 (类似于共价化合物);
- •碳酸盐受热分解,分解产物为相应氧化物。


(2) 硼与硅的相似性

- •均为亲氧元素,与氧结合的键能较大;
- •单质易与强碱反应,生成盐和氢气;
- •晶体硼与晶体硅、BN与SiC都是原子晶体, 熔沸点很高;
- •氧化物均容易与其他金属氧化物形成玻璃;
- H₃BO₃和H₄SiO₄在水中溶解度不大;
- •由于B-B和Si-Si键能较小,(硅/硼)烷的数目比碳烷烃少得多,且易水解;
- •卤化物易水解;
- •易与氟形成配合物,如 HBF_4 和 H_2SiF_6 。

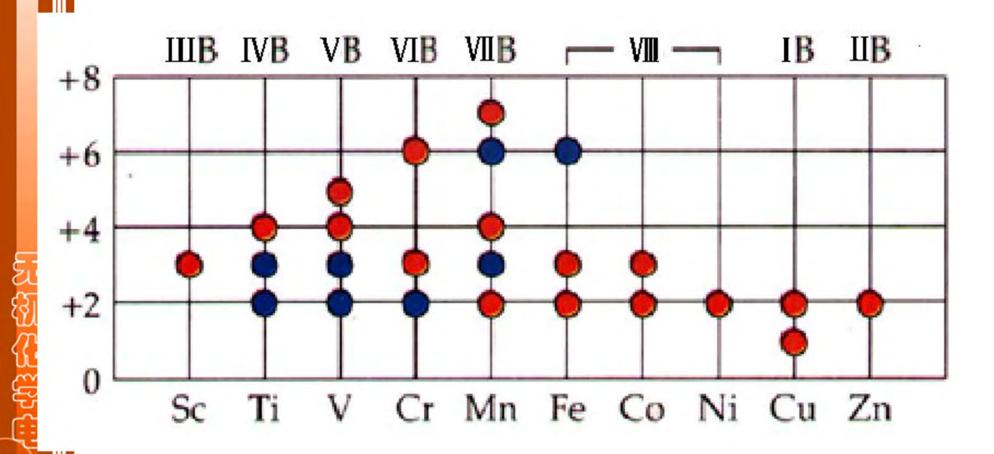
7.3.2 副族金属

从周期表中的IB到VIII族共八族10列元素,如d区金属、ds区金属和f区金属

镧系 锕系

f 🗵

1 d区金属的通性


价电子构型	$(n-1)d^{1-10}ns^{1-2} (n \ge 4)$
原子半径	从IIIB-VIII依次减小
电离能 (I_1)	从左到右总体上依次增强
电负性	从左到右总体上增加,但幅度小
氧化态	多变价,且族价为最稳定和最高价态(Fe, Co, Ni除外)
金属活泼性	从左到右总体上依次减弱
磁性和形成配	化合物常有顺磁性,易形成配
合物的倾向	合物

氧化态

常有多种氧化态,一般可由+II依次增加到与族数相同的氧化态。但VIII族的Fe, Co, Ni不能达到族数氧化态。

同一周期从左到右,氧化态首先逐渐 升高,随后又逐渐降低。同一族中从上 到下高氧化态趋向于比较稳定。

第一过渡金属系元素的氧化态

红色为常见的氧化态

氧化物及其水合物的酸碱性

最高氧化态的氧化物及其水合物,

同一周期从左到右酸性增强、碱性减弱;

同一族从上到下酸性减弱、碱性增强;

同一元素高氧化态酸性强,低氧化态的碱性强。(见教材 **p**₂₁₄)

氧化还原性

同周期从M(s)→M²⁺(aq)的标准电极电势 从左到右逐渐增大,还原性依次减弱;

最高氧化态含氧酸的标准电极电势从左到 右逐渐增大,即氧化性逐渐增强。

中间氧化态在一定条件下不稳定,易发生氧化反应、还原反应和歧化反应。 如MnO₄²⁻、V³⁺、Mn³⁺等。

配合物

过渡金属元素的原子和离子易与 NH_3 、 SCN^- 、 CN^- 、 X^- 、 $C_2O_4^{2-}$ 、CO和有机配体等形成配合物。

由于发生d-d跃迁水合离子常有颜色。

Mn (II)

Fe(II)


Co(II)

Ni(II)

Fe(III)

Cu(II)

 $\operatorname{Cr_2O_7^{2-}}$

 CrO_4^{2-}

CrO₂

 MnO_4

水合离子的颜色和含氧酸根颜色

离子	Sc ³⁺	Ti ³⁺	\mathbf{V}^{2+}	Cr ²⁺	Mn ²⁺	Fe ²⁺	Co ²⁺	Ni ²⁺
颜色	无色	紫色	紫色	蓝色	肉色	浅绿	粉红	绿色
离子		Ti ⁴⁺	V ³⁺	Cr ³⁺	Mn ³⁺	Fe ³⁺		
颜色		无色	绿色	蓝紫	红色	浅紫		

含氧酸根	VO ₃ -	CrO ₄ ²⁻	Cr ₂ O ₇ ²⁻	MnO ₄ ²⁻	MnO ₄ -
颜色	黄色	黄色	橙色	墨绿	紫色

2 ds区金属

(1) 结构特征

价电子构型为 $(n-1)d^{10}ns^{1-2}$, 如铜族(铜、银、金)和锌族 (锌、镉、汞)。

(2) 氧化态

铜族常见氧化态有+I、+II, +III, 锌族一般为+II, +I。

铜族与碱金属性质的对比

性质		IB族	IA族
价电子构型		$(n-1) d^{10}ns^1$	ns ¹
次外层结构		18e	8e (Li 为2e)
	常见	+ I , + II , + III	
氧化态	水中	Cu(II), Ag(I), Au(III)	+I
	变价	Cu(I), Ag(II), Au(I)	
金属性变化	从Cu	到Au减弱	从Li到Cs增强
氢氧化物碱 性和稳定性	氢氧化成氧化	匕物碱性较弱,易脱水形 匕物	强碱,从上到下碱性增强,对热非常稳定
形成配合物 的能力	形成酉	记合物的倾向很强	难形成配合物 107

元朝化学 中孝 歌

锌族与碱土金属性质的对比

性质	IIB族	IIA族				
价电子构型	$(n-1)d^{10}ns^2$	ns^2				
次外层结构	18e	8e(Be为2e)				
	常见 +I, +II					
氧化态	水中 Zn(II), Cd(II), Hg(I, II)	+II				
	变价 Hg(I)					
金属性变化	从Zn到Hg减弱	从Be到Ba增强				
氢氧化物碱 性和稳定性	氢氧化物为两性或弱碱性,易脱水分解。从上到下氢氧化物碱性增强。	强碱(除Be(OH) ₂ 外),从上到下碱 性增强,对热非常 稳定,				
形成配合物 的能力	形成配合物的倾向很强	形成螯合物8				

锌族与铜族性质对比

性质	铜族(IB)	锌族(IIB)		
原子半径	小	大		
氧化态	+I,+II,+III (从 上到下高价 稳定性增加)	+II (Hg有+I)		
熔、沸点	较高	较低 (低于碱土金属)		
金属活泼性	铜族低于相应的锌族元素			
氢氧化物碱性	铜族稍强于相应的锌族			
配位性	均易形成配合物			

7.4 稀有气体

★7.4.1 存在与成键特点

★ 7.4.2 氙化合物

★7.4.3 氙化合物的构型

发现: 1893 年,物理学家 Rayleigh和化学家 Ramsay 分析比较从氨分解的 N_2 (1.2505 g/L)和从空气获得 N_2 的质量(1.2572 g/L)的差异发现氩(Ar),获得1904年诺贝尔物理奖。

存在: 气体, 混于空气中。

制备:通过液化空气分离得到混合稀有气体,进一步分离得到纯的稀有气体。

He 最难被液化 (bp 4.2 K)

应用

He: 沸点最低、超流体性质、扩散

——液氮:冷冻剂、惰性气氛;

在NMR核磁共振光谱仪和显影应用

稀有气体: 填充在各种电光源中

霓虹灯——Ne; 氙灯(人造小太阳);

He-Ne 激光、Ar 激光 etc

• • • • • • • • • • • • •

7.4.1 成键特点

稀有气体: He Ne Ar Kr Xe Rn 价层电子构型: ns^2np^6 (He为1s²)

稀有气体的原子间作用力(即范德华力) 随原子序数增加而增大,其熔沸点、第 一电离能、密度等性质发生规律性变化

7.4.2 氙的化合物

稀有气体化学的发现引人注目

1962年3月, N. Bartlett (巴特列)首次发现

得到第一个稀有气体化合物

——XePtF₆(橙黄色固体)

预测: $Xe + PtF_6 \longrightarrow Xe[PtF_6]$

Kr、Xe、Rn: 半径大, 电离能较小, 得到化合物

1) 氟化物:

Xe(氙)可生成多种氧化态的氟化物 氧化态: II, IV, VI, VIII

(1) 影响生成氟化物的条件:

氙的氟化物可由元素之间的直接化合反应得到

$$Xe(g) + F_2(g) \rightarrow XeF_2(s)$$
 (Xe过量)

$$Xe(g) + 2F_2(g) \rightarrow XeF_4(s)$$
 $[n(Xe): n(F_2) = 1:5]$

Xe (g) + 3
$$F_2$$
 (g) \rightarrow **Xe** F_6 (s) $[n(Xe): n(F_2) = 1:20]$

(2) 氟化物的性质

为无色固体、共价化合物和强氧化剂,氧化能力随氧化数的升高而增强。

极易发生水解,以XeF6的反应活性最高。

(3) 氟化氙的反应

(a) XeF₂, XeF₄, XeF₆与 H₂O反应,发生水解

$$XeF_6(s) + 3 H_2O(l) \rightarrow XeO_3 + 6 HF$$

$$3XeF_4(s) + 6H_2O(l) \rightarrow XeO_3 + 2Xe + 3/2O_2 + 12HF$$

(b) 强氧化剂、氟化剂:

$$BrO_3^- + XeF_2 + H_2O \rightarrow BrO_4^- + 2 HF + Xe$$

$$2 \text{ XeF}_6 + 3 \text{ SiO}_2 \rightarrow 2 \text{ XeO}_3 + 3 \text{ SiF}_4$$

$$2 \text{ Hg} + \text{XeF}_4 \rightarrow \text{Xe} + 2 \text{ HgF}_2$$

(c) 与路易斯酸 (SbF₅)反应形成加合物:

$$XeF_2 + SbF_5(l) \rightarrow [XeF]^+[SbF_6]^-$$

2) 氧化物:

XeO3: 易潮解、极易爆炸,强氧化剂

 $Cl^- \rightarrow Cl_2; \quad I^- \rightarrow I_2; \quad Mn^{2+} \rightarrow MnO_4^-$

XeO4: 很不稳定, 易爆炸;

$$XeO_3 + OH^- \xrightarrow{pH > 10} HXeO_4 \xrightarrow{-+OH^-} XeO_6^4 - + Xe + O_2 + H_2O$$

发生水解,生成气体单质; 稀有气体化合物仍具有非常强的氧化性

3) 高氙酸盐

 XeO_3 在碱性介质中生成 $HXeO_4$,后者慢慢歧化生成 XeO_6 4:

 $XeO_3 + OH^- = HXeO_4^ 4HXeO_4^- + 8OH^- = 3XeO_6^{4-} + Xe + 6H_2O$ 或: $2HXeO_4^- + 2OH^- = XeO_6^{4-} + Xe + O_2 + 2H_2O$

高氙酸盐是最强的氧化剂之一,把 Mn^{2+} 、 Cl^{-} 分别氧化成 MnO_4 、 ClO_3 。或 ClO_4 。

 $5XeO_6^{4-} + 2Mn^{2+} + 9H^+ = 5HXeO_4^{-} + MnO_4^{-} + 2H_2O_4^{-}$

7.4.3 氙化合物的构型 VSEPR理论

化合物	价电子对数	孤电子对数	空间构型	分子形状
XeF ₂	5	3	F 三角双锥	F—Xe—F 直线形
XeF ₄	6	2	F Xe F 八面体	F Xe F 平面正方形
XeF ₆	7	1	F F F 五角双锥	F F F F 畸变八面体

	I			
化合物	价电子对数	孤电子对数	空间构型	分子形状
XeOF ₄	6	1	F Xe F 八面体	F Xe F 四方锥体
XeO ₃	4	1	四面体	0 三角锥
XeO ₄	4	0	O N 四面体	0 0 0 四面体 121

稀有气体化合物的应用

》强氧化剂:将其他物质氧化到最高氧化态; 产物Xe气体逸出,体系不增加额外的杂质

氟化剂:原子能工业分离放射性Xe、Kr;

XeF₄作减速剂; U、Pu、

Np 的分离; UF_6 的生产等.

□其他如激光材料、高能燃料和炸药等

